首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
The cultivated strawberry is one of the youngest domesticated plants, developed in France in the 1700s from chance hybridization between two western hemisphere octoploid species. However, little is known about the evolution of the species that gave rise to this important fruit crop. Phylogenetic analysis of chloroplast genome sequences of 21 Fragaria species and subspecies resolves the western North American diploid F. vesca subsp. bracteata as sister to the clade of octoploid/decaploid species. No extant tetraploids or hexaploids are directly involved in the maternal ancestry of the octoploids.There is strong geographic segregation of chloroplast haplotypes in subsp. bracteata, and the gynodioecious Pacific Coast populations are implicated as both the maternal lineage and the source of male-sterility in the octoploid strawberries. Analysis of sexual system evolution in Fragaria provides evidence that the loss of male and female function can follow polyploidization, but does not seem to be associated with loss of self-incompatibility following genome doubling. Character-state mapping provided insight into sexual system evolution and its association with loss of self-incompatibility and genome doubling/merger. Fragaria attained its circumboreal and amphitropical distribution within the past one to four million years and the rise of the octoploid clade is dated at 0.372–2.05 million years ago.  相似文献   

3.
4.
Fourteen microsatellite primer pairs were developed from a cDNA library of heat‐treated seedlings of Fragaria vesca cv. yellow wonder. Transferability to 13 species of Fragaria ranged from 71% in diploid species F. gracilis Losinsk., F. iinumae Makino, F. nilgerrensis Schltdl. ex J. Gay and F. nipponica Makino, to 100% in octoploid domestic strawberry and its progenitors. Polymorphism was high in polyploid Fragaria species. However, polymorphism and heterozygosity of eight EST‐SSRs (expressed sequence tag–simple sequence repeats) was low in 14 F. vesca genotypes.  相似文献   

5.
A cDNA (Cel1) encoding an endo-1,4-β-glucanase (EGase) was isolated from ripe fruit of strawberry (Fragaria × ananassa). The deduced protein of 496 amino acids contains a presumptive signal sequence, a common feature of cell wall-localized EGases, and one potential N-glycosylation site. Southern- blot analysis of genomic DNA from F. × ananassa, an octoploid species, and that from the diploid species Fragaria vesca indicated that the Cel1 gene is a member of a divergent multigene family. In fruit, Cel1 mRNA was first detected at the white stage of development, and at the onset of ripening, coincident with anthocyanin accumulation, Cel1 mRNA abundance increased dramatically and remained high throughout ripening and subsequent fruit deterioration. In all other tissues examined, Cel1 expression was invariably absent. Antibodies raised to Cel1 protein detected a protein of 62 kD only in ripening fruit. Upon deachenation of young white fruit to remove the source of endogenous auxins, ripening, as visualized by anthocyanin accumulation, and Cel1 mRNA accumulation were both accelerated. Conversely, auxin treatment of white fruit repressed accumulation of both Cel1 mRNA and ripening. These results indicate that strawberry Cel1 is a ripening-specific and auxin-repressed EGase, which is regulated during ripening by a decline in auxin levels originating from the achenes.  相似文献   

6.
The genus Fragaria (Rosaceae) contains 24 plant species, including hybrid species such as the octoploid garden strawberry (F. × ananassa). Natural hybridization between Fragaria species has repeatedly been reported, and the potential future cultivation of genetically modified strawberries has made the study of hybridization potential between F. × ananassa and its wild relatives increasingly important. In Europe, F. × ananassa is the only octoploid species present, and the most likely candidate for hybridization is the common diploid woodland strawberry (F. vesca). To date, it is unknown whether pollinator spectra of the two Fragaria species overlap and thus might promote interspecific gene flow. We carried out a survey of flower visitors in northwestern Switzerland to identify major flower visitors of F. vesca and F. × ananassa. This survey indicated that wild bees are the most important shared flower visitors of F. × ananassa and F. vesca. Therefore, we studied flower choice behavior of the common wild bee Osmia bicornis in a greenhouse experiment. Osmia bicornis did not discriminate between F. × ananassa and F. vesca flowers. We conclude that wild bees are important shared flower visitors of both F. × ananassa and F. vesca and are potential vectors for gene flow between cultivated and wild strawberries.  相似文献   

