首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Summary— Staining with bismuth salts after glutaraldehyde fixation is a very useful technique for preferential detection of phosphorylated nucleoproteins in mammalians and insects. In the present work we report an adaptation of this method for plant nuclei: staining with bismuth salts either in tissue blocks before embedding, or on thin sections of acrylic resin. Both procedures are highly reproducible and give the same pattern of staining in the nuclei in situ or isolated at the electron microscope. The specificity of bismuth binding to the dense nucleolar fibrillar component and interchromatin granules is proven by X-ray microanalysis. The nuclear proteins which bind bismuth have been identified by bismuth and immunostains of blots from total nuclear proteins. This technique is a very useful and specific cytochemical tool for studying nuclear organization and functions in plants.  相似文献   

2.
The present study deals with the conditions necessary for the specific demonstration of nuclear acidic HCl insoluble proteins is smeared peripheral leucocytes by means of a simple cytochemical procedures. These proteins can be very easily selectively demonstrated by staining with Azure C or Toluidine blue above pH 6, after the fixation of smears with methanol, extraction of histones, nucleic acids (with HCl, TCA) and treatment with formaldehyde. The double fixation with methanol and formaldehyde facilitated specific extraction of nuclear acidic HCl insoluble proteins of smeared leucocytes with pepsin. The nuclear acidic HCl insoluble proteins are present in leucocytes in interchromatin areas and their isoelectric point determined by cytochemical procedure is pH 6.  相似文献   

3.
We provide fast, simple, one-step procedures for sequence-specific detection of nucleic acids in situ. Tandem repeat sequences in DNA are stained within 30 min, and mRNA is stained within 2 h. The procedures are based on the incorporation of the newly available fluorescein-labeled dUTP into DNA synthesized in situ by primed in situ labeling, with denatured fragments of cloned DNA or oligonucleotides as primers. The extreme speed and simplicity of the reaction make it attractive for automatization in routine laboratory procedures and opens up new diagnostic possibilities.  相似文献   

4.
Summary DNA was removed from various tissues by histochemical acetylation of amino groups in proteins using pure acetic anhydride, as demonstrated by cytophotometric (UV, Feulgen, gallocyanin chromalum) and biochemical techniques. Since new phosphate groups were simultaneously exposed, the intensity of methylene blue staining was increased in spite of the nucleic acid release. Under conditions where no extraction occurs the staining intensity increases for more than 30 per cent. On the other hand, the staining intensity of gallocyanin chromalum kept constant. As it had been demonstrated previously, that gallocyanin chromalum binds to about 86 per cent of the DNA phosphate groups, it was concluded that this dye binds to a higher percentage of phosphate groups than do the usual basic dyes. Since it is not possible under the conditions used to make all nucleic acid phosphate groups available for basic dye binding by blocking the amino groups of proteins it can be assumed that not only electrostatic, but also spatial and steric relationships influence the binding capacity of basic dyes to the phosphate groups of nucleoproteins.Supported by a grant from the Deutsche Forschungsgemeinschaft, Bad Godesberg, Germany.  相似文献   

5.
Innovative tools for detection of plant pathogenic viruses and bacteria   总被引:8,自引:0,他引:8  
Detection of harmful viruses and bacteria in plant material, vectors or natural reservoirs is essential to ensure safe and sustainable agriculture. The techniques available have evolved significantly in the last few years to achieve rapid and reliable detection of pathogens, extraction of the target from the sample being important for optimising detection. For viruses, sample preparation has been simplified by imprinting or squashing plant material or insect vectors onto membranes. To improve the sensitivity of techniques for bacterial detection, a prior enrichment step in liquid or solid medium is advised. Serological and molecular techniques are currently the most appropriate when high numbers of samples need to be analysed. Specific monoclonal and/or recombinant antibodies are available for many plant pathogens and have contributed to the specificity of serological detection. Molecular detection can be optimised through the automatic purification of nucleic acids from pathogens by columns or robotics. New variants of PCR, such as simple or multiplex nested PCR in a single closed tube, co-operative-PCR and real-time monitoring of amplicons or quantitative PCR, allow high sensitivity in the detection of one or several pathogens in a single assay. The latest development in the analysis of nucleic acids is micro-array technology, but it requires generic DNA/RNA extraction and pre-amplification methods to increase detection sensitivity. The advances in research that will result from the sequencing of many plant pathogen genomes, especially now in the era of proteomics, represent a new source of information for the future development of sensitive and specific detection techniques for these microorganisms.  相似文献   

