首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
Poly(ADP-ribose) in the cellular response to DNA damage   总被引:32,自引:0,他引:32  
Poly(ADP-ribose) polymerase is a chromatin-bound enzyme which, on activation by DNA strand breaks, catalyzes the successive transfer of ADP-ribose units from NAD to nuclear proteins. Poly(ADP-ribose) synthesis is stimulated by DNA strand breaks, and the polymer may alter the structure and/or function of chromosomal proteins to facilitate the DNA repair process. Electronmicroscopic studies show that poly(ADP-ribose) unwinds the tightly packed nucleosomal structure of isolated chromatin. Recent studies also show that the presence of poly(ADP-ribose) enhances the activity of DNA ligase. This may increase the capacity of the cell to complete DNA repair. Inhibitors of poly(ADP-ribose) polymerase or deficiencies of the substrate, NAD, lead to retardation of the DNA repair process. When DNA strand breaks are extensive or when breaks fail to be repaired, the stimulus for activation of poly(ADP-ribose) persists and the activated enzyme is capable of totally consuming cellular pools of NAD. Depletion of NAD and consequent lowering of cellular ATP pools, due to activation of poly(ADP-ribose) polymerase, may account for rapid cell death before DNA repair takes place and before the genetic effects of DNA damage become manifest.  相似文献   

2.
Summary Poly(ADP-ribose) polymerase catalyses the formation of ADP-ribose polymers covalently attached to various nuclear proteins, using NAD+ as substrate. The activity of this enzyme is strongly stimulated upon binding to DNA single or double strand breaks. Poly(ADP-ribosyl)ation is an immediate cellular response to DNA damage and is thought to be involved in DNA repair, genetic recombination, apoptosis and other processes during which DNA strand breaks are formed. In recent years we and others have established cell culture systems with altered poly(ADP-ribose) polymerase activity. Here we describe immunocytochemistry protocols based on the use of antibodies against the DNA-binding domain of human poly(ADP-ribose) polymerase and against its reaction product poly(ADP-ribose). These protocols allow for the convenient mass screening of cell transfectants with overexpression of poly(ADP-ribose) polymerase or of a dominant-negative mutant for this enzyme, i.e. the DNA-binding domain. In addition, the immunocytochemical detection of poly(ADP-ribose) allows screening for cells with altered enzyme activity.  相似文献   

3.
Poly(ADP-ribosyl)ation is a cellular response to DNA strand breaks by which a large array of proteins becomes covalently modified for a brief period during the lifetime of the DNA breaks. Inhibition of poly(ADP-ribose) polymerase by 3-aminobenzamide after many types of DNA damage leads to a marked increase in DNA strand breakage, repair replication, cytogenetic damage, mutagenesis, and cell killing. It has been hypothesized that poly(ADP-ribose) polymerase may modify potentially degradative endogenous nucleases that can reduce cellular viability. Thus, in the presence of DNA strand breakage, the polymer would bind these enzymes to inhibit their activity. When synthesis of the polymerase is inhibited, the enzymes would act randomly to produce nonspecific damage in the DNA. We tested this hypothesis by electroporating restriction enzymes into human cells containing the shuttle vector pHAZE. Restriction enzymes cleave at specific recognition sequences in the lacZ target gene of pHAZE, and mutations result from rejoining errors at the cleavage sites. If the hypothesis were correct, enzyme-treated cells cultured with 3-aminobenzamide to inhibit synthesis of poly(ADP-ribose) polymers would result in a significant increase in mutations outside the restriction enzyme sites. The spectrum of mutations observed after electroporation of PvuII (which produces blunt-end double-strand breaks) or PvuI (which produces cohesive-end double-strand breaks) was similar in untreated and 3-aminobenzamide-treated cells. Thus, our results do not support the hypothesis that the increase in damage observed when poly(ADP-ribosyl)ation is inhibited is due to a chaotic, nonspecific attack on DNA by endogenous cellular nucleases.  相似文献   

