首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Bacterial numbers and activities (as estimated by glucose uptake and total thymidine incorporation) were investigated at two sites in Long Island, New York aquifer sediments. In general, bacterial activities were higher in shallow (1.5–4.5 m below the water table or BWT), oxic sediments than in deep (10–18 m BWT), anoxic sediments. The average total glucose uptake rates were 0.18 ± 0.10 ng gdw–1 h–1 in shallow sediments and 0.09 ± 0.11 ng gdw–1 h–1 in deep sediments; total thymidine incorporation rates were 0.10 ± 0.13 pmol gdw–1 h–1 and 0.03 ± 0.03 pmol gdw–1 h–1 in shallow and deep sediments, respectively. Incorporation of glucose was highly efficient, as only about 10% of added label was recovered as CO2. Bacterial abundance (estimated from acridine orange direct counts) was 2.5 ± 2.0 × 107 cells gdw–1 and 2.0 ± 1.3 × 107 cells gdw–1 in shallow and deep sediments, respectively. These bacterial activity and abundance estimates are similar to values found in other aquifer environments, but are 10- to 1000-fold lower than values in soil or surface sediment of marine and estuarine systems. In general, cell specific microbial activities were lower in sites from Connetquot Park, a relatively pristine site, when compared to activities found in sites from Jamesport, which has had a history of aldicarb (a pesticide) contamination. To our knowledge, this is the first report of bacterial activity measurements in the shallow, sandy aquifers of Long Island, New York.Correspondence to: D.G. Capone  相似文献   

3.
An investigation of the terminal anaerobic processes occurring in polluted intertidal sediments indicated that terminal carbon flow was mainly mediated by sulfate-reducing organisms in sediments with high sulfate concentrations (>10 mM in the interstitial water) exposed to low loadings of nutrient (equivalent to <102 kg of N · day−1) and biochemical oxygen demand (<0.7 × 103 kg · day−1) in effluents from different pollution sources. However, in sediments exposed to high loadings of nutrient (>102 kg of N · day−1) and biochemical oxygen demand (>0.7 × 103 kg · day−1), methanogenesis was the major process in the mediation of terminal carbon flow, and sulfate concentrations were low (≤2 mM). The respiratory index [14CO2/(14CO2 + 14CH4)] for [2-14C]acetate catabolism, a measure of terminal carbon flow, was ≥0.96 for sediment with high sulfate, but in sediments with sulfate as little as 10 μM in the interstitial water, respiratory index values of ≤0.22 were obtained. In the latter sediment, methane production rates as high as 3 μmol · g−1 (dry weight) · h−1 were obtained, and there was a potential for active sulfate reduction.  相似文献   

4.
Muramic acid, a constituent of procaryotic cell walls, was assayed by high-pressure liquid chromatography in samples from several marine environments (water column, surface microlayer, and sediment) and a bacterial culture. It is used as a microbial biomass indicator. The method gave a good separation of muramic acid from interfering compounds with satisfactory reproducibility. A pseudomonad culture had a muramic acid content of 4.7 × 10−10 to 5.3 × 10−10 μg per cell during growth. In natural water samples, highly significant relationships were found between muramic acid concentrations and bacterial numbers for populations of 108 to 1011 cells per liter. The muramic acid content in natural marine water decreased from 5.3 × 10−10 to 1.6 × 10−10 μg per cell with increasing depth. In coastal sediments exposed to sewage pollution, concentrations of muramic acid, ATP, organic carbon, and total amino acids displayed a parallel decrease with increasing distance from the sewage outlet. Advantages of muramic acid measurement by high-pressure liquid chromatography are its high sensitivity and reduction of preparation steps, allowing a short time analysis.  相似文献   

5.
The deep anoxic shelf of the northwestern Black Sea has numerous gas seeps, which are populated by methanotrophic microbial mats in and above the seafloor. Above the seafloor, the mats can form tall reef-like structures composed of porous carbonate and microbial biomass. Here, we investigated the spatial patterns of CH4 and CO2 assimilation in relation to the distribution of ANME groups and their associated bacteria in mat samples obtained from the surface of a large reef structure. A combination of different methods, including radiotracer incubation, beta microimaging, secondary ion mass spectrometry, and catalyzed reporter deposition fluorescence in situ hybridization, was applied to sections of mat obtained from the large reef structure to locate hot spots of methanotrophy and to identify the responsible microbial consortia. In addition, CO2 reduction to methane was investigated in the presence or absence of methane, sulfate, and hydrogen. The mat had an average δ13C carbon isotopic signature of −67.1‰, indicating that methane was the main carbon source. Regions dominated by ANME-1 had isotope signatures that were significantly heavier (−66.4‰ ± 3.9 ‰ [mean ± standard deviation; n = 7]) than those of the more central regions dominated by ANME-2 (−72.9‰ ± 2.2 ‰; n = 7). Incorporation of 14C from radiolabeled CH4 or CO2 revealed one hot spot for methanotrophy and CO2 fixation close to the surface of the mat and a low assimilation efficiency (1 to 2% of methane oxidized). Replicate incubations of the mat with 14CH4 or 14CO2 revealed that there was interconversion of CH4 and CO2. The level of CO2 reduction was about 10% of the level of anaerobic oxidation of methane. However, since considerable methane formation was observed only in the presence of methane and sulfate, the process appeared to be a rereaction of anaerobic oxidation of methane rather than net methanogenesis.  相似文献   