6.
4', 6-Diamidine-2-phenylindole.2HCl (DAPI) forms fluorescent complexes with double-stranded (ds) DNA but not with ds RNA as shown by fluorescence titration. The widely used dye ethidium bromide (EB) forms fluorescent complexes with both types of nucleic acids. Also, in contrast to EB, DAPI forms much weaker fluorescent complexes with single-stranded DNA than with ds DNA. These observations were utilized to develop staining procedures for the selective visualization of ds DNA on gels. The use of DAPI in addition to EB for staining makes possible the localization of ds DNA and other species of nucleic acids on a single gel.  相似文献   

7.
This non-isotopic method for detection of nucleic acids is based on the in situ labelling of the nucleic acid by exposure to UV-irradiation. The different UV-induced photoproducts, mainly of the thymidine dimer type, are recognized by purified rabbit antibodies specific to the lesions introduced. The UV-labelled nucleic acids can then be visualized by conventional immunostaining procedures. A major advantage of the technique is the low cost and the ease by which the DNA is specifically labelled. The purified rabbit antibodies were shown to be specific for UV-irradiated DNA, and the method was applied for detection of specific DNA sequences hybridized to homologous target DNA on membrane support. We believe that the sensitivity of the method can be improved, and the significance of using different UV-doses, immunostaining methods and membrane types is discussed.  相似文献   

8.
In situ hybridization (ISH) is a powerful technique for localizing specific nucleic acid sequences (DNA, RNA) in microscopic preparations of tissues, cells, chromosomes, and linear DNA fibers. To date, a wide variety of research and diagnostic applications of ISH have been described, making the technique an integral part of studies concerning gene mapping, gene expression, RNA processing and transport, the three-dimensional organization of the nucleus, tumor genetics, microbial infections, and prenatal diagnosis. In this review, I first describe the ISH procedure in short and then focus on the currently available non-radioactive probe-labeling and cytochemical detection methodologies that are utilized to visualize one or multiple different nucleic acid targets in situ with different colors. Special emphasis is placed on the procedures applying fluorescence and brightfield microscopy, the simultaneous detection of nucleic acids and proteins by combined ISH and immunocytochemistry, and, in addition, on the recent progress that has been made with the introduction of signal amplification procedures to increase the detection sensitivity of ISH. Finally, a comparison of fluorescence, enzyme cytochemical, and colloidal gold silver probe detection systems will be presented, and possible future directions of in situ nucleic acid detection will be discussed. Accepted: 9 June 1999  相似文献   

9.
A method of preparation of mitochondria free of nuclear DNA and its fragments by treatment of mitochondria with DEAE-cellulose has been developed. This method is based on binding nuclear nucleic acids and nucleoproteins to DEAE-cellulose particles in the media used for isolation of mitochondria. Treatment with DEAE-cellulose under the conditions described does not induce any visible degradation of mitochondria and mitochondrial DNA. The mitochondrial DNA preparations obtained from beef and rat liver are represented with closed circular molecules of contour length about 5.5 mu. The 5-methylcytosine content in beef and rat mitochondrial DNA (3.03 and 2.0 mole %, respectively) is twice as much as in corresponding nuclear DNA. Besides, mitochondrial DNA strongly differs from nuclear ones by a lower degree of pyrimidine clustering: the amount of mono- and dipyrimidine fragments (about 32 mole %) in mitochondrial DNA is 1.5 times as large and the content of long pyrimidine clusters (hexa- and others) is 2--4 times as low as those in nuclear DNA. The methylation level and the pyrimidine clustering degree may be used as criteria for the purity of mitochondrial DNA from nuclear DNA.  相似文献   

