首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Edge disturbance can drive liana community changes and alter liana‐tree interaction networks, with ramifications for forest functioning. Understanding edge effects on liana community structure and liana‐tree interactions is therefore essential for forest management and conservation. We evaluated the response patterns of liana community structure and liana‐tree interaction structure to forest edge in two moist semi‐deciduous forests in Ghana (Asenanyo and Suhuma Forest Reserves: AFR and SFR, respectively). Liana community structure and liana‐tree interactions were assessed in 24 50 × 50 m randomly located plots in three forest sites (edge, interior and deep‐interior) established at 0–50 m, 200 m and 400 m from edge. Edge effects positively and negatively influenced liana diversity in forest edges of AFR and SFR, respectively. There was a positive influence of edge disturbance on liana abundance in both forests. We observed anti‐nested structure in all the liana‐tree networks in AFR, while no nestedness was observed in the networks in SFR. The networks in both forests were less connected, and thus more modular and specialised than their null models. Many liana and tree species were specialised, with specialisation tending to be symmetrical. The plant species played different roles in relation to modularity. Most of the species acted as peripherals (specialists), with only a few species having structural importance to the networks. The latter species group consisted of connectors (generalists) and hubs (highly connected generalists). Some of the species showed consistency in their roles across the sites, while the roles of other species changed. Generally, liana species co‐occurred randomly on tree species in all the forest sites, except edge site in AFR where lianas showed positive co‐occurrence. Our findings deepen our understanding of the response of liana communities and liana‐tree interactions to forest edge disturbance, which are useful for managing forest edge.  相似文献   

2.
Litter inputs can influence soil respiration directly through labile C availability and, indirectly, through the activity of soil microorganisms and modifications in soil microclimate; however, their relative contributions and the magnitude of any effect remain poorly understood. We synthesized 66 recently published papers on forest ecosystems using a meta‐analysis approach to investigate the effect of litter inputs on soil respiration and the underlying mechanisms involved. Our results showed that litter inputs had a strong positive impact on soil respiration, labile C availability, and the abundance of soil microorganisms, with less of an impact related to soil moisture and temperature. Overall, soil respiration was increased by 36% and 55%, respectively, in response to natural and doubled litter inputs. The increase in soil respiration induced by litter inputs showed a tendency for coniferous forests (50.7%)> broad‐leaved forests (41.3%)> mixed forests (31.9%). This stimulation effect also depended on stand age with 30‐ to 100‐year‐old forests (53.3%) and ≥100‐year‐old forests (50.2%) both 1.5 times larger than ≤30‐year‐old forests (34.5%). Soil microbial biomass carbon and soil dissolved organic carbon increased by 21.0%‐33.6% and 60.3%‐87.7%, respectively, in response to natural and doubled litter inputs, while soil respiration increased linearly with corresponding increases in soil microbial biomass carbon and soil dissolved organic carbon. Natural and doubled litter inputs increased the total phospholipid fatty acid (PLFA) content by 6.6% and 19.7%, respectively, but decreased the fungal/bacterial PLFA ratio by 26.9% and 18.7%, respectively. Soil respiration also increased linearly with increases in total PLFA and decreased linearly with decreases in the fungal/bacterial PLFA ratio. The contribution of litter inputs to an increase in soil respiration showed a trend of total PLFA > fungal/bacterial PLFA ratio > soil dissolved organic carbon > soil microbial biomass carbon. Therefore, in addition to forest type and stand age, labile C availability and soil microorganisms are also important factors that influence soil respiration in response to litter inputs, with soil microorganisms being more important than labile C availability.  相似文献   

3.
The natural and seminatural components of agricultural landscapes play a key role in maintaining a high level of biodiversity. Being the Po Valley one of the most human‐dominated and intensively cultivated landscapes in Europe, we investigated the effect of no‐crop habitats on carabid richness and composition and evaluated the role of tree row as corridor for forest carabid dispersion. Carabids were sampled with 70 pitfall traps arranged in 35 sampling plots along three parallel transects (80, 100, and 140 m long) and encompassing five different habitats: tree row, tree row edge, grassland, forest edge, and forest. We found 5,615 individuals belonging to 55 species. Despite the similarity in species richness, all the habitats investigated showed a peculiar and distinct species assemblage. The main distinction was between the "open habitat" cluster composed of grassland and tree row edge and the “forest" cluster composed of forest, tree row, and forest edge. We found that forest species are able to penetrate the grassland matrix up to 30 m from the forest edge and that a distance of no more than 60 m between tree row and forest can allow the passage of up to 50% of the forest species. Beyond this distance, the grassland matrix becomes a barrier, preventing them from reaching other suitable habitats. Our findings confirm the importance of maintaining different types of natural habitats to significantly increase biodiversity in an intensively cultivated agroecosystem and demonstrated the role of linear elements as a corridor and “stepping stones” for many forest species.  相似文献   