6.
Microbial Methanogenesis and Acetate Metabolism in a Meromictic Lake   总被引:10,自引:8,他引:2       下载免费PDF全文
Methanogenesis and the anaerobic metabolism of acetate were examined in the sediment and water column of Knaack Lake, a small biogenic meromictic lake located in central Wisconsin. The lake was sharply stratified during the summer and was anaerobic below a depth of 3 m. Large concentrations (4,000 μmol/liter) of dissolved methane were detected in the bottom waters. A methane concentration maximum occurred at 4 m above the sediment. The production of 14CH4 from 14C-labeled HCOOH, HCO3, and CH3OH and [2-14C]acetate demonstrated microbial methanogenesis in the water column of the lake. The maximum rate of methanogenesis calculated from reduction of H14CO3 by endogenous electron donors in the surface sediment (depth, 22 m) was 7.6 nmol/h per 10 ml and in the water column (depth, 21 m) was 0.6 nmol/h per 10 ml. The methyl group of acetate was simultaneously metabolized to CH4 and CO2 in the anaerobic portions of the lake. Acetate oxidation was greatest in surface waters and decreased with water depth. Acetate was metabolized primarily to methane in the sediments and water immediately above the sediment. Sulfide inhibition studies and temperature activity profiles demonstrated that acetate metabolism was performed by several microbial populations. Sulfide additions (less than 5 μg/ml) to water from 21.5 m stimulated methanogenesis from acetate, but inhibited CO2 production. Sulfate addition (1 mM) had no significant effect on acetate metabolism in water from 21.5 m, whereas nitrate additions (10 to 14,000 μg/liter) completely inhibited methanogenesis and stimulated CO2 formation.  相似文献   

7.
To facilitate predictions of the transport and fate of contaminants at future coal conversion facilities, rates of microbial transformation of polycyclic aromatic hydrocarbons were measured in stream water and sediment samples collected in the vicinity of a coal-coking treated wastewater discharge from November 1977 through August 1979. Six radiolabeled polycyclic aromatic hydrocarbons were incubated with sediment and water samples; 14CO2, cell-bound 14C, and polar transformation products were isolated and quantified. Whereas 14CO2 and bound 14C were major transformation products in sediment assays, soluble polar 14C dominated transformation in water samples. Mean rate constants (measured at 20°C) in sediments collected downstream from the effluent outfall were 7.8 × 10−2 h−1 (naphthalene), 1.6 × 10−2 h−1 (anthracene), and 3.3 × 10−3 h−1 [benz(a)anthracene], which corresponded to turnover times of 13, 62, and 300 h, respectively. No unequivocal evidence for transformation of benzo(a)pyrene or dibenz(a,h)anthracene was obtained. Only naphthalene and anthracene transformations were observed in water samples; rate constants were consistently 5- and 20-fold lower, respectively, than in the corresponding sediment samples. The measured rate constants for anthracene transformation in July 1978 sediment samples were not related to total heterotroph numbers. In late July 1978, the effluent was diverted from the primary study area; however, no differences were observed either in transformation rate constants or in the downstream/upstream sediment rate constant ratio. These results are consistent with the hypothesis that continuous inputs of polycyclic aromatic hydrocarbons result in an increased ability within a microbial community to utilize certain polycyclic aromatic hydrocarbons. However, because transformation rates remained elevated for more than 1 year after removal of the polycyclic aromatic hydrocarbon source, microbial communities may shift only slowly in response to changes in polycyclic aromatic hydrocarbon concentrations.  相似文献   

