首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Op18/stathmin (Op18) is a microtubule-destabilizing protein that is phosphorylation-inactivated during mitosis and its normal function is to govern tubulin subunit partitioning during interphase. Human tumors frequently overexpress Op18 and a tumor-associated Q18→E mutation has been identified that confers hyperactivity, destabilizes spindle microtubules, and causes mitotic aberrancies, polyploidization, and chromosome loss in K562 leukemia cells. Here we determined whether wild-type and mutant Op18 have the potential to cause chromosomal instability by some means other than interference with spindle assembly, and thereby bypassing the spindle assembly checkpoint. Our approach was based on Op18 derivatives with distinct temporal order of activity during mitosis, conferred either by differential phosphorylation inactivation or by anaphase-specific degradation through fusion with the destruction box of cyclin B1. We present evidence that excessive Op18 activity generates chromosomal instability through interference occurring subsequent to the metaphase-to-anaphase transition, which reduces the fidelity of chromosome segregation to spindle poles during anaphase. Similar to uncorrected merotelic attachment, this mechanism evades detection by the spindle assembly checkpoint and thus provides an additional route to chromosomal instability.  相似文献   

2.
Oncoprotein 18 (Op18, also termed p19, p18, prosolin or stathmin) is a cytosolic protein of previously unknown function. Phosphorylation of Op18 is cell cycle regulated by cyclin-dependent kinases (CDKs), and expression of a 'CDK target site-deficient mutant' results in a phenotype indicative of a role for Op18 during mitosis. This phenotype is compatible with the idea that Op18 is a phosphorylation-responsive regulator of microtubule (MT) dynamics. Therefore, in this study, we analyzed MTs in cells induced to express either wild-type or mutated Op18. The results showed that wild-type Op18 and a CDK target site mutant both efficiently elicited rapid depolymerization of MTs. This result contrasts with clear-cut differences in their cell cycle phenotypes. Morphological analysis of MTs explained this apparent discrepancy: while interphase MTs were depolymerized in cells expressing either Op18 derivative, apparently normal mitotic spindles were formed only in cells overexpressing wild-type Op18. This result correlates with our finding that only mutated Op18 causes a block during mitosis. Hence, we conclude that Op18 decreases MT stability and that this activity of Op18 is subject to cell cycle regulation by CDKs.  相似文献   

3.
Regulation of Op18 during spindle assembly in Xenopus egg extracts   总被引:5,自引:0,他引:5  
Oncoprotein 18 (Op18) is a microtubule-destabilizing protein that is negatively regulated by phosphorylation. To evaluate the role of the three Op18 phosphorylation sites in Xenopus (Ser 16, 25, and 39), we added wild-type Op18, a nonphosphorylatable triple Ser to Ala mutant (Op18-AAA), and to mimic phosphorylation, a triple Ser to Glu mutant (Op18-EEE) to egg extracts and monitored spindle assembly. Op18-AAA dramatically decreased microtubule length and density, while Op18-EEE did not significantly affect spindle microtubules. Affinity chromatography with these proteins revealed that the microtubule-destabilizing activity correlated with the ability of Op18 to bind tubulin. Since hyperphosphorylation of Op18 is observed upon addition of mitotic chromatin to extracts, we reasoned that chromatin-associated proteins might play a role in Op18 regulation. We have performed a preliminary characterization of the chromatin proteins recruited to DNA beads, and identified the Xenopus polo-like kinase Plx1 as a chromatin-associated kinase that regulates Op18 phosphorylation. Depletion of Plx1 inhibits chromatin-induced Op18 hyperphosphorylation and spindle assembly in extracts. Therefore, Plx1 may promote microtubule stabilization and spindle assembly by inhibiting Op18.  相似文献   