4.
Poly(ADP-ribosylated) histones in chromatin replication   总被引:2,自引:0,他引:2  
Poly(ADP-ribosylation) of histones and several other nuclear proteins seem to participate in nuclear processes involving DNA strand breaks like repair, replication, or recombination. This is suggested from the fact that the enzyme poly(ADP-ribose) polymerase responsible for this modification is activated by DNA strand breaks produced in these nuclear processes. In this article I provide three lines of evidence supporting the idea that histone poly(ADP-ribosylation) is involved in chromatin replication. First, cellular lysates from rapidly dividing mouse or human cells in culture synthesize a significant number of oligo- in addition to mono(ADP-ribosylated) histones. Blocking the cells by treatment of cultures with 5 mM butyrate for 24 h or by serum or nutrient depletion results in the synthesis of only mono- but not of oligo(ADP-ribosylated) histones under the same conditions. Thus, the presence of oligo(ADP-ribosylated) histones is related to cell proliferation. Second, cellular lysates or nuclei isolated under mild conditions in the presence of spermine and spermidine and devoid of DNA strand breaks mainly synthesize mono(ADP-ribosylated) histones; introduction of a small number of cuts by DNase I or micrococcal nuclease results in a dramatic increase in the length of poly(ADP-ribose) attached to histones presumably by activation of poly(ADP-ribose) polymerase. Free ends of DNA that could stimulate poly(ADP-ribosylation) of histones are present at the replication fork. Third, putatively acetylated species of histone H4 are more frequently ADP-ribosylated than nonacetylated H4; the number of ADP-ribose groups on histone H4 was found to be equal or exceed by one the number of acetyl groups on this molecule. Since one recognized role of tetraacetylated H4 is its participation in the assembly of new nucleosomes, oligo(ADP-ribosylation) of H4 (and by extension of other histones) may function in new nucleosome formation. Based on these results I propose that poly(ADP-ribosylated) histones are employed for the assembly of histone complexes and their deposition on DNA during replication. Modified histones arise at the replication fork by activation of poly(ADP-ribose) polymerase by unligated Okazaki fragments.  相似文献   

5.
6.
The role of poly(ADP-ribosyl)ation in the adaptive response   总被引:2,自引:0,他引:2  
An involvement of the poly(ADP-ribosyl)ation system in the expression of the adaptive response has been demonstrated with inhibitors of the nuclear enzyme poly(ADP-ribose) polymerase. This enzyme is a key component of a reaction cycle in chromatin, involving dynamic synthesis and degradation of variably sized ADP-ribose polymers in response to DNA strand breaks. The present report reviews recent work focussing on the response of the poly(ADP-ribosyl)ation system in low dose adaptation. The results suggest that adaptation of human cells to minute concentrations of an alkylating agent involves a different activation mechanism for poly(ADP-ribose) polymerase than DNA break-mediated stimulation after high dose treatment. Moreover, adaptation induces the formation of branched polymers with a very high binding affinity for histone tails and selected other proteins. High dose challenge treatment of adapted cells further enhances formation of branched polymers. We propose that apart from sensing DNA nicks, poly(ADP-ribose) polymerase may be part of pathway protecting cells from downstream events of DNA damage.  相似文献   

7.
Poly(ADP-ribose) polymerase is a chromatin enzyme which adds long chains of ADP-ribose to various acceptor proteins in response to DNA strand breaks. Its primary function is unknown; however, a role in DNA repair and radiation resistance has been postulated based largely on experiments with enzyme inhibitors. Recent reports of mutant cell lines, deficient in poly(ADP-ribose) polymerase activity, have supported previous studies with inhibitors, which suggests the involvement of poly(ADP-ribose) polymerase in maintaining baseline levels of sister chromatid exchanges. Mutant cells with even slightly depressed enzyme levels show large elevation of baseline sister chromatid exchanges. Since intracellular poly(ADP-ribose) polymerase levels can vary greatly between different nonmutant cell lines, we surveyed levels of baseline sister chromatid exchange in normal and tumor human cell lines and compared them with endogenous levels of poly(ADP-ribose) polymerase. Despite 10-fold differences in poly(ADP-ribose) polymerase, the baseline level of sister chromatid exchanges remained relatively constant in the different cell lines (0.13 +/- 0.03 SCE/chromosome), with no indication of a protective effect for cells with high levels of the enzyme.  相似文献   