4.
Seed recruitment is a major driver of mangrove restoration globally. It is hypothesized that soil condition and channel hydrology can accelerate seedling recruitment and regeneration after a major disturbance. Species abundance, diversity indices, microbial and chemical concentrations in sand‐filled mangrove forest was studied. Eight plots measuring 487.77 m2 each were established with ten transects in each plot in a random block design to investigate the effect of soil conditions on seedling growth. A total of 1,886 seedlings were counted. Seedling abundance was significantly different between red (Rizophora racemosa), white (Laguncularia racemosa), and black (Avicennia germinans) mangroves, and nypa palm (nypa fruticans). The most dominant species was black mangrove, and the least dominant species was nypa palm. Muddy soils had the most abundant species (n = 994) followed by sandy (n = 457) and semi‐muddy (435) soils. Furthermore, sandy soils had the highest species diversity (H = 0.896) followed by semi‐muddy (H = 0.876) and muddy (H = 0.583) soils. The soil metal concentration has no correlation with seed abundance and occur in the order Iron > Nitrate > Copper > Cadmium. Soil with high species diversity had high soil microbial population; however, seedling abundance was correlated with soil nutrients and not heavy metals. Small seeds are easily recruited while good soil condition plus existing hydrological connection facilitated natural seedling regeneration in the disturbed mangrove forest.  相似文献   

5.
Mast seeding, the synchronized interannual variation in seed production of trees, is a well‐known bottom‐up driver for population densities of granivorous forest rodents. Such demographic effects also affect habitat preferences of the animals: After large seed production events, reduced habitat selectivity can lead to spillover from forest patches into adjacent alpine meadows or clear‐cuts, as has been reported for human‐impacted forests. In unmanaged, primeval forests, however, gaps created by natural disturbances are typical elements, yet it is unclear whether the same spillover dynamics occur under natural conditions. To determine whether annual variation in seed production drives spillover effects in naturally formed gaps, we used 14 years of small mammal trapping data combined with seed trap data to estimate population densities of Apodemus spp. mice and bank voles (Myodes glareolus) on 5 forest sites with differing disturbance history. The study sites, located in a forest dominated by European beech (Fagus sylvatica), Norway spruce (Picea abies), and silver fir (Abies alba), consisted of two primeval forest sites with small canopy gaps, two sites with larger gaps (after an avalanche event and a windthrow event), and a managed forest stand with closed canopy as a control. Hierarchical Bayesian N‐mixture models revealed a strong influence of seed rain on small rodent abundance, which were site‐specific for M. glareolus but not for Apodemus spp. Following years of moderate or low seed crop, M. glareolus avoided open habitat patches but colonized those habitats in large numbers after full mast events, suggesting that spillover events also occur in unmanaged forests, but not in all small rodents. The species‐ and site‐specific characteristics of local density responding to food availability have potentially long‐lasting effects on forest gap regeneration dynamics and should be addressed in future studies.  相似文献   

6.
Adaptations to anthropogenic domestic habitats contribute to the success of the mosquito Aedes aegypti as a major global vector of several arboviral diseases. The species inhabited African forests before expanding into domestic habitats and spreading to other continents. Despite a well‐studied evolutionary history, how this species initially moved into human settlements in Africa remains unclear. During this initial habitat transition, African Ae. aegypti switched their larval sites from natural water containers like tree holes to artificial containers like clay pots. Little is known about how these natural versus artificial containers differ in their characteristics. Filling this knowledge gap could provide valuable information for studying the evolution of Ae. aegypti associated with larval habitat changes. As an initial effort, in this study, we characterized the microenvironments of Ae. aegypti larval sites in forest and domestic habitats in two African localities: La Lopé, Gabon, and Rabai, Kenya. Specifically, we measured the physical characteristics, microbial density, bacterial composition, and volatile chemical profiles of multiple larval sites. In both localities, comparisons between natural containers in the forests and artificial containers in the villages revealed significantly different microenvironments. We next examined whether the between‐habitat differences in larval site microenvironments lead to differences in oviposition, a key behavior affecting larval distribution. Forest Ae. aegypti readily accepted the artificial containers we placed in the forests. Laboratory choice experiments also did not find distinct oviposition preferences between forest and village Ae. aegypti colonies. These results suggested that African Ae. aegypti are likely generalists in their larval site choices. This flexibility to accept various containers with a wide range of physical, microbial, and chemical conditions might allow Ae. aegypti to use human‐stored water as fallback larval sites during dry seasons, which is hypothesized to have initiated the domestic evolution of Ae. aegypti.  相似文献   