8.
Bacterioplankton productivity in Antarctic waters of the eastern South Pacific Ocean and Drake Passage was estimated by direct counts and frequency of dividing cells (FDC). Total bacterioplankton assemblages were enumerated by epifluorescent microscopy. The experimentally determined relationship between in situ FDC and the potential instantaneous growth rate constant (μ) is best described by the regression equation ln μ = 0.081 FDC − 3.73. In the eastern South Pacific Ocean, bacterioplankton abundance (2 × 105 to 3.5 × 105 cells per ml) and FDC (11%) were highest at the Polar Front (Antarctic Convergence). North of the Subantarctic Front, abundance and FDC were between 1 × 105 to 2 × 105 cells per ml and 3 to 5%, respectively, and were vertically homogeneous to a depth of 600 m. In Drake Passage, abundance (10 × 105 cells per ml) and FDC (16%) were highest in waters south of the Polar Front and near the sea ice. Subantarctic waters in Drake Passage contained 4 × 105 cells per ml with 4 to 5% FDC. Instantaneous growth rate constants ranged between 0.029 and 0.088 h−1. Using estimates of potential μ and measured standing stocks, we estimated productivity to range from 0.62 μg of C per liter · day in the eastern South Pacific Ocean to 17.1 μg of C per liter · day in the Drake Passage near the sea ice.  相似文献   

9.
Most probable numbers (MPNs) of methanogens in various salt marsh and estuarine sediments were determined with an anaerobic, habitat-simulating culture medium with 80% H2 plus 20% CO2 as substrate. Average MPNs for the short Spartina (SS) marsh sediments of Sapelo Island, Ga., were maximal at the 5- to 7-cm depth (1.2 × 107/g of dry sediment). Populations decreased to approximately 880/g of dry sediment at the 34- to 36-cm depth. There was no significant difference between summer and winter populations. In tall Spartina (TS) marsh sediments, average populations were maximal (1.2 × 106/g of dry sediment) in the upper 0- to 2-cm zone; populations from the 5- to 36-cm zones were similar (average of 9 × 104/g of dry sediment). Methanogenic populations for TS sediments of James Island Creek marsh, Charleston, S.C., were similar (average of 3 × 106/g of dry sediment) for all depths tested (0 to 22 cm), which was comparable to the trend observed for TS sediments at Sapelo Island, Ga. Sediment grab samples collected along a transect of James Island Creek and its adjacent Spartina marsh had MPNs that were approximately 20 times greater for the region of Spartina growth (average of 106/g of dry sediment) compared with the channel (approximately 5 × 104 methanogens per g of dry sediment). A similar trend was found at Pawley's Island marsh, S.C., but populations were approximately one order of magnitude lower. In vitro rates of methanogenesis with SS sediments incubated under 80% H2-20% CO2 showed that the 5- to 7-cm region exhibited maximal activity (51 nmol of CH4 g−1 h−1), which was greater than rates for sediments above and below this depth. SS sediment samples (5 to 7 cm) incubated under 100% N2 and supplemented with formate exhibited rates of methanogenesis similar to those generated by samples under 80% H2-20% CO2. Replacing the N2 atmosphere with H2 resulted in an eightfold decrease in the rate of methanogenesis. In vitro methanogenic activity by TS salt marsh sediments, incubated under 80% H2-20% CO2, was similar for all depths tested (0 to 22 cm). TS sediment samples (0 to 7 cm) supplemented with formate and incubated under 100% N2 had greater rates of methanogenesis compared with unsupplemented samples.  相似文献   

10.
Ucides cordatus is an abundant mangrove crab in Brazil constructing burrows of up to 2 m depth. Sediment around burrows may oxidize during low tides. This increase in sediment-air contact area may enhance carbon degradation processes. We hypothesized that 1) the sediment CO2 efflux rate is greater with burrows than without and 2) the reduction potential in radial profiles in the sediment surrounding the burrows decreases gradually, until approximating non-bioturbated conditions. Sampling was conducted during the North Brazilian wet season at neap tides. CO2 efflux rates of inhabited burrows and plain sediment were measured with a CO2/H2O gas analyzer connected to a respiration chamber. Sediment redox potential, pH and temperature were measured in the sediment surrounding the burrows at horizontal distances of 2, 5, 8 and 15 cm at four sediment depths (1, 10, 30 and 50 cm) and rH values were calculated. Sediment cores (50 cm length) were taken to measure the same parameters for plain sediment. CO2 efflux rates of plain sediment and individual crab burrows with entrance diameters of 7 cm were 0.7–1.3 µmol m−2 s−1 and 0.2–0.4 µmol burrows−1 s−1, respectively. CO2 released from a Rhizophora mangle dominated forest with an average of 1.7 U. cordatus burrows−1 m−2 yielded 1.0–1.7 µmol m−2 s−1, depending on the month and burrow entrance diameter. Laboratory experiments revealed that 20–60% of the CO2 released by burrows originated from crab respiration. Temporal changes in the reduction potential in the sediment surrounding the burrows did not influence the CO2 release from burrows. More oxidized conditions of plain sediment over time may explain the increase in CO2 release until the end of the wet season. CO2 released by U. cordatus and their burrows may be a significant pathway of CO2 export from mangrove sediments and should be considered in mangrove carbon budget estimates.  相似文献   