8.
Poly(ADP-ribosyl)ation of nuclear proteins is catalyzed by poly(ADP-ribose) polymerase. This enzyme is involved in the regulation of basic cellular functions of DNA metabolism. DNA breaks induced by DNA-damaging agents trigger the activation of poly(ADP-ribose) polymerase increasing its endogenous level. This increase modifies the pattern of poly(ADP-ribosyl)ated chromatin proteins. In this paper we describe a procedure for the isolation of intact nuclei from rat liver to be used for the endogenous activity assay. Artifactual activation of the enzyme was avoided since a very low level of DNA-strand breaks occurs during the isolation of nuclei. We present a series of experiments which prove the ability of this procedure to detect increases in endogenous liver activity without modification of the total level. The application of this technique can be useful for a better understanding of the role of early changes in poly(ADP-ribose) polymerase level in physiological conditions and during exposure to DNA-damaging agents.  相似文献   

9.
In spermiogenesis, spermatid differentiation is marked by dramatic changes in chromatin density and composition. The extreme condensation of the spermatid nucleus is characterized by an exchange of histones to transition proteins and then to protamines as the major nuclear proteins. Alterations in DNA topology that occur in this process have been shown to require the controlled formation of DNA strand breaks. Poly(ADP-ribosyl)ation is a posttranslational modification of proteins mediated by a family of poly(ADP-ribose) polymerase (PARP) proteins, and two family members, PARP-1 and PARP-2, are activated by DNA strand breaks that are directly detected by the DNA-binding domains of these enzymes. Here, we show for the first time that poly(ADP-ribose) formation, mediated by poly(ADP-ribose) polymerases (PARP-1 and presumably PARP-2), occurs in spermatids of steps 11–14, steps that immediately precede the most pronounced phase of chromatin condensation in spermiogenesis. High levels of ADP-ribose polymer were observed in spermatid steps 12–13 in which the highest rates of chromatin nucleoprotein exchanges take place. We also detected -H2AX, indicating the presence of DNA double-strand breaks during the same steps. Thus, we hypothesize that transient ADP-ribose polymer formation may facilitate DNA strand break management during the chromatin remodeling steps of sperm cell maturation.M.L. Meyer-Ficca and H. Scherthan contributed equally to this work  相似文献   

10.
The poly (ADP-ribose) polymerase is an ubiquitous nuclear protein capable of binding specifically to DNA strand breaks. It synthesizes ADP-ribose polymers proportionally to DNA breaks. The actual method of reference to determine DNA double strand breaks is pulsed-field gel electrophoresis, but this requires many cells. It thus appeared of interest to use poly (ADP-ribos) ylation to follow and estimate γ-ray-induced DNA fragmentation at the level of isolated cells after γ-irradiation in chinese hamster ovary cells (CHO-K1). The results obtained by the immunolabelling technique of ADP-ribose polymers were compared to those obtained by pulsed-field gel electrophoresis. They show that poly (ADP-ribos)ylation reflects the occurrence of radiation-induced DNA strand breaks. A clear relationship exists between the amount of ADP-ribose polymers detected and DNA double strand breaks after γ-irradiation.  相似文献   

11.
Lack of effect of 4-nitroquinoline 1-oxide on cellular NAD levels   总被引:2,自引:0,他引:2  
I G Walker 《Mutation research》1984,139(3):155-159
Human KB cells were treated with doses of 4-nitroquinoline 1-oxide (4NQO) or dimethyl sulfate (DMS) that produced equal numbers of DNA-strand breaks when measured by velocity sedimentation analysis in an alkaline sucrose gradient. The DMS treatment also caused a profound and sustained lowering of cellular NAD content. The 4NQO treatment had no effect on the cellular NAD content. This result with 4NQO was not expected because strand breaks in DNA activate poly(ADP-ribose)polymerase and in the ensuing reaction NAD is consumed. Since 4NQO adducts are removed by an excision-repair process it is postulated that the strand breaks formed during the repair process are not accessible to poly(ADP-ribose)polymerase.  相似文献   