7.
QuestionHow conservation and forest type affect macrofungal compositional diversity is not well understood. Even less is known about macrofungal associations with plants, soils, and geoclimatic conditions.LocationSouthern edge of boreal forest distribution in China, named as Huzhong Nature Reserve.MethodsWe surveyed a total of 72 plots for recording macrofungi, plants, and topography in 2015 and measured soil organic carbon, nitrogen, and bulk density. Effects of conservation and forest types on macrofungi and plants were compared, and their associations were decoupled by structural equation modeling (SEM) and redundancy ordination (RDA).ResultsConservation and forest type largely shaped macrofungal diversity. Most of the macrofungal traits declined with the conservation intensities or peaked at the middle conservation region. Similarly, 91% of macrofungal traits declined or peaked in the middle succession stage of birch‐larch forests. Forest conservation resulted in the observation of sparse, larch‐dominant, larger tree forests. Moreover, the soil outside the Reserve had more water, higher fertility, and lower bulk density, showing miscellaneous wood forest preference. There is a complex association between conservation site characteristics, soils, plants, and macrofungi. Variation partitioning showed that soil N was the top‐one factor explaining the macrofungal variations (10%). As shown in SEM coefficients, conservation effect to macrofungi (1.1–1.2, p < .05) was like those from soils (1.2–1.6, p < .05), but much larger than the effect from plants (0.01–0.14, p > .10). For all tested macrofungal traits, 89%–97% of their variations were from soils, and 5%–21% were from conservation measures, while plants compensated 1%–10% of these effects. Our survey found a total of 207 macrofungal species, and 65 of them are new updates in this Reserve, indicating data shortage for the macrofungi list here.ConclusionOur findings provide new data for the joint conservation of macrofungi and plant communities, highlighting the crucial importance of soil matrix for macrofungal conservation in boreal forests.  相似文献   

8.
Most Central African rainforests are characterized by a remarkable abundance of light‐demanding canopy species: long‐lived pioneers (LLP) and non‐pioneer light demanders (NPLD). A popular explanation is that these forests are still recovering from intense slash‐and‐burn farming activities, which abruptly ended in the 19th century. This “human disturbance” hypothesis has never been tested against spatial distribution patterns of these light demanders. Here, we focus on the 28 most abundant LLP and NPLD from 250 one‐ha plots distributed along eight parallel transects (~50 km) in the Yangambi forest. Four species of short‐lived pioneers (SLP) and a single abundant shade‐tolerant species (Gilbertiodendron dewevrei) were used as reference because they are known to be strongly aggregated in recently disturbed patches (SLP) or along watercourses (G. dewevrei). Results show that SLP species are strongly aggregated with clear spatial autocorrelation of their diameter. This confirms that they colonized the patch following a one‐time disturbance event. In contrast, LLP and NPLD species have random or weakly aggregated distribution, mostly without spatial autocorrelation of their diameter. This does not unambiguously confirm the “human disturbance” hypothesis. Alternatively, their abundance might be explained by their deciduousness, which gave them a competitive advantage during long‐term drying of the late Holocene. Additionally, a canonical correspondence analysis showed that the observed LLP and NPLD distributions are not explained by environmental variables, strongly contrasting with the results for the reference species G. dewevrei, which is clearly aggregated along watercourses. We conclude that the abundance of LLP and NPLD species in Yangambi cannot be unambiguously attributed to past human disturbances or environmental variables. An alternative explanation is that present‐day forest composition is a result of adaptation to late‐Holocene drying. However, results are inconclusive and additional data are needed to confirm this alternative hypothesis.  相似文献   

