首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eelgrass Zostera marina was collected in spring and autumn from a light-saturated environment with low-organic sediments and a light-limited environment with organic-rich sediments in Denmark. The eelgrass and sediment responses to reduced light conditions were studied in 2-week shading experiments. Z. marina responded to reduced light conditions by decreasing growth rates and a loss of above-ground biomass. The spring plants were most sensitive to light reductions and the relative leaf elongation rates were reduced with up to 58% and the shoot densities with 33-36%. There was no difference in light response in relation to sediment organic matter contents. The sulfate reduction rates were reduced in the shaded low-organic sediments with up to 67%, whereas there was no effect of shading on rates in the organic-rich sediments. The lack of effect of shading in the organic-rich sediments was attributed to a limited coupling between Z. marina production and sediment bacterial carbon cycling. In contrast to the sulfate reduction rates, the pools of reduced sulfur were increased with up to 89% in the shaded, low-organic sediments, suggesting that the reoxidation of sulfides was reduced. Shading had no effect on the pools of sulfides in the organic-rich sediments due to much larger pools of sulfides. The enhanced sensitivity of spring plants to shading was probably due to a low above- to below-ground ratio compared to the autumn plants, which limited the plant-mediated oxidation of the sediments and thus the reoxidation of sulfides. The shaded plants were possibly more exposed to anoxic and sulfidic conditions affecting their growth and survival.  相似文献   

2.
A study was undertaken to evaluate the interrelationship between the presence of seagrasses, Zostera marina and Halodule wrightii, and the physical and chemical properties of sediments in a coastal plain estuary near Beaufort, North Carolina. In sediments underlying a cover of seagrass, silt-clay, organic matter, exchangeable ammonium, ammonium dissolved in pore waters and total nitrogen were larger than in unvegetated profiles. The magnitude of the physical and chemical properties of sediments varied according to the location of the station in relation to the vegetation, as well as the continuity in the distribution of the seagrass. The largest pools of nitrogen, the finest sediment texture, and the greatest organic matter content were in sediments associated with the mid bed regions of seagrass meadows, intermediate at the edges of the bed and small isolated patches of grass, and least in unvegetated substrate.General conclusions from this study are: 1) once established, seagrasses appear capable of modifying the sediment texture as well as the organic matter and nitrogen content; 2) nitrogen accumulates beneath the vegetation suggesting that vegetated sediments are sinks; however, functional recycling mechanisms seem to be operating as suggested by the larger magnitude of remineralized nitrogen in the vegetated profiles; and 3) the establishment of seagrasses in this geographical region are not necessarily restricted by the sediment properties measured in this study. These data and conclusions are discussed in regard to an application of contemporary theories of ecosystem development to seagrass systems.Contribution Number 82-22-B  相似文献   

3.
Seagrass meadows are highly productive habitats that provide important ecosystem services in the coastal zone, including carbon and nutrient sequestration. Organic carbon in seagrass sediment, known as “blue carbon,” accumulates from both in situ production and sedimentation of particulate carbon from the water column. Using a large-scale restoration (>1700 ha) in the Virginia coastal bays as a model system, we evaluated the role of seagrass, Zostera marina , restoration in carbon storage in sediments of shallow coastal ecosystems. Sediments of replicate seagrass meadows representing different age treatments (as time since seeding: 0, 4, and 10 years), were analyzed for % carbon, % nitrogen, bulk density, organic matter content, and 210Pb for dating at 1-cm increments to a depth of 10 cm. Sediment nutrient and organic content, and carbon accumulation rates were higher in 10-year seagrass meadows relative to 4-year and bare sediment. These differences were consistent with higher shoot density in the older meadow. Carbon accumulation rates determined for the 10-year restored seagrass meadows were 36.68 g C m-2 yr-1. Within 12 years of seeding, the restored seagrass meadows are expected to accumulate carbon at a rate that is comparable to measured ranges in natural seagrass meadows. This the first study to provide evidence of the potential of seagrass habitat restoration to enhance carbon sequestration in the coastal zone.  相似文献   