12.
Poly(ADP-ribose) metabolism in ultraviolet irradiated human fibroblasts   总被引:5,自引:0,他引:5  
Exposure of human fibroblasts to 5 J/m2 of UV light resulted in a rapid increase of up to 1500% in the intracellular content of poly(ADP-ribose) and a rapid depletion of its metabolic precursor, NAD. When added just prior to UV treatment, the poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide, totally blocked both the increase of poly(ADP-ribose) and decrease in NAD for up to 2.5 h. Addition of 3-aminobenzamide at the time of maximal accumulation of poly(ADP-ribose) resulted in a decrease to basal levels with a half-life of approximately 6 min. The rates of accumulation of poly(ADP-ribose) and depletion of NAD were increased in the presence of either 1-beta-arabinofuranosylcytosine or hydroxyurea. Since these agents are known to cause an additional accumulation of DNA strand breaks following UV irradiation, these data provide evidence for a mechanism in which the rate of poly(ADP-ribose) synthesis following DNA damage is regulated in intact cells by the number of DNA strand breaks. Under conditions in which the synthesis of poly(ADP-ribose) was blocked, DNA repair replication induced by UV light was neither stimulated nor inhibited.  相似文献   

13.
Poly(ADP-ribose) is a nuclear polymer that is synthesized in response to DNA-strand breaks and covently modifies numerous nuclear proteins. Inhibition of poly(ADP-ribose) polymerase by 3-amino-benzamide in cells exposed to DNA-damaging agents has a variety of cellular effects, including increases in cell killing, frequency of single-strand breaks, reapir replication, and sister-chromatid exchange. These increases have been interpreted as an indication that poly(ADP-ribose) polymerization regulates the rate of ligation. Because of slow ligation, continued repair polymerization should therefore generate longer repair patches. Direct measurement of the rate of ligation of intracellular repair patches and of the size of repair patches indicates that they are unchanged when poly(ADP-ribose) polymerization is inhibited. We therefore conclude that poly(ADP-ribose) does not regulate the ligation stage of repair but instead may regulate the activity of intracellular nucleases and other enzymes that can cause additional DNA damage and changes in chromatin struture.  相似文献   

14.
Poly(ADP-ribose) polymerase specifically recognizes DNA strand breaks by its DNA-binding domain. DNA binding activates the enzyme to catalyze the formation of poly(ADP-ribose) utilizing NAD as substrate. By a molecular genetic approach we set out to inhibit this enzyme activity in a highly specific manner, thus avoiding the inherent side effects of NAD analogs which have been used extensively as enzyme inhibitors. cDNA sequences coding for the human poly(ADP-ribose) polymerase DNA-binding domain were subcloned into eucaryotic expression plasmids and transiently transfected into monkey cells. Cells were fixed with ethanol followed by incubation with NAD. Indirect double immunofluorescence to detect both overexpressed protein and poly(ADP-ribose) in situ revealed that overexpression of the DNA-binding domain greatly inhibited poly(ADP-ribosyl)ation catalyzed by the resident enzyme during NAD postincubation. The same inhibition was observed when transfected cells were treated with N-methyl-N'-nitro-N-nitrosoguanidine to induce DNA strand breaks in vivo and subjected to trichloroacetic acid/ethanol fixation and subsequent immunofluorescence analysis, a novel method we developed for the in situ detection of polymer synthesis in intact cells. This molecular genetic approach may prove to be a selective and efficient tool to investigate possible functions of poly(ADP-ribosyl)ation in living cells.  相似文献   