9.
Throughout Africa, lions are thought to have experienced dramatic population decline and range contraction. The greatest declines are likely occurring in human‐dominated landscapes where reliably estimating lion populations is particularly challenging. By adapting a method that has thus far only been applied to animals that are habituated to vehicles, we estimate lion density in two community areas in Kenya''s South Rift, located more than 100 km from the nearest protected area (PA). More specifically, we conducted an 89‐day survey using unstructured spatial sampling coupled with playbacks, a commonly used field technique, and estimated lion density using spatial capture‐recapture (SCR) models. Our estimated density of 5.9 lions over the age of 1 year per 100 km2 compares favorably with many PAs and suggests that this is a key lion population that could be crucial for connectivity across the wider landscape. We discuss the possible mechanisms supporting this density and demonstrate how rigorous field methods combined with robust analyses can produce reliable population estimates within human‐dominated landscapes.  相似文献   

10.
Microorganisms are famous for adapting quickly to new environments. However, most evidence for rapid microbial adaptation comes from laboratory experiments or domesticated environments, and it is unclear how rates of adaptation scale from human‐influenced environments to the great diversity of wild microorganisms. We examined potential monthly‐scale selective pressures in the model forest yeast Saccharomyces paradoxus. Contrary to expectations of seasonal adaptation, the S. paradoxus population was stable over four seasons in the face of abiotic and biotic environmental changes. While the S. paradoxus population was diverse, including 41 unique genotypes among 192 sampled isolates, there was no correlation between S. paradoxus genotypes and seasonal environments. Consistent with observations from other S. paradoxus populations, the forest population was highly clonal and inbred. This lack of recombination, paired with population stability, implies that selection is not acting on the forest S. paradoxus population on a seasonal timescale. Saccharomyces paradoxus may instead have evolved generalism or phenotypic plasticity with regard to seasonal environmental changes long ago. Similarly, while the forest population included diversity among phenotypes related to intraspecific interference competition, there was no evidence for active coevolution among these phenotypes. At least ten percent of the forest S. paradoxus individuals produced “killer toxins,” which kill sensitive Saccharomyces cells, but the presence of a toxin‐producing isolate did not predict resistance to the toxin among nearby isolates. How forest yeasts acclimate to changing environments remains an open question, and future studies should investigate the physiological responses that allow microbial cells to cope with environmental fluctuations in their native habitats.  相似文献   

11.
Roosting information is crucial to guiding bat conservation and bat‐friendly forestry practices. The Ryukyu tube‐nosed bat Murina ryukyuana (Endangered) and Yanbaru whiskered bat Myotis yanbarensis (Critically Endangered) are forest‐dwelling bats endemic to the central Ryukyu Archipelago, Japan. Despite their threatened status, little is known about the roosting ecology of these species and the characteristics of natural maternity roosts are unknown. To inform sustainable forestry practices and conservation management, we radio‐tracked day roosts of both species in the subtropical forests of Okinawa''s Kunigami Village District. We compared roost and roost site characteristics statistically between M. ryukyuana nonmaternity roosts (males or nonreproductive females), maternity roosts, and all M. yanbarensis roosts. Generalized linear models were used to investigate roost site selection by M. ryukyuana irrespective of sex and age class. Lastly, we compiled data on phenology from this and prior studies. Nonreproductive M. ryukyuana roosted alone and primarily in understory foliage. Murina ryukyuana maternity roosts were limited to stands >50 years old, and ~60% were in foliage. Myotis yanbarensis roosted almost entirely in cavities along gulch bottoms and only in stands >70 years old (~1/3 of Kunigami''s total forest area). Murina ryukyuana maternity roosts were higher (4.3 ± 0.6 m) than conspecific nonmaternity roosts (2.3 ± 0.5 m; p < .001) and M. yanbarensis roosts (2.7 ± 0.5 m; not significant). Model results were inconclusive. Both species appear to be obligate plant roosters throughout their life cycle, but the less flexible roosting preferences of M. yanbarensis may explain its striking rarity. To conserve these threatened bats, we recommend the following forestry practices: (a) reduce clearing of understory vegetation, (b) refrain from removing trees along streams, (c) promote greater tree cavity densities by protecting old‐growth forests and retaining snags, and (d) refrain from removing trees or understory between April and July, while bats are pupping.  相似文献   