7.
The genus Fragaria encompasses species at ploidy levels ranging from diploid to decaploid. The cultivated strawberry, Fragaria×ananassa, and its two immediate progenitors, F. chiloensis and F. virginiana, are octoploids. To elucidate the ancestries of these octoploid species, we performed a phylogenetic analysis using intron-containing sequences of the nuclear ADH-1 gene from 39 germplasm accessions representing nineteen Fragaria species and one outgroup species, Dasiphora fruticosa. All trees from Maximum Parsimony and Maximum Likelihood analyses showed two major clades, Clade A and Clade B. Each of the sampled octoploids contributed alleles to both major clades. All octoploid-derived alleles in Clade A clustered with alleles of diploid F. vesca, with the exception of one octoploid allele that clustered with the alleles of diploid F. mandshurica. All octoploid-derived alleles in clade B clustered with the alleles of only one diploid species, F. iinumae. When gaps encoded as binary characters were included in the Maximum Parsimony analysis, tree resolution was improved with the addition of six nodes, and the bootstrap support was generally higher, rising above the 50% threshold for an additional nine branches. These results, coupled with the congruence of the sequence data and the coded gap data, validate and encourage the employment of sequence sets containing gaps for phylogenetic analysis. Our phylogenetic conclusions, based upon sequence data from the ADH-1 gene located on F. vesca linkage group II, complement and generally agree with those obtained from analyses of protein-encoding genes GBSSI-2 and DHAR located on F. vesca linkage groups V and VII, respectively, but differ from a previous study that utilized rDNA sequences and did not detect the ancestral role of F. iinumae.  相似文献   

8.
Winter freezing damage is a crucial factor in overwintering crops such as the octoploid strawberry (Fragaria × ananassa Duch.) when grown in a perennial cultivation system. Our study aimed at assessing metabolic processes and regulatory mechanisms in the close-related diploid model woodland strawberry (Fragaria vesca L.) during a 10-days cold acclimation experiment. Based on gas chromatography/time-of-flight-mass spectrometry (GC/TOF-MS) metabolite profiling of three F. vesca genotypes, clear distinctions could be made between leaves and non-photosynthesizing roots, underscoring the evolvement of organ-dependent cold acclimation strategies. Carbohydrate and amino acid metabolism, photosynthetic acclimation, and antioxidant and detoxification systems (ascorbate pathway) were strongly affected. Metabolic changes in F. vesca included the strong modulation of central metabolism, and induction of osmotically-active sugars (fructose, glucose), amino acids (aspartic acid), and amines (putrescine). In contrast, a distinct impact on the amino acid proline, known to be cold-induced in other plant systems, was conspicuously absent. Levels of galactinol and raffinose, key metabolites of the cold-inducible raffinose pathway, were drastically enhanced in both leaves and roots throughout the cold acclimation period of 10 days. Furthermore, initial freezing tests and multifaceted GC/TOF-MS data processing (Venn diagrams, independent component analysis, hierarchical clustering) showed that changes in metabolite pools of cold-acclimated F. vesca were clearly influenced by genotype.  相似文献   

9.
10.
11.
12.
A set of 41 polymorphic microsatellite markers were developed using a CT/AG‐enriched genomic library of Fragaria vesca cv. Reine des Vallées. Thirty‐five of them were polymorphic in F. vesca and were tested in one accession each of six additional diploid Fragaria species and the octoploid Fragaria× ananassa. A mean of 5.3 alleles per locus and a low level of observed heterozygosity were generally detected in the 32 single‐locus simple sequence repeats of F. vesca. Most of these loci amplify in the other diploid species and in F. × ananassa.  相似文献   

13.
To date, the development of microsatellite (SSR) markers in the genus Fragaria has focused on F. vesca. However, further species are thought to have contributed to the complex allo‐octoploid genome of the cultivated strawberry, F.×ananassa. Here, we present 22 new SSR markers developed from the diploid species F. viridis. Twenty‐one of the primer pairs amplified polymorphisms in six F. viridis accessions, with an average of 4.95 alleles per primer pair and an average expected heterozygosity of 0.68. Fourteen of these primer pairs, and a locus monomorphic in F. viridis, amplified polymorphic alleles in the parents of a F. vesca mapping population.  相似文献   

14.
This study reports the development and characterization of 20 microsatellite primer pairs in wild strawberry Fragaria vesca. One hundred primers were obtained from an AC‐enriched library developed in the cultivar ‘Ilaria’. A set of eight F. vesca genotypes was used to detect the polymorphism resulting in an average of 7.0 alleles, an average observed heterozygosity of 0.32 and an average expected heterozygosity of 0.73. Nineteen (95%) of the primers also amplified the cultivated octoploid strawberry Fragaria×ananassa.  相似文献   