4.
Op18/stathmin (Op18) is a phosphorylation-regulated and differentially expressed microtubule-destabilizing protein in animal cells. Op18 regulates tubulin monomer-polymer partitioning of the interphase microtubule system and forms complexes with tubulin heterodimers. Recent reports have shown that specific tubulin-folding cofactors and related proteins may disrupt tubulin heterodimers. We therefore investigated whether Op18 protects unpolymerized tubulin from such disruptive activities. Our approach was based on inducible overexpression of two tubulin-disrupting proteins, namely TBCE, which is required for tubulin biogenesis, and E-like, which has been proposed to regulate tubulin turnover and microtubule stability. Expression of either of these proteins was found to cause a rapid degradation of both alpha-tubulin and beta-tubulin subunits of unpolymerized, but not polymeric, tubulin heterodimers. We found that depletion of Op18 by means of RNA interference increased the susceptibility of tubulin to TBCE or E-like mediated disruption, while overexpressed Op18 exerted a tubulin-protective effect. Tubulin protection was shown to depend on Op18 levels, binding affinity, and the partitioning between tubulin monomers and polymers. Hence, the present study reveals that Op18 at physiologically relevant levels functions to preserve the integrity of tubulin heterodimers, which may serve to regulate tubulin turnover rates.  相似文献   

5.
Stathmin/Op18 destabilizes microtubules in vitro and regulates microtubule polymerization in vivo. Both a microtubule catastrophe-promoting activity and a tubulin sequestering activity were demonstrated for stathmin in vitro, and both could contribute to microtubule depolymerization in vivo. Stathmin activity can be turned down by extensive phosphorylation on its four phosphorylatable serines, and down-regulation of stathmin activity by phosphorylation is necessary for cells to proceed through mitosis. We show here that microinjection of a nonphosphorylatable Ser to Ala (4A) quadruple mutant in Xenopus two-cell stage embryos results in cell cleavage arrest in the injected blastomeres and aborted development, whereas injection of a pseudo-phosphorylated Ser to Glu quadruple mutant (4E) does not prevent normal development. Addition of these mutants to mitotic cytostatic factor-arrested extracts in which spindle assembly was induced led to a dramatic reduction of spindle size with 4A stathmin, and to a moderate increase with 4E stathmin, but both localized to spindle poles. Interestingly, the microtubule assembly-dependent phosphorylation of endogenous stathmin was abolished in the presence of 4A stathmin, but not of 4E stathmin. Altogether, this shows that the phosphorylation-mediated regulation of stathmin activity during the cell cycle is essential for early Xenopus embryonic development.  相似文献   

6.
Oncoprotein 18/stathmin (Op18) is a recently identified phosphorylation-responsive regulator of the microtubule (MT) system. It was originally proposed that Op18 specifically regulates dynamic properties of MTs by associating with tubulin, but it has subsequently been proposed that Op18 acts simply by sequestering of tubulin heterodimers. We have dissected the mechanistic action of Op18 by generation of two distinct classes of mutants. One class has interruptions of the heptad repeats of a potential coiled-coil region of Op18, and the other involves substitution at all four phosphorylation sites with negatively charged Glu residues. Both types of mutation result in Op18 proteins with a limited decrease in tubulin complex formation. However, the MT-destabilizing activities of the coiled-coil mutants are more severely reduced in transfected leukemia cells than those of the Glu-substituted Op18 derivative, providing evidence for tubulin-directed regulatory activities distinct from tubulin complex formation. Analysis of Op18-mediated regulation of tubulin GTPase activity and taxol-promoted tubulin polymerization showed that while wild-type and Glu-substituted Op18 derivatives are active, the coiled-coil mutants are essentially inactive. This suggests that Op18-tubulin contact involves structural motifs that deliver a signal of regulatory importance to the MT system.  相似文献   