10.
Our present knowledge of the cell structure, which is largely based on electron microscopy, is compared with what was known a few decades ago, when only light microscopy was available to the cytologist. The importance of cytochemical methods for the detection and localization of macromolecules (nucleic acids, proteins) is stressed. But it is pointed out that further analysis, with biochemical techniques, was required in order to understand the actual mechanisms of macromolecule synthesis in the cell (in particular, the relationships existing between nucleic acids and protein synthesis). The importance of genetical analysis in simple systems such as viruses and bacteria for the development of ‘molecular’ biology is then emphasized: in particular, the work of Avery identifying the ‘transforming principle’ with DNA, of Beadle leading to the ‘one gene, one enzyme’ theory, of the virologists who demonstrated that it is the nucleic acid component of viruses which carries the genetical information, have been of fundamental importance for the development of modern biology. No less important has been the work of the X-ray crystallographers (Crick and Watson, Perutz, Kendrew, etc.) who established the fine structure of nucleic acids and of proteins. A brief review and a schematic representation of present ideas regarding the control exerted by DNA on the synthesis of specific proteins are then given: the main characteristics of the different kinds of RNA's, their interactions for the formation of polysomes, the role of the latter in protein synthesis, the main principles of the genetic codes, are briefly summarized. But cells are, in many respects, more complicated than bacteria. The concepts of molecular biology cannot be applied to cell differentiation without a recognition of the greater complexity of animal and plant cells. They represent, however, a most useful and powerful guide for research in that area: for instance, many aspects of morphogenesis in the unicellular alga Acetabularia and in amphibian eggs can be explained on the assumption that messenger RNA's are produced by the nucleus and stored, in a stabilized form, in the cytoplasm during days or even weeks. This stability of messenger RNA's in eggs and algae is at variance with their short life in bacteria. The behaviour of non-nucleate fragments of Acetabularia is surprising in many respects: they are the site, not only of the synthesis of specific proteins, but even of RNA and DNA net synthesis. Such a synthesis of macromolecules, in the absence of the nucleus is probably linked to the presence of the chloroplasts in this alga: they contain DNA, can synthesize RNA and proteins, and can even increase in number in the absence of the nucleus. The presence of large amounts of DNA in the cytoplasm of many animal eggs raises a number of questions and might account for the extremely important role of the cytoplasm in the very early stages of embryonic development. It is concluded that none of the great problems of cell biology will be solved without the help of the techniques and the theoretical ideas which have been so fruitful for the simpler systems used by the molecular biologists.  相似文献   

11.
T Takahashi 《Human cell》1990,3(4):294-310
The use of nucleic acid hybridization techniques has expanded into many areas, including studies of gene structure and function, routine diagnosis of human, animal and plant diseases, and also forensic science. In situ hybridization is one of the techniques currently available for nucleic acid hybridization and has some distinct advantages compared with standard techniques such as dot-blot, Southern or Northern hybridization, in which the histological structure is lost during extraction of nucleic acids. On the other hand, immunohistochemical staining is one branch of histochemistry that has received considerable attention in recent years as a very sensitive method for localization of specific proteins and other antigenic macromolecules within tissues and cells. This technique has also been widely used for clinical diagnosis and in various fields of research in medical science and biology. Automation of colorimetric in situ hybridization and immunohistochemistry would greatly contribute to the ease of introducing these techniques for routine pathological diagnosis and would improve the reproducibility of the assay. In this review, author will describe the development of an automated method for in situ hybridization and immunohistochemical staining using an automatic machine for both procedures.  相似文献   

12.
DNA-binding proteins are key to the regulation and control of gene expression, replication and recombination. The electrophoretic mobility shift assay (or gel shift assay) is considered an essential tool in modern molecular biology for the study of protein-nucleic acid interactions. As typically implemented, however, the technique suffers from a number of shortcomings, including the handling of hazardous (32)P-labeled DNA probes, and difficulty in quantifying the amount of DNA and especially the amount of protein in the gel. A new detection method for mobility-shift assays is described that represents a significant improvement over existing techniques. The assay is fast, simple, does not require the use of radioisotopes and allows independent quantitative determination of: (i) free nucleic acid, (ii) bound nucleic acid, (iii) bound protein, and (iv) free protein. Nucleic acids are detected with SYBR Green EMSA dye, while proteins are subsequently detected with SYPRO Ruby EMSA dye. All fluorescence staining steps are performed after the entire gel-shift experiment is completed, so there is no need to prelabel either the DNA or the protein and no possibility of the fluorescent reagents interfering with the protein-nucleic acid interactions. The ability to independently quantify each molecular species allows more rigorous data analysis methods to be applied, especially with respect to the mass of protein bound per nucleic acid.  相似文献   

13.
Rapid growth of available sequence data has made the detection of nucleic acids critical to the development of modern life sciences. Many amplification methods based on gold nanoparticles and endonuclease for sensitive DNA detection have been developed. However, these approaches require specific target sequence for endonuclease recognition, which cannot be fulfilled in all systems. Replacing the restriction enzyme with a nuclease that does not require any specific recognition sequence may offer a universally adaptable system. Here we have developed a novel homogeneous, colorimetric DNA detection method, which consists of Exo III, a linker DNA, and two DNA-modified gold nanoparticles. This system is simple, low-cost, sensitive and selective. By coupling cyclic enzymatic cleavage and gold nanoparticle for signal amplification, our system provides a colorimetric detection limit of 15 pM, which is 3 orders of magnitude more sensitive than that of a general three-component sandwich assay format. Due to the intrinsic property of Exo III, our method shows excellent detection selectivity for single-base discrimination. More importantly, superior to other methods based on nicking and FokI endonuclease, our target sequence-independent platform is generally applicable for DNA sensing. This new approach could be widely applied to sensitive nucleic acids detection.  相似文献   