12.
Size changes in brain and brain regions along altitudinal gradients provide insight into the trade‐off between energetic expenditure and cognitive capacity. We investigated the brain size variations of the Asiatic Toad (Bufo gargarizans) across altitudes from 700 m to 3,200 m. A total of 325 individuals from 11 sites and two transects were sampled. To reduce confounding factors, all sampling sites within each transect were within a maximum distance of 85 km and an altitudinal difference close to 2,000 m. Brains were dissected, and five regions were both measured directly and with 3D CT scan. There is a significant negative correlation between the relative whole‐brain volume (to snout‐vent length) and altitude. Furthermore, the relative volumes (to whole‐brain volume) of optic tectum and cerebellum also decrease along the altitudinal gradients, while the telencephalon increases its relative volume along the gradients. Therefore, our results are mostly consistent with the expensive brain hypothesis and the functional constraint hypothesis. We suggest that most current hypotheses are not mutually exclusive and data supporting one hypothesis are often partially consistent with others. More studies on mechanisms are needed to explain the brain size evolution in natural populations.  相似文献   

13.
Dispersal and colonization are among the most important ecological processes for species persistence as they allow species to track changing environmental conditions. During the last glacial maximum (LGM), many cold‐intolerant Northern Hemisphere plants retreated to southern glacial refugia. During subsequent warming periods, these species expanded their ranges northward. Interestingly, some tree species with limited seed dispersal migrated considerable distances after the LGM ~19,000 years before present (YBP). It has been hypothesized that indigenous peoples may have dispersed valued species, in some cases beyond the southern limits of the Laurentide Ice Sheet. To investigate this question, we employed a molecular genetics approach on a widespread North American understory tree species whose fruit was valued by indigenous peoples. Twenty putative anthropogenic (near pre‐Columbian habitations) and 62 wild populations of Asimina triloba (pawpaw), which produces the largest edible fruit of any North American tree, were genetically assayed with nine microsatellite loci. Putative anthropogenic populations were characterized by reduced genetic diversity and greater excess heterozygosity relative to wild populations. Anthropogenic populations in regions that were glaciated during the LGM had profiles consistent with founder effects and reduced gene flow, and shared rare alleles with wild populations hundreds of kilometers away (mean = 723 km). Some of the most compelling evidence for human‐mediated dispersal is that putative anthropogenic and wild populations sharing rare alleles were separated by significantly greater distances (mean = 695 km) than wild populations sharing rare alleles (mean = 607 km; p = .014). Collectively, the genetic data suggest that long‐distance dispersal played an important role in the distribution of pawpaw and is consistent with the hypothesized role of indigenous peoples.  相似文献   

14.
  1. Studies on the effects of human‐driven forest disturbance usually focus on either biodiversity or carbon dynamics but much less is known about ecosystem processes that span different trophic levels. Herbivory is a fundamental ecological process for ecosystem functioning, but it remains poorly quantified in human‐modified tropical rainforests.
  2. Here, we present the results of the largest study to date on the impacts of human disturbances on herbivory. We quantified the incidence (percentage of leaves affected) and severity (the percentage of leaf area lost) of canopy insect herbivory caused by chewers, miners, and gall makers in leaves from 1,076 trees distributed across 20 undisturbed and human‐modified forest plots in the Amazon.
  3. We found that chewers dominated herbivory incidence, yet were not a good predictor of the other forms of herbivory at either the stem or plot level. Chewing severity was higher in both logged and logged‐and‐burned primary forests when compared to undisturbed forests. We found no difference in herbivory severity between undisturbed primary forests and secondary forests. Despite evidence at the stem level, neither plot‐level incidence nor severity of the three forms of herbivory responded to disturbance.
  4. Synthesis. Our large‐scale study of canopy herbivory confirms that chewers dominate the herbivory signal in tropical forests, but that their influence on leaf area lost cannot predict the incidence or severity of other forms. We found only limited evidence suggesting that human disturbance affects the severity of leaf herbivory, with higher values in logged and logged‐and‐burned forests than undisturbed and secondary forests. Additionally, we found no effect of human disturbance on the incidence of leaf herbivory.
  相似文献   