15.
Octoploid strawberry (Fragaria × ananassa Duch.) is a model plant for research and one of the most important non‐climacteric fruit crops throughout the world. The associations between regulatory networks and metabolite composition were explored for one of the most critical agricultural properties in octoploid strawberry, fruit colour. Differences in the levels of flavonoids are due to the differences in the expression of structural and regulatory genes involved in flavonoid biosynthesis. The molecular mechanisms underlying differences in fruit colour were compared between red and white octoploid strawberry varieties. FaMYB genes had combinatorial effects in determining the red colour of fruit through the regulation of flavonoid biosynthesis in response to the increase in endogenous ABA at the final stage of fruit development. Analysis of alleles of FaMYB10 and FaMYB1 in red and white strawberry varieties led to the discovery of a white‐specific variant allele of FaMYB10, FaMYB10‐2. Its coding sequence possessed an ACTTATAC insertion in the genomic region encoding the C‐terminus of the protein. This insertion introduced a predicted premature termination codon, which suggested the loss of intact FaMYB10 protein playing a critical role in the loss of red colour in white octoploid strawberry.  相似文献   

16.
Wild strawberry (Fragaria vesca) fruit contains several important phenylpropene aroma compounds such as eugenol, but cultivated varieties are mostly devoid of them. We have redirected the carbon flux in cultivated strawberry (Fragaria×ananassa) fruit from anthocyanin pigment biosynthesis to the production of acetates of hydroxycinnamyl alcohols, which serve as the precursors of the phenylpropenes, by downregulating the strawberry chalcone synthase (CHS) via RNAi-mediated gene silencing and, alternatively, by an antisense CHS construct. Simultaneous heterologous overexpression of a eugenol (EGS) and isoeugenol synthase (IGS) gene in the same cultivated strawberry fruits boosted the formation of eugenol, isoeugenol, and the related phenylpropenes chavicol and anol to concentrations orders of magnitude greater than their odor thresholds. The results show that Fragaria×ananassa still bears a phenylpropene biosynthetic pathway but the carbon flux is primarily directed to the formation of pigments. Thus, partial restoration of wild strawberry flavor in cultivated varieties is feasible by diverting the flavonoid pathway to phenylpropene synthesis through metabolic engineering.  相似文献   

17.
18.
The linkage maps of the cultivated strawberry, Fragaria × ananassa (2n = 8x = 56) that have been reported to date have been developed predominantly from AFLPs, along with supplementation with transferrable microsatellite (SSR) markers. For the investigation of the inheritance of morphological characters in the cultivated strawberry and for the development of tools for marker-assisted breeding and selection, it is desirable to populate maps of the genome with an abundance of transferrable molecular markers such as microsatellites (SSRs) and gene-specific markers. Exploiting the recent release of the genome sequence of the diploid F. vesca, and the publication of an extensive number of polymorphic SSR markers for the genus Fragaria, we have extended the linkage map of the ‘Redgauntlet’ × ‘Hapil’ (RG × H) mapping population to include a further 330 loci, generated from 160 primer pairs, to create a linkage map for F. × ananassa containing 549 loci, 490 of which are transferrable SSR or gene-specific markers. The map covers 2140.3 cM in the expected 28 linkage groups for an integrated map (where one group is composed of two separate male and female maps), which represents an estimated 91% of the cultivated strawberry genome. Despite the relative saturation of the linkage map on the majority of linkage groups, regions of apparent extensive homozygosity were identified in the genomes of ‘Redgauntlet’ and ‘Hapil’ which may be indicative of allele fixation during the breeding and selection of modern F. × ananassa cultivars. The genomes of the octoploid and diploid Fragaria are largely collinear, but through comparison of mapped markers on the RG × H linkage map to their positions on the genome sequence of F. vesca, a number of inversions were identified that may have occurred before the polyploidisation event that led to the evolution of the modern octoploid strawberry species.  相似文献   

19.
20.
Cultivated strawberry (Fragaria × ananassa) is an important commercial berry crop grown throughout the world. Improved strawberry cultivars are developed to meet the needs of consumers and breeders. Strawberries are usually propagated through runners, which sometimes lead to mislabeling or misinterpretation of cultivars. However, perfect identification of strawberry cultivars is essential for germplasm maintenance and for breeding programs. Molecular marker technology has been widely used to distinguish cultivars of other crops, but marker development in octoploid strawberries is complicated. Therefore, SNP marker with high-density and even distribution in the genome has been used currently as efficient DNA markers. In this report, previously published high-quality poly high resolution (PHR) SNPs from the 90 K Axiom® SNP array were utilized to develop a Fluidigm 24 SNPs genotyping system. Hundred nine (109) octoploid strawberry cultivars were screened using this 24 SNPs chip set. In addition, 24 SNPs were mapped to six chromosomes of diploid strawberry (Fragaria vesca). Our developed SNPs fluidigm genotyping is automatable, easy and reliable for processing and interpretation of data. Thus, this high-throughput SNP genotyping system will be a useful tool for distinguishing strawberry cultivars and find out parent-offspring relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号