4.
Sulfur cycling was investigated in carbonate-rich and iron-poor sediments vegetated with Posidonia oceanica in oligotrophic Mediterranean around Mallorca Island, Spain, to quantify sulfate reduction and pools of sulfide in seagrass sediments. The oxygen penetration depth was low (< 4.5 mm) and sulfate reduction rates were relatively high (0.7–12 mmol m–2d–1). The total pools of reduced sulfides were remarkably low (< 5 mol S m–2) indicating a fast turnover of reduced sulfides in these iron-poor sediments. The sulfate reduction rates were generally higher in vegetated compared to bare sediments possible due to enhanced sedimentation of sestonic material inside the seagrass meadows. The sulfate reduction rates were positively correlated with the seasonal variation in water temperature and negatively correlated with the shoot density indicating that the microbial activity was controlled by temperature and release of oxygen from the roots. The pools of reduced sulfides were low in these iron-poor sediments leading to high oxygen consumption for reoxidation. The sediments were highly anoxic as shown by relatively low oxygen penetration depths (< 4.5 mm) in these low organic sediments. The net shoot recruitment rate was negative in sediments enriched with organic matter, suggesting that organic matter enrichment may be an important factor for seagrass status in these iron-depleted carbonate sediments.  相似文献   

5.
When two ecosystem engineers share the same natural environment, the outcome of their interaction will be unclear if they have contrasting habitat-modifying effects (e.g., sediment stabilization vs. sediment destabilization). The outcome of the interaction may depend on local environmental conditions such as season or sediment type, which may affect the extent and type of habitat modification by the ecosystem engineers involved. We mechanistically studied the interaction between the sediment-stabilizing seagrass Zostera noltii and the bioturbating and sediment-destabilizing lugworm Arenicola marina, which sometimes co-occur for prolonged periods. We investigated (1) if the negative sediment destabilization effect of A. marina on Z. noltii might be counteracted by positive biogeochemical effects of bioirrigation (burrow flushing) by A. marina in sulfide-rich sediments, and (2) if previously observed nutrient release by A. marina bioirrigation could affect seagrasses. We tested the individual and combined effects of A. marina presence and high porewater sulfide concentrations (induced by organic matter addition) on seagrass biomass in a full factorial lab experiment. Contrary to our expectations, we did not find an effect of A. marina on porewater sulfide concentrations. A. marina activities affected the seagrass physically as well as by pumping nutrients, mainly ammonium and phosphate, from the porewater to the surface water, which promoted epiphyte growth on seagrass leaves in our experimental set-up. We conclude that A. marina bioirrigation did not alleviate sulfide stress to seagrasses. Instead, we found synergistic negative effects of the presence of A. marina and high sediment sulfide levels on seagrass biomass.  相似文献   

6.
Changes in the seascape often result in altered hydrodynamics that lead to coinciding changes in sediment dynamics. Little is known on how altered sediment dynamics affect long-term seagrass persistence. We studied the thresholds of sediment dynamics in relation to seagrass presence by comparing sediment characteristics and seagrass presence data of seven separate seagrass meadows. All meadows had a long-term (>20 years) presence. Within these meadows, we distinguish so-called “hotspots” (areas within a meadow where seagrass was found during all mapping campaigns) and “coldspots” (with infrequent seagrass presence). We monitored static sediment characteristics (median grain size, bulk density, silt content) and sediment dynamics (that is, bed level change and maximum sediment disturbance depth), bioturbation (that is, lugworm densities and induced fecal pit and mound relief), and seagrass cover. We statistically analyzed which sediment characteristic best explains seagrass cover. Densely vegetated hotspots were shown to have lower sediment dynamics than sparsely vegetated hotspots and coldspots, whereas static sediment characteristics were similar (grain size, bulk density). The vegetation cover was either low (2–15%) or high (>30%) and sediment dynamics showed a threshold for vegetation cover. From this correlative finding, we postulate a self-sustaining feedback of relatively dense seagrass via sediment stabilization and accordingly a runaway feedback once the seagrass cover becomes too sparse. The sensitivity for sediment dynamics shown in our study implies that future existence of seagrass meadows may be at risk as ongoing climate change might directly (increased environmental extremes) or indirectly (changing seascapes) negatively affect seagrass beds.  相似文献   

7.
Abstract Seagrasses are threatened by human activity in many locations around the world. Their decline is often characterized by sudden ecosystem collapse from a vegetated to a bare state. In the 1930s, such a dramatic event happened in the Dutch Wadden Sea. Before the shift, large seagrass beds (Zostera marina) were present in this area. After the construction of a large dam and an incidence of the “wasting disease” in the early 1930s, these meadows became virtually extinct and never recovered despite restoration attempts. We investigated whether this shift could be explained as a critical transition between alternative stable states, and whether the lack of recovery could be due to the high resilience of the new turbid state. We analyzed the depth distribution of the historical meadows, a long-term dataset of key factors determining turbidity and a minimal model based on these data. Results demonstrate that recovery was impossible because turbidity related to suspended sediment was too high, probably because turbidity was no longer reduced by seagrass itself. Model simulations on the positive feedback suggest indeed the robust occurrence of alternative stable states and a high resilience of the current turbid state. As positive feedbacks are common in seagrasses, our findings may explain both the worldwide observed collapses and the low success rate of restoration attempts of seagrass habitats. Therefore, appreciation of ecosystem resilience may be crucial in seagrass ecosystem management.  相似文献   