15.
Due to rapid urbanization, logging, and agricultural expansion, forest fragmentation is negatively affecting native wildlife populations throughout the tropics. This study examined the effects of landscape and habitat characteristics on the lesser mouse‐deer, Tragulus kanchil, populations in Peninsular Malaysia. We conducted camera‐trap survey at 315 sampling points located within 8 forest reserves. An assessment of site‐level and landscape variables was conducted at each sampling point. Our study provides critical ecological information for managing and conserving understudied populations of T. kanchil. We found that the detection of T. kanchil was attributed to forest fragmentation in which forest patches had four times greater detection of T. kanchil than continuous forest. The detection of T. kanchil was nearly three times higher in peat swamp forest compared to lowland dipterocarp forests. Surprisingly, the detection of T. kanchil was higher in logged forests (logging ceased at least 30 years ago) than unlogged forests. The detection of T. kanchil increased with the presence of trees, particularly those with DBH of 5 cm to 45 cm, canopy cover, number of saplings and palms, number of dead fallen trees, and distance from nearest roads. However, detection decreased with a greater number of trees with DBH greater than 45 cm and higher elevations, and greater detections where creeping bamboo was abundant. We recommend that conservation stakeholders take the necessary steps (e.g., eradicating poaching, habitat degradation, and further deforestation) to support the conservation of mouse‐deer species and its natural habitats.  相似文献   

16.
Medium and large‐sized mammals of Jorgo‐Wato Protected Forest have not yet been documented though the forest established before four decades. Hence, this study aims to document medium and large mammals and the behavioral responses of selected mammals toward anthropogenic activities in the study area. The study was conducted from February 2015 to June 2016, encompassing the wet and dry seasons. Data were collected mainly through camera traps, indirect and direct evidence. The study revealed about 23 medium and large‐sized mammals that belong to seven orders namely Bovidae, Carnivora, Primates, Rodentia, Tubulidentata, Lagomorpha, and Hyracoidea. Papio anubis, C. guereza, and C. aethiops were the most abundant large mammals in JWPF. Because of high anthropogenic activities, African buffalo shifted its activity period from diurnal into crepuscular and nocturnal. African buffalo traveled longer distances during the wet season (mean = 14.33 km, SD = 1.25 km) than during the dry season (mean = 9.00 km, SD = 2.16 km). This could be due to the fact that the local people were less likely to go to the forest for resource exploitation during the wet season as they are fully engaged in agricultural activities. However, low agricultural activities during the dry season allow the local people to extract resources and involve in bushmeat hunting which could limit the movement of mammals to their refugia. African buffalo preferred to rest on and adjacent to a gravel road (22.1%) in the forest, followed by on open rocky hilltops (14.7%) at night time, but rest in the bottomland thicket vegetation during the dry daytime. Regardless of high human pressure in the area, this study has revealed a good number of medium and large‐sized mammals that could be used as baseline information to design a sound conservation and management action plan of large mammals and their habitat in Jorgo‐Wato Protected Forest.  相似文献   

17.
Despite the key roles that dispersal plays in individual animal fitness and meta‐population gene flow, it remains one of the least understood behaviors in many species. In large mammalian herbivores, dispersals might span long distances and thereby influence landscape‐level ecological processes, such as infectious disease spread. Here, we describe and analyze an exceptional long‐distance dispersal by an adult white‐tailed deer (Odocoileus virginianus) in the central United States. We also conducted a literature survey to compare the dispersal to previous studies. This dispersal was remarkable for its length, duration, and the life history stage of the dispersing individual. Dispersal is typical of juvenile deer seeking to establish postnatal home ranges, but this dispersal was undertaken by an adult male (age = 3.5). This individual dispersed ~300 km over a 22‐day period by moving, on average, 13.6 km/day and achieving a straight‐line distance of ~215 km, which was ~174 km longer than any other distance recorded for an adult male deer in our literature survey. During the dispersal, which occurred during the hunting season, the individual crossed a major river seven times, an interstate highway, a railroad, and eight state highways. Movements during the dispersal were faster (mean = 568.1 m/h) and more directional than those during stationary home range periods before and after the dispersal (mean = 56.9 m/h). Likewise, movements during the dispersal were faster (mean = 847.8 m/h) and more directional at night than during the day (mean = 166.4 m/h), when the individual frequently sheltered in forest cover. This natural history event highlights the unpredictable nature of dispersal and has important implications for landscape‐level processes such as chronic wasting disease transmission in cervids. More broadly, our study underscores how integrating natural history observations with modern technology holds promise for understanding potentially high impact but rarely recorded ecological events.  相似文献   