7.
In the leading edge of migrating cells, a subset of microtubules exhibits net growth in a Rac1- and p21-activated kinase-dependent manner. Here, we explore the possibility of whether phosphorylation and inactivation of the microtubule-destabilizing protein Op18/stathmin could be a mechanism regulating microtubule dynamics downstream of Rac1 and p21-activated kinases. We find that, in vitro, Pak1 phosphorylates Op18/stathmin specifically at serine 16 and inactivates its catastrophe promoting activity in biochemical and time lapse microscopy microtubule assembly assays. Furthermore, phosphorylation of either serine 16 or 63 is sufficient to inhibit Op18/stathmin in vitro. In cells, the microtubule-destabilizing effect of an excess of Op18/stathmin can be partially overcome by expression of constitutively active Rac1(Q61L), which is dependent on Pak activity, suggesting that the microtubule cytoskeleton can be regulated through inactivation of Op18/stathmin downstream of Rac1 and Pak in vivo. However, in vivo, Pak1 activity alone is not sufficient to phosphorylate Op18, indicating that additional pathways downstream of Rac1 are required for Op18 regulation.  相似文献   

8.
Oncoprotein 18 (Op18; also termed p19, 19K, metablastin, stathmin, and prosolin) is a conserved protein that regulates microtubule (MT) dynamics. Op18 is multisite phosphorylated on four Ser residues during mitosis; two of these Ser residues, Ser-25 and Ser-38, are targets for cyclin-dependent protein kinases (CDKs), and the other two Ser residues, Ser-16 and Ser-63, are targets for an unidentified protein kinase. Mutations of the two CDK sites have recently been shown to result in a mitotic block caused by destabilization of MTs. To understand the role of Op18 in regulation of MT dynamics during mitosis, in this study we dissected the functions of all four phosphorylation sites of Op18 by combining genetic, morphological, and biochemical analyses. The data show that all four phosphorylation sites are involved in switching off Op18 activity during mitosis, an event that appears to be essential for formation of the spindle during metaphase. However, the mechanisms by which specific sites down-regulate Op18 activity differ. Hence, dual phosphorylation on the CDK sites Ser-25 and Ser-38 appears to be required for phosphorylation of Ser-16 and Ser-63; however, by themselves, the CDK sites are of only minor importance in direct regulation of Op18 activity. Subsequent phosphorylation of either Ser-16, Ser-63, or both efficiently switches off Op18 activity.  相似文献   

9.
Oncoprotein 18/stathmin (Op18) has been identified recently as a protein that destabilizes microtubules, but the mechanism of destabilization is currently controversial. Based on in vitro microtubule assembly assays, evidence has been presented supporting conflicting destabilization models of either tubulin sequestration or promotion of microtubule catastrophes. We found that Op18 can destabilize microtubules by both of these mechanisms and that these activities can be dissociated by changing pH. At pH 6.8, Op18 slowed microtubule elongation and increased catastrophes at both plus and minus ends, consistent with a tubulin-sequestering activity. In contrast, at pH 7.5, Op18 promoted microtubule catastrophes, particularly at plus ends, with little effect on elongation rates at either microtubule end. Dissociation of tubulin-sequestering and catastrophe-promoting activities of Op18 was further demonstrated by analysis of truncated Op18 derivatives. Lack of a C-terminal region of Op18 (aa 100–147) resulted in a truncated protein that lost sequestering activity at pH 6.8 but retained catastrophe-promoting activity. In contrast, lack of an N-terminal region of Op18 (aa 5–25) resulted in a truncated protein that still sequestered tubulin at pH 6.8 but was unable to promote catastrophes at pH 7.5. At pH 6.8, both the full length and the N-terminal–truncated Op18 bound tubulin, whereas truncation at the C-terminus resulted in a pronounced decrease in tubulin binding. Based on these results, and a previous study documenting a pH-dependent change in binding affinity between Op18 and tubulin, it is likely that tubulin sequestering observed at lower pH resulted from the relatively tight interaction between Op18 and tubulin and that this tight binding requires the C-terminus of Op18; however, under conditions in which Op18 binds weakly to tubulin (pH 7.5), Op18 stimulated catastrophes without altering tubulin subunit association or dissociation rates, and Op18 did not depolymerize microtubules capped with guanylyl (α, β)-methylene diphosphonate–tubulin subunits. We hypothesize that weak binding between Op18 and tubulin results in free Op18, which is available to interact with microtubule ends and thereby promote catastrophes by a mechanism that likely involves GTP hydrolysis.  相似文献   