15.
16.
DNA strand breaks, NAD metabolism, and programmed cell death   总被引:16,自引:0,他引:16  
An intimate relationship exists between DNA single-strand breaks, NAD metabolism, and cell viability in quiescent human lymphocytes. Under steady-state conditions, resting lymphocytes continually break and rejoin DNA. The balanced DNA excision-repair process is accompanied by a proportional consumption of NAD for poly(ADP-ribose) synthesis. However, lymphocytes have a limited capacity to resynthesize NAD from nicotinamide. An increase in DNA strand break formation in lymphocytes, or a block in DNA repair, accelerates poly(ADP-ribose) formation and may induce lethal NAD and ATP depletion. In this way, the level of DNA single-strand breaks in the lymphocyte nucleus is linked to the metabolic activity of the cytoplasm. The programmed removal of lymphocytes (and perhaps of other cells) with damaged DNA, may represent a novel physiologic function for poly(ADP-ribose)-dependent NAD cycling.  相似文献   

17.
Histone shuttling by poly ADP-ribosylation   总被引:5,自引:0,他引:5  
The enzymes poly(ADP-ribose)polymerase and poly(ADP-ribose) glycohydrolase may cooperate to drive a histone shuttle mechanism in chromatin. The mechanism is triggered by binding of the N-terminal zinc-finger domain of the polymerase to DNA strand breaks, which activates the catalytic activities residing in the C-terminal domain. The polymerase converts into a protein carrying multiple ADP-ribose polymers which displace histones from DNA by specifically targeting the histone tails responsible for DNA condensation. As a result, the domains surrounding DNA strand breaks become accessible to other proteins. Poly(ADP0ribose) glycohydrolase attacks ADP-ribose polymers in a specific order and thereby releases histones for reassociation with DNA. Increasing evidence from different model systems suggests that histone shuttling participates in DNA repairin vivo as a catalyst for nucleosomal unfolding.  相似文献   

18.
19.
We have studied the role of poly(ADP-ribose) polymerase in the repair of DNA damage induced by x-ray and N-methyl N-nitro-N-nitrosoguanidine (MNNG) by using V79 chinese hamster cells, and two derivative mutant cell lines, ADPRT54 and ADPRT351, that are deficient in poly(ADP-ribose) polymerase activity. Under exponentially growing conditions these mutant cell lines are hypersensitive to x-irradiation and MNNG compared to their parental V79 cells which could be interpreted to suggest that poly(ADP-ribose) polymerase is involved in the repair of DNA damage. However, the level of DNA strand breaks induced by x-irradiation and MNNG and their rates of repair are similar in all the cell lines, thus suggesting that it may not be the difference in strand break formation or in its rate of repair that is contributing to the enhanced cell killing in exponentially growing poly(ADP-ribose) polymerase deficient cell lines. In contrast, under growth-arrested conditions, all three cell lines become similarly sensitive to both x-irradiation and MNNG, thus suggesting that poly(ADP-ribose) polymerase may not be involved in the repair of DNA damage in growth-arrested cells. These paradoxical results could be interpreted to suggest that poly(ADP-ribose) polymerase is involved in DNA repair in a cell-cycle-dependent fashion, however, it is functionally active throughout the cell cycle. To resolve this dilemma and explain these results and those obtained by many others, we propose that the normal function of poly(ADP-ribose) polymerase is to prevent DNA recombination processes and facilitate DNA ligation.  相似文献   

20.
Poly(ADP-ribose)polymerase is a chromatin-associated enzyme of eukaryotic cell nuclei that catalyses the covalent attachment of ADP-ribose units from NAD+ to various nuclear acceptor proteins. This post-translational modification has been postulated to influence several chromatin functions, particularly those where nicking and rejoining of DNA occur. Poly(ADP-ribosyl)ation reactions are strictly dependent upon the presence of interruptions on DNA. We have recently demonstrated that the DNA-binding domain of the protein containing two putative "zinc-fingers" binds DNA in a zinc-dependent manner. The basis for the recognition of the DNA strand breaks by this enzyme, and more precisely, its 29,000 Mr N-terminal part, which contains the metal binding sites, needed to be clarified. DNA probes harbouring a single strand interruption at a defined position were constructed from synthetic oligonucleotides. DNase I protection studies show that poly(ADP-ribose)polymerase specifically binds to a DNA single-strand break by its metal-binding domain depending upon the presence of Zn(II). These results support the idea that the enzyme participates to the maintenance of DNA integrity in eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号