18.
《Ecology and evolution》2021,11(21):14630
Quantifying fish species diversity in rich tropical marine environments remains challenging. Environmental DNA (eDNA) metabarcoding is a promising tool to face this challenge through the filtering, amplification, and sequencing of DNA traces from water samples. However, because eDNA concentration is low in marine environments, the reliability of eDNA to detect species diversity can be limited. Using an eDNA metabarcoding approach to identify fish Molecular Taxonomic Units (MOTUs) with a single 12S marker, we aimed to assess how the number of sampling replicates and filtered water volume affect biodiversity estimates. We used a paired sampling design of 30 L per replicate on 68 reef transects from 8 sites in 3 tropical regions. We quantified local and regional sampling variability by comparing MOTU richness, compositional turnover, and compositional nestedness. We found strong turnover of MOTUs between replicated pairs of samples undertaken in the same location, time, and conditions. Paired samples contained non‐overlapping assemblages rather than subsets of one another. As a result, non‐saturated localized diversity accumulation curves suggest that even 6 replicates (180 L) in the same location can underestimate local diversity (for an area <1 km). However, sampling regional diversity using ~25 replicates in variable locations (often covering 10 s of km) often saturated biodiversity accumulation curves. Our results demonstrate variability of diversity estimates possibly arising from heterogeneous distribution of eDNA in seawater, highly skewed frequencies of eDNA traces per MOTU, in addition to variability in eDNA processing. This high compositional variability has consequences for using eDNA to monitor temporal and spatial biodiversity changes in local assemblages. Avoiding false‐negative detections in future biomonitoring efforts requires increasing replicates or sampled water volume to better inform management of marine biodiversity using eDNA.  相似文献   

19.
Tropical forests are notable for their high species diversity, even on small spatial scales, and right‐skewed species and size abundance distributions. The role of individual species as drivers of the spatial organization of diversity in these forests has been explained by several hypotheses and processes, for example, stochastic dilution, negative density dependence, or gap dynamics. These processes leave a signature in spatial distribution of small trees, particularly in the vicinity of large trees, likely having stronger effects on their neighbors. We are exploring species diversity patterns within the framework of various diversity‐generating hypotheses using individual species–area relationships. We used the data from three tropical forest plots (Wanang—Papua New Guinea, Barro Colorado Island—Panama, and Sinharaja—Sri Lanka) and included also the saplings (DBH ≥ 1 cm). Resulting cross‐size patterns of species richness and evenness reflect the dynamics of saplings affected by the distribution of large trees. When all individuals with DBH ≥1 cm are included, ~50% of all tree species from the 25‐ or 50‐ha plot can be found within 35 m radius of an individual tree. For all trees, 72%–78% of species were identified as species richness accumulators, having more species present in their surroundings than expected by null models. This pattern was driven by small trees as the analysis of DBH >10 cm trees showed much lower proportion of accumulators, 14%–65% of species identified as richness repellers and had low richness of surrounding small trees. Only 11%–26% of species had lower species evenness than was expected by null models. High proportions of species richness accumulators were probably due to gap dynamics and support Janzen–Connell hypothesis driven by competition or top‐down control by pathogens and herbivores. Observed species diversity patterns show the importance of including small tree size classes in analyses of the spatial organization of diversity.  相似文献   

20.
Complete documentation on the status of mammals is indispensable for appropriate conservation measures in protected areas. However, there is inadequate information on mammalian resources in the ecosystem of Gibe Sheleko National Park (GSNP). Thus, the study aimed to assess species diversity, abundance, and habitat association of medium‐ and large‐sized mammals in GSNP. We stratified the study area into five dominant habitat types, namely dense forest, wooded grassland, grassland, riverine forest, and farmland habitat types based on land cover and vegetation structures and further employed stratified random sampling technique across each habitat type. The sample transects covered 20% of the study area. Transect width ranged from 50 m to 400 m based on vegetation cover and visibility of mammals. The main data were collected via direct observation. Data were analyzed via chi‐square test and species diversity indexes. We recorded the total of 20 mammals species'' those belong to 10 families of which 8 species were large‐sized and 12 species medium‐sized mammals. There were two IUCN vulnerable species, namely Hippopotamus amphibious and Panthera pardus, and two globally near‐threatened species, particularly Litocranius walleri and Caracal caracal in the study area. Dense forest held the highest species diversity of medium‐ and large‐sized mammals (H′ = 2.28) with the highest evenness index (J = 0.84). Riverine forest had the least diversity with uneven population distribution. Papio anubis was the most abundance species, whereas Caracal caracal was the least abundant in the study area. GSNP is home for threatened and spectacular mammals species''; hence, an appropriate conservation measure is mandatory to keep existing mammals species''.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号