10.
Assembly of a mitotic spindle requires the accurate regulation of microtubule dynamics which is accomplished, at least in part, by phosphorylation-dephosphorylation reactions. Here we have investigated the role of serine-threonine phosphatases in the control of microtubule dynamics using specific inhibitors in Xenopus egg extracts. Type 2A phosphatases are required to maintain the short steady-state length of microtubules in mitosis by regulating the level of microtubule catastrophes, in part by controlling the the microtubule-destabilizing activity and phosphorylation of Op18/stathmin. Type 1 phosphatases are only required for control of microtubule dynamics during the transitions into and out of mitosis. Thus, although both type 2A and type 1 phosphatases are involved in the regulation of microtubule dynamics, they have distinct, non-overlapping roles.  相似文献   

11.
Tange Y  Niwa O 《Genetics》2007,175(4):1571-1584
A previously isolated fission yeast gamma-tubulin mutant containing apparently stabilized microtubules proliferated at an approximately identical rate as wild type, yet the mutant mitosis spindle dynamics were aberrant, particularly the kinetochore microtubule dynamics. Progression through mitosis in the mutant, however, resulted in mostly accurate chromosome segregation. In the absence of the spindle assembly checkpoint gene, mad2+, the spindle dynamics in the gamma-tubulin mutant were greatly compromised, leading to a high incidence of chromosome missegregation. Unlike in wild-type cells, green fluorescent protein (GFP)-tagged Mad2 protein often accumulated near one of the poles of an elongating spindle in the gamma-tubulin mutant. We isolated novel mad2 mutants that were defective in arresting mitotic progression upon gross perturbation of the spindle formation but remained functional for the viability of the gamma-tubulin mutant. Further, the mad2 mutations did not appreciably destabilize minichromosomes in unperturbed mitoses. When overexpressed ectopically, these mutant Mad2 proteins sequestered wild-type Mad2, preventing its function in mitotic checkpoint arrest, but not in minichromosome stability. These results indicated that the Mad2 functions required for checkpoint arrest and chromosome stability in unperturbed mitosis are genetically discernible. Immunoprecipitation studies demonstrated that GFP-fused mutant Mad2 proteins formed a Mad1-containing complex with altered stability compared to that formed with wild-type Mad2, providing clues to the novel mad2 mutant phenotype.  相似文献   

12.
13.
The oncoprotein 18/stathmin family of microtubule destabilizers.   总被引:19,自引:0,他引:19  
The past several years have seen major advances in our understanding of the mechanisms of microtubule destabilization by oncoprotein18/stathmin (Op18/stathmin) and related proteins. New structural information has clearly shown how members of the Op18/stathmin protein family bind tubulin dimers and suggests models for how these proteins stimulate catastrophe, the transition from microtubule growth to shortening. Regulation of Op18/stathmin by phosphorylation continues to capture much attention. Studies suggest that phosphorylation occurs in a localized fashion, resulting in decreased microtubule destabilizing activity near chromatin or microtubule polymer. A spatial gradient of inactive Op18/stathmin associated with chromatin or microtubules could contribute significantly to mitotic spindle assembly.  相似文献   