14.
DNA electron microscopy   总被引:8,自引:0,他引:8  
  相似文献   

15.
Using mouse erythroleukaemia cells and different ultrastructural techniques, the morphology was investigated of the nuclear matrix obtained after incubation at 37 degrees C of isolated nuclei. If purified nuclei were heated for 45 min at 37 degrees C, the final matrix exhibited well-recognizable nucleolar remnants, an inner network and a peripheral lamina. Without such incubation only the peripheral lamina was seen surrounding homogeneous, finely granular material. Similar results were obtained with both araldite-embedded and freeze-fractured nuclear matrices, although in the latter case the loose granular material was not evident. Observations of araldite-embedded, heat-treated nuclei revealed clumping of heterochromatin in small, very electron-dense masses with large interchromatin spaces. These ultrastructural aspects were even more striking in freeze-fractured nuclei. Cytochemical matrix analysis by osmium-amine staining for nucleic acids and DNase-gold labelling for DNA localization demonstrated that also matrix residual nucleic acids, mostly RNA, are stabilized by heat exposure of isolated nuclei. The results demonstrate that the morphology of heat-stabilized nuclear matrix is not artefactually affected during the preparation for conventional electron microscopy and suggest a possible involvement of nucleic acids in the heat-induced stabilization of the nuclear matrix.  相似文献   

16.
An electron microscopic method for demonstrating the presence of and mapping the positions of proteins specifically bound to nucleic acids is described. The nucleic acid-protein complex is treated with dinitrofluorobenzene under conditions such that dinitrophenyl (DNP) groups are attached to nucleophilic groups on the protein, with only a low level of random attachment to the nuclei acid. This product is treated with rabbit anti-DNP IgG. The position of the protein-(DNP)n(IgG)m complex on the nucleic acid strand can be observed by electron microscopy by protein free spreading methods and, in many cases, by cytochrome-c spreading. If necessary for visualization by the latter method, the size of the labeled region can be increased by treatment with goat anti-rabbit IgG. High efficiency of electron microscopic labeling is achieved. Examples studied are: the adenovirus-2 DNA terminal protein, a protein covalently bound to SV40 DNA, DNA polymerase I bound to DNA, E. coli RNA polymerase bound to T7 DNA, and proteins UV crosslinked to avian sarcoma virus RNA.  相似文献   

17.
Two methods to detect DNA fragments produced by restriction enzymes   总被引:1,自引:0,他引:1  
This report summarizes two methods for detecting limited amounts of DNA from restriction endonuclease digests. The first is a photographic system for visualizing ethidium bromide-stained DNA fragments in agarose gels which can detect as little as 50-100 pg DNA per band. The second technique is direct sulfonation of DNA fragments bound to nylon membranes followed by visualization of the fragments by nonradioactive immunoblot methods. The immunohistochemical staining can detect 10 pg DNA per band. The direct sulfonation technique is not intended to identify specific DNA sequences; DNA-DNA hybridization with sulfonated probes has previously been described (P. Lebacq, D. Squalli, M. Duchenne, P. Poulety, and M. Johannes (1988) J. Biochem. Biophys. Methods 15, 255-266). Direct sulfonation can be used when samples are relatively free of contaminating nucleic acids and is a useful alternative to end-labeling. These highly sensitive techniques may be suitable when the DNA source is of limited quantity or in instances where radiolabeling is not permitted.  相似文献   

18.
19.
Computer simulation techniques are now an essential part of modern structural molecular biology. They are used in many different ways in order to study the conformation, dynamics and interactions of proteins and nucleic acids. In this paper, I shall review several of these applications and then focus on three specific areas, namely the conformation and dynamics of proteins including the use of free energy perturbation methods to study mutant proteins, the conformation and dynamics of DNA and DNA-drug complexes, and the use of computers with parallel architectures. Although simulation of molecules as large and complex as proteins and nucleic acids may be considered a grand challenge in itself, there are even greater challenges for the future.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号