8.
The influence of nutrient additions on benthic bacterial activity under seagrass meadows was tested by enriching five seagrass (Posidonia oceanica) meadows with nutrients over one year. We found a highly significant response of benthic bacterial activity to nutrient additions, which was reflected in greater (about two-fold) ammonification rates and, to a smaller extent, a significant tendency for a greater exoenzymatic activity. Nutrient additions significantly raised bacterial activity, without altering the seasonal changes in bacterial activity. As a result of the increased bacterial activity, the organic content of the sediments declined significantly, by about 33%, after one year of nutrient addition. Hence, nutrient additions to the seagrass meadows enhance seagrass production but also accelerate bacterial decomposition of seagrass carbon, thereby reducing the capacity of the sediments to store organic carbon. These results demonstrate that sediment nutrient availability limits bacterial activity in these Posidonia oceanica meadows, and identify bacteria as important nutrient consumers in these systems.  相似文献   

9.
Epibiotic microorganisms link seagrass productivity to higher trophic levels, but little is known about the processes structuring these communities, and which taxa consistently associate with seagrass. We investigated epibiotic microeukaryotes on seagrass (Zostera marina) leaves, substrates, and planktonic microeukaryotes in ten meadows in the Northeast Pacific. Seagrass epibiotic communities are distinct from planktonic and substrate communities. We found sixteen core microeukaryotes, including dinoflagellates, diatoms, and saprotrophic stramenopiles. Some likely use seagrass leaves as a substrate, others for grazing, or they may be saprotrophic organisms involved in seagrass decomposition or parasites; their relatives have been previously reported from marine sediments and in association with other hosts such as seaweeds. Core microeukaryotes were spatially structured, and none were ubiquitous across meadows. Seagrass epibiota were more spatially structured than planktonic communities, mostly due to spatial distance and changes in abiotic conditions across space. Seawater communities were relatively more similar in composition across sites and more influenced by the environmental component, but more variable over time. Core and transient taxa were both mostly structured by spatial distance and the abiotic environment, with little effect of host attributes, further indicating that those core taxa would not show a strong specific association with Z. marina.  相似文献   

10.
The effect of filamentous algae invasion into Zostera marina meadows on water quality, sediment sulfur pools and sulfide invasion into plant tissues was studied experimentally. Sulfide invasion was assessed through analysis of sulfur isotopic composition (δ34S) and total sulfur (TS) concentrations in plant tissues. The algal mats (5 and 10 cm thickness) depleted oxygen in the mats and increased the pools of sulfides in the sediments. Plants exposed to algal mats had δ34S signals closer to the δ34S of sediment sulfide, whereas plants with no mats present had δ34S signals closer to the δ34S of seawater sulfate, indicating a higher sulfide invasion in plants exposed to algal mats. The δ34S varied between the plant tissues with the leaves having more positive δ34S signals than roots and rhizomes, indicating that sulfide was invading into the roots and moved to the other tissues through the lacunae. TS concentrations were higher in plants exposed to algal mats suggesting that sulfur derived from sediment sulfide accumulated in the plants. Fsulfide showed that up to 50% of the sulfides in the plants were derived from sedimentary sulfides. The combined effect of water column anoxia in the lower parts of the meadow and high sulfide invasion into the plants lead to significantly reduced growth rates after 3 weeks and the below-ground tissues showed signs of degradation suggesting that algal mats invasion in to Zostera marina meadows can result in seagrass decline.  相似文献   