14.
15.
The microtubule cytoskeleton is differentially regulated by a diverse array of proteins during interphase and mitosis. Op18/stathmin (Op18) and microtubule-associated protein (MAP)4 have been ascribed opposite general microtubule-directed activities, namely, microtubule destabilization and stabilization, respectively, both of which can be inhibited by phosphorylation. Here, using three human cell models, we depleted cells of Op18 and/or MAP4 by expression of interfering hairpin RNAs and we analyzed the resulting phenotypes. We found that the endogenous levels of Op18 and MAP4 have opposite and counteractive activities that largely govern the partitioning of tubulin dimers in the microtubule array at interphase. Op18 and MAP4 were also found to be the downstream targets of Ca(2+)- and calmodulin-dependent protein kinase IV and PAR-1/MARK2 kinase, respectively, that control the demonstrated counteractive phosphorylation-mediated regulation of tubulin dimer partitioning. Furthermore, to address mechanisms regulating microtubule polymerization in response to cell signals, we developed a system for inducible gene product replacement. This approach revealed that site-specific phosphorylation of Op18 is both necessary and sufficient for polymerization of microtubules in response to the multifaceted signaling event of stimulation of the T cell antigen receptor complex, which activates several signal transduction pathways.  相似文献   

16.
Oncoprotein 18/stathmin (Op18), a regulator of microtubule dynamics, was recombinantly expressed and its structure and function analysed. We report that Op18 by itself can fold into a flexible and extended alpha-helix, which is in equilibrium with a less ordered structure. In complex with tubulin, however, all except the last seven C-terminal residues of Op18 are tightly bound to tubulin. Digital image analysis of Op18:tubulin electron micrographs revealed that the complex consists of two longitudinally aligned alpha/beta-tubulin heterodimers. The appearance of the complex was that of a kinked protofilament-like structure with a flat and a ribbed side. Deletion mapping of Op18 further demonstrated that (i) the function of the N-terminal part of the molecule is to 'cap' tubulin subunits to ensure the specificity of the complex and (ii) the complete C-terminal alpha-helical domain of Op18 is necessary and sufficient for stable Op18:tubulin complex formation. Together, our results suggest that besides sequestering tubulin, the structural features of Op18 enable the protein specifically to recognize microtubule ends to trigger catastrophes.  相似文献   

17.
Oncoprotein18/stathmin (Op18) is a microtubule (MT) destabilizing protein that is inactivated during mitosis by phosphorylation at four Ser-residues. Op18 has at least two functions; the N-terminal region is required for catastrophe-promotion (i.e., transition from elongation to shortening), while the C-terminal region is required to inhibit MT-polymerization rate in vitro. We show here that a "pseudophosphorylation" derivative of Op18 (i.e., four Ser- to Glu-substitutions at phosphorylation sites) exhibits a selective loss of catastrophe-promoting activity. This is contrasted to authentic phosphorylation, which efficiently attenuates all activities except tubulin binding. In intact cells, overexpression of pseudophosphorylated Op18, which is not phosphorylated by endogenous kinases, is shown to destabilize interphase MTs but to leave spindle formation untouched. To test if the mitotic spindle is sensitive only to the catastrophe-promoting activity of Op18 and resistant to C-terminally associated activities, N- and C-terminal truncations with defined activity-profiles were employed. The cell-cycle phenotypes of nonphosphorylatable mutants (i.e., four Ser- to Ala-substitutions) of these truncation derivatives demonstrated that catastrophe promotion is required for interference with the mitotic spindle, while the C-terminally associated activities are sufficient to destabilize interphase MTs. These results demonstrate that specific Op18 derivatives with defined activity-profiles can be used as probes to distinguish interphase and mitotic MTs.  相似文献   