11.
Dimensionless ammonium adsorption coefficients (K) were determined for tropical mangrove forest sediments and temperate Wadden Sea sediments. The K values were obtained from ammonium adsorption isotherms of KCl (2 M) extractable ammonium versus dissolved ammonium in the porewater; relationships that can be described by a linear model. Linearity was evident even at low porewater concentrations for mangrove sediment, according to isotherms based on KCl extractions on untreated sediment profiles. K-values were low in mangrove forest sediments (0.04–0.10), and higher in Wadden Sea sediments (0.17–1.12). The vertical range in K-values was larger at the vegetated sites, with highest values in subsurface sediments, which suggests differences in quantity and quality of the fine organic and inorganic fractions. The low ammonium adsorption in the mangrove sediments can be explained by a higher concentration of competitive cations, especially iron, in this iron-rich environment. The low adsorption of ammonium in mangrove sediments and vegetated surface sediment of the Wadden Sea was negatively related to the organic content of the sediments, which is in contrast to findings for other marine sediments. We suggest that organic material may have a diluting effect on the exchange capacity in fine-grained sediments, and that organic coatings may block ion exchange sites on clay surfaces. Thus, there may be a organic-rich ‘wetland’ versus organic-poor ‘sediment’ effect. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Seagrasses are well known ecosystem engineers that can significantly influence local hydrodynamics and the abundance and biodiversity of macrobenthic organisms. This study focuses on the potential role of the seagrass canopy structure in altering the abundance of filter-feeding organisms by modifying the hydrodynamic driven food supply. We quantified the effect of two ecosystem engineers with contrasting canopy properties (i.e. Zostera noltii and Cymodocea nodosa) on the food intake rate of a suspension-feeding bivalve Cerastoderma edule living in these seagrass meadows. Field experiments were carried out in two seagrass beds (Z. noltii and C. nodosa) and bare sediment, located on sandflat characterised by a relatively high hydrodynamic energy from waves and currents. Results demonstrated that the filter-feeding rate was almost twofold increased when C. edule was inhabiting Z. noltii meadows (1.10 ± 0.24 μg Chl g Fresh Weight−1) when compared to cockles living on the bare sediment (0.65 ± 0.14 μg Chl g FW−1). Intermediate values were found within C. nodosa canopy (0.97 ± 0.24 μg Chl g FW−1), but filter feeding rate showed no significant differences with values for Z. noltii meadows. There were no apparent correlations between canopy properties and filter-feeding rates. Our results imply that food refreshment within the seagrass canopies was enough to avoid food depletion. We therefore expect that the ameliorated environmental conditions within vegetated areas (i.e. lower hydrodynamic conditions, higher sediment stability, lower predation pressure…) in combination with sufficient food supply to prevent depletion within both canopies are the main factors underlying our observations.  相似文献   

13.
The community structure of caprellids inhabiting two species of seagrass (Cymodocea nodosa and Zostera marina) was investigated on the Andalusian coast, southern Spain, using uni and multivariate analyses. Three meadows were selected (Almería, AL; Málaga, MA; Cádiz, CA), and changes in seagrass cover and biomass were measured from 2004 to 2005. Four caprellid species were found; the density of Caprella acanthifera, Phtisica marina and Pseudoprotella phasma was correlated to seagrass biomass. No such correlation was found for Pariambus typicus, probably because this species inhabits sediments and does not cling to the seagrass leaves. We recorded a significant decrease in seagrass cover and biomass in MA due to illegal bottom trawling fisheries. Phtisica marina and P. typicus were favoured by this perturbation and increased their densities after the trawling activities. A survey of reports on caprellids in seagrass meadows around the world showed no clear latitudinal patterns in caprellid densities (ranging from 6 to 1,000 ind/m2 per meadow) and species diversity. While caprellid abundances in seagrass meadows are often very high, the number of species per meadow is low (range 1–5).  相似文献   

14.
This investigation addressed faunal relationships with habitat structure within a Zostera marina community targeting differences between seagrass bed edge and interior. Z. marina biomass was significantly higher from the interior portions of the bed compared to the edge, but shoot density did not vary. Additionally, leaf width and length were significantly greater in the interior of the bed, suggesting greater total leaf area. Densities of larger organisms (> 0.85 mm) were significantly greater in vegetated samples (Z. marina edge and interior) compared to unvegetated, but an analysis of similarities demonstrated significant faunal community differences among each of the identified habitats. Densities of small organisms (0.25-0.85 mm), however, were significantly greater at Z. marina edge compared to unvegetated samples and Z. marina interior. Additionally, secondary production (μg AFDW day− 1) was estimated based on the size distribution of taxa and showed significantly greater production from samples gathered in Z. marina compared to unvegetated samples. The relative size distribution of taxa was assessed using regression analysis and results showed that the size distribution was similar for samples collected at edge and interior Z. marina, but these distributions differed significantly when compared to unvegetated samples. The results of this study suggest that although similarities exist between edge and interior portions of Z. marina beds, especially compared to unvegetated habitats, noteworthy differences in faunal density, species composition, size distribution, and secondary production exist between edge and interior Z. marina.  相似文献   

15.
Sulfate reduction rates and biogeochemical parameters of fish farm sediments across the Mediterranean were investigated in the order to evaluate the potential effects of organic matter inputs on habitat quality for the common seagrass Posidonia oceanica. Four study sites were selected in Spain, Italy, Greece and Cyprus to represent the Mediterranean basin. P. oceanica was found in immediate vicinity of all the farms, which were located at physically exposed sites about 1 km from the shore lines. Organic matter accumulation, sulfate reduction rates and sulfur pools were measured in depth profiles along transects from the farms in both bare and vegetated sediments. Results show that although the organic matter accumulation was minor at the sites (POC < 2.8% DW), the sulfate reduction rates were high, in particular at the largest farm in Italy (up to 212 mmol m−2 d−1), similar to rates found at shallower, temperate fish farm sites, where higher sedimentation rates can be expected. Sulfate reducing bacteria in these low-organic, carbonate-rich Mediterranean sediments respond strongly to organic matter loadings and cause habitat degradation. Sulfate reduction rates measured in the P. oceanica sediments were among the highest recorded (7.8–42.0 mmol m−2 d−1) similar to rates found in degrading meadows impacted by organic matter loadings. As sulfate reduction rates were correlated with the sedimentation rates along the transects rather than organic matter pools this suggests mineralization processes were controlled by organic matter loading in fish farm sediments. The vegetated sediments near the net cages were more reduced due to accumulation of sulfides compared to control sites, which is a possible contributing factor to the observed seagrass decline in the farm surroundings. It is recommended that Mediterranean fish farms are placed in areas with rapid dispersal of particulate waste products to minimize organic matter loading of the sediments and thereby preserve habitat quality for benthic fauna and flora.  相似文献   

16.
Zostera marina is the dominant seagrass species in coastal lagoons on the western coast of Baja California Peninsula, and due to its coastal location it is threatened by natural and anthropogenic factors, as is happening in Puerto San Carlos, B.C.S., where a fish cannery unloads its wastewater to the beach. Apparently an extensive intertidal meadow replacement was established by great amounts of green macroalgae. We evaluated the possibility to mitigate the impacts of this cannery with transplants of Z. marina meadow using adult plants. The transplant experiment was made in two different seasons for which two undisturbed donor meadows were chosen: El Cuervo and San Carlitos. The winter one obtained a 30% and in San Carlitos 90% after 13 months and the autumn transplant in San Carlos obtained a 0% of survival after 3 months. The results of these transplant activities were reflected in the shoot density at the end of the experiment (San Carlos was of 482 shoots/m2 and San Carlitos of 818 shoots/m2s and agree with the density of the natural meadows. This experiment shows that it is possible to develop a small-scale seagrass restoration as mitigation for Baja California coastal lagoons which are under severe threat for coastal development.  相似文献   

17.
Eelgrass meadows are a common feature in shallow waters along the Norwegian coast, where they provide a habitat for a diverse infaunal community. Recreational boat anchoring and moorings physically scour seagrass and may affect the ecosystem functioning and resilience of the system to natural and anthropogenic disturbances. A small-scale eelgrass (Zostera marina) removal experiment was conducted to study the effects on macro- and meiofauna. Entire plants, including the rhizomes, were removed from 4?m2 patches in three eelgrass meadows in the inner Oslofjord in October 2010. Core samples were taken after a recovery period of 10 months, from the removed patches as well as from the surrounding meadow. Macrofauna (>500?μm) and meiofauna (63–500?μm) in the sediment were investigated for possible effects of the eelgrass removal. Macrofauna and meiofauna composition were site specific and therefore location was identified as the main determinant for the infaunal community. The eelgrass did not regrow within the recovery period and bare sediment patches with only single eelgrass shoots were present during the sampling. Our analyses support an influence of the removal on individual species, but not the complete community. In particular one species, the gastropod Peringia ulvae, was encountered in higher numbers in samples from the removed patches than in control samples. From a management perspective, such minor removal of eelgrass, on the scale of square metres, appears to have no long-lasting detrimental effect to the infaunal community in sheltered meadows with muddy sediments.  相似文献   