18.
Oncoprotein 18 (Op18; also termed p19, 19K, p18, prosolin, and stathmin) is a regulator of microtubule (MT) dynamics and is phosphorylated by multiple kinase systems on four Ser residues. In addition to cell cycle-regulated phosphorylation, external signals induce phosphorylation of Op18 on Ser-25 by the mitogen-activated protein kinase and on Ser-16 by the Ca2+/calmodulin-dependent kinase IV/Gr (CaMK IV/Gr). Here we show that induced expression of a constitutively active mutant of CaMK IV/Gr results in phosphorylation of Op18 on Ser-16. In parallel, we also observed partial degradation of Op18 and a rapid increase of total cellular MTs. These results suggest a link between CaMK IV/Gr, Op18, and MT dynamics. To explore such a putative link, we optimized a genetic system that allowed conditional coexpression of a series of CaMK IV/Gr and Op18 derivatives. The result shows that CaMK IV/Gr can suppress the MT-regulating activity of Op18 by phosphorylation on Ser-16. In line with these results, by employing a chemical cross-linking protocol, it was shown that phosphorylation of Ser-16 is involved in weakening of the interactions between Op18 and tubulin. Taken together, these data suggest that the mechanism of CaMK IV/Gr-mediated suppression of Op18 activity involves both partial degradation of Op18 and direct modulation of the MT-destabilizing activity of this protein. These results show that Op18 phosphorylation by CaMK IV/Gr may couple alterations of MT dynamics in response to external signals that involve Ca2+.  相似文献   

19.
Tumor necrosis factor (TNF)-induced cell death in the fibrosarcoma cell line L929 occurs independently of caspase activation and cytochrome c release. However, it is dependent on mitochondria and is characterized by increased production of reactive oxygen intermediates that are essential to the death process. To identify signaling molecules involved in this TNF-induced, reactive oxygen intermediate-dependent cell death pathway, we performed a comparative study by two-dimensional gel electrophoresis of phosphoproteins from a mitochondria-enriched fraction derived from TNF-treated and control cells. TNF induced rapid and persistent phosphorylation of the phosphorylation-responsive regulator of the microtubule (MT) dynamics, oncoprotein 18 (Op18). By using induced overexpression of wild type Op18 and phosphorylation site-deficient mutants S25A/S38A and S16A/S63A in L929 cells, we show that TNF-induced phosphorylation on each of the four Ser residues of Op18 promotes cell death and that Ser(16) and Ser(63) are the primary sites. This hyperphosphorylation of Op18 is known to completely turn off its MT-destabilizing activity. As a result, TNF treatment of L929 cells induced elongated and extremely tangled microtubules. These TNF-induced changes to the MT network were also observed in cells overexpressing wild type Op18 and, to a lesser extent, in cells overexpressing the S25A/S38A mutant. No changes in the MT network were observed upon TNF treatment of cells overexpressing the S16A/S63A mutant, and these cells were desensitized to TNF-induced cell death. These findings indicate that TNF-induced MT stabilization is mediated by hyperphosphorylation of Op18 and that this promotes cell death. The data suggest that Op18 and the MT network play a functional role in transduction of the cell death signal to the mitochondria.  相似文献   

20.
Oncoprotein18/stathmin (Op18) is a regulator of microtubule (MT) dynamics that binds tubulin heterodimers and destabilizes MTs by promoting catastrophes (i.e., transitions from growing to shrinking MTs). Here, we have performed a deletion analysis to mechanistically dissect Op18 with respect to (a) modulation of tubulin GTP hydrolysis and exchange, (b) tubulin binding in vitro, and (c) tubulin association and MT-regulating activities in intact cells. The data reveal distinct types of region-specific Op18 modulation of tubulin GTP metabolism, namely inhibition of nucleotide exchange and stimulation or inhibition of GTP hydrolysis. These regulatory activities are mediated via two-site cooperative binding to tubulin by multiple nonessential physically separated regions of Op18. In vitro analysis revealed that NH(2)- and COOH-terminal truncations of Op18 have opposite effects on the rates of tubulin GTP hydrolysis. Transfection of human leukemia cells with these two types of mutants result in similar decrease of MT content, which in both cases appeared independent of a simple tubulin sequestering mechanism. However, the NH(2)- and COOH-terminal-truncated Op18 mutants regulate MTs by distinct mechanisms as evidenced by morphological analysis of microinjected newt lung cells. Hence, mutant analysis shows that Op18 has the potential to regulate tubulin/MTs by more than one specific mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号