18.
[目的] 本文以威海天鹅湖大叶藻和日本鳗草根际沉积物为主要研究对象,探究不同生长时期的海草根际微生物群落结构多样性,并分析导致微生物群落结构差异的内在因素。[方法] 选取威海天鹅湖大叶藻和日本鳗草根际沉积物与非草区表层沉积物,采用高通量测序技术(Illumina MiSeq platform)解析海草不同生长时期下根际与非草区微生物群落特征。[结果] 微生物群落结构差异由海草生长时期以及海草是否定植共同驱动。在海草成熟期,丙酸菌属(Propionigenium)在大叶藻与日本鳗草根际有明显富集,其相对丰度分别为11.58%和14.26%;在海草幼苗期,脱硫球茎菌科(Desulfobulbaceae)在海草根际富集(大叶藻:2.299%,日本鳗草:4.092%);在海草衰退期时,硫卵菌属(Sulfurovum)的相对丰度在根际较高(大叶藻:5.624%,日本鳗草:3.749%)。此外,海草生长时期对不同样品之间微生物群落结构差异的解释度最大(R2=0.20335,P=0.002)。PICRUSt2功能预测结果表明各功能基因在海草不同生长时期所呈现的趋势一致,但丰度上呈现出幼苗期 > 成熟期 > 衰退期的结果。[结论] 天鹅湖海草床沉积物微生物群落结构在海草不同生长时期呈现不同的多样性特征,具有明显的根际效应且不同种类海草的根际微生物群落无显著差异,不具有物种特异性。  相似文献   

19.
Here we demonstrate, through experimental iron additions to a Mediterranean seagrass meadow, that iron plays a pivotal role in seagrass systems on carbonate sediments, directly through its role as a limiting nutrient, and indirectly by stimulating phosphorus recycling through the activity of the enzyme alkaline phosphatase and by buffering the development of reduced conditions in sediments. Iron additions were performed throughout the active root zone (30 cm depth) to two Posidonia oceanica meadows, one on organic-enriched sediments and one on organic poor sediments (Reference). Seagrass growth, nutrient incorporation and sediment biogeochemical conditions were followed for four months. Iron additions had positive effects on seagrass growth (leaf production increased with 55%) and nutrient incorporation (increased 46–91%) in the organic-enriched site, increasing to levels found at the Reference site. There was no effect of iron additions in the Reference seagrass meadow suggesting that iron was not the most important controlling factor at this site. The iron pools were about two times higher compared to the organic-enriched site. The main effect on the sediment biogeochemical conditions at the organic-enriched site was a suppression of sulfate reduction activity to the levels encountered at the Reference site (6.7 mmol m−2d−1 vs. 4.7–5.9 mmol m−2d−1). This suggests that the sulfide stress on the seagrasses was removed and that the iron availability increased due to reduced precipitation of iron-sulfides and thus improving seagrass growth conditions in these organic-enriched sediments.  相似文献   

20.
Invasive species can alter coastal ecosystems both directly, e.g. through competition for substratum and nutrients, and indirectly. Indirect effects may be mediated by creation of dissimilar or inimical habitats, changes in predator and/or prey assemblages, alterations in associated biota, and perturbations of water movement and thermal regimes. Previous studies have shown that invasive algae can modify native habitat architecture, disrupt intricately linked food webs and alter epibiotic assemblages. In the UK, the seagrass Zostera marina supports a diverse epibiotic assemblage, influencing key factors such as sediment dynamics, depositional regime and trophic linkages. Increasing encroachment of the invasive alga Sargassum muticum into seagrass meadows changes the physical and chemical characteristics of the local environment and creates the potential for changes in the epibionts associated with the seagrass blades, threatening the integrity of the seagrass ecosystem. We investigated the effects of S. muticum invasion upon the epibiota of Z. marina in a drowned river valley in SW England seasonally from spring to autumn over four years in an in-situ manipulative experiment, comparing permanent quadrats with and without artificially introduced S. muticum. Epibiota were weighed, identified to the most detailed operational taxonomic unit (OTU) possible, and unitary organisms were enumerated. Multivariate PERMANOVA+ analysis revealed significant differences in epibiont assemblages between Sargassum treatments. Linear mixed effects models indicated that differences in epibiota assemblage composition were not reflected as significant differences in mean biomass per sample, or number of epibiont OTUs per sample. We conclude that S. muticum invasion into Z. marina meadows may significantly alter the species composition and abundance distribution of epibiotic assemblages found on the blades of the seagrass. Thus S. muticum invasion could have more wide-reaching effects on processes within coastal ecosystems than predicted purely by direct effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号