11.
Free-living and surface-associated microbial communities in sand-packed columns perfused with groundwater were compared by examination of compositional and functional characteristics. The composition of the microbial communities was assessed by bulk DNA extraction, PCR amplification of 16S ribosomal DNA fragments, separation of these fragments by denaturing gradient gel electrophoresis, and sequence analysis. Community function was assessed by measurement of β-glucosidase and aminopeptidase extracellular enzyme activities. Free-living populations in the aqueous phase exhibited a greater diversity of phylotypes than populations associated with the solid phase. The attached bacterial community displayed significantly greater β-glucosidase and aminopeptidase enzyme activities per volume of porous medium than those of the free-living community. On a per-cell basis, the attached community had a significantly higher cell-specific aminopeptidase enzyme activity (1.07 × 10−7 nmol cell−1 h−1) than the free-living community (5.02 × 10−8 nmol cell−1 h−1). Conversely, the free-living community had a significantly higher cell-specific β-glucosidase activity (1.92 × 10−6 nmol cell−1 h−1) than the surface-associated community (6.08 × 10−7 nmol cell−1 h−1). The compositional and functional differences observed between these two communities may reflect different roles for these distinct but interacting communities in the decomposition of natural organic matter or biodegradation of xenobiotics in aquifers.  相似文献   

12.
Pure cultures of the marine ammonium-oxidizing bacterium Nitrosomonas sp. were grown in the laboratory at oxygen partial pressures between 0.005 and 0.2 atm (0.18 to 7 mg/liter). Low oxygen conditions induced a marked decrease in the rate for production of NO2-, from 3.6 × 10−10 to 0.5 × 10−10 mmol of NO2- per cell per day. In contrast, evolution of N2O increased from 1 × 10−12 to 4.3 × 10−12 mmol of N per cell per day. The yield of N2O relative to NO2- increased from 0.3% to nearly 10% (moles of N in N2O per mole of NO2-) as the oxygen level was reduced, although bacterial growth rates changed by less than 30%. Nitrifying bacteria from the genera Nitrosomonas, Nitrosolobus, Nitrosospira, and Nitrosococcus exhibited similar yields of N2O at atmospheric oxygen levels. Nitrite-oxidizing bacteria (Nitrobacter sp.) and the dinoflagellate Exuviaella sp. did not produce detectable quantities of N2O during growth. The results support the view that nitrification is an important source of N2O in the environment.  相似文献   

13.
Effects of extremely high carbon dioxide (CO2) concentrations on soil microbial communities and associated processes are largely unknown. We studied a wetland area affected by spots of subcrustal CO2 degassing (mofettes) with focus on anaerobic autotrophic methanogenesis and acetogenesis because the pore gas phase was largely hypoxic. Compared with a reference soil, the mofette was more acidic (ΔpH ∼0.8), strongly enriched in organic carbon (up to 10 times), and exhibited lower prokaryotic diversity. It was dominated by methanogens and subdivision 1 Acidobacteria, which likely thrived under stable hypoxia and acidic pH. Anoxic incubations revealed enhanced formation of acetate and methane (CH4) from hydrogen (H2) and CO2 consistent with elevated CH4 and acetate levels in the mofette soil. 13CO2 mofette soil incubations showed high label incorporations with ∼512 ng 13C g (dry weight (dw)) soil−1 d−1 into the bulk soil and up to 10.7 ng 13C g (dw) soil−1 d−1 into almost all analyzed bacterial lipids. Incorporation of CO2-derived carbon into archaeal lipids was much lower and restricted to the first 10 cm of the soil. DNA-SIP analysis revealed that acidophilic methanogens affiliated with Methanoregulaceae and hitherto unknown acetogens appeared to be involved in the chemolithoautotrophic utilization of 13CO2. Subdivision 1 Acidobacteriaceae assimilated 13CO2 likely via anaplerotic reactions because Acidobacteriaceae are not known to harbor enzymatic pathways for autotrophic CO2 assimilation. We conclude that CO2-induced geochemical changes promoted anaerobic and acidophilic organisms and altered carbon turnover in affected soils.  相似文献   

14.
Janes BE 《Plant physiology》1970,45(1):95-103
The rate of transpiration, temperature of the leaves, and relative water content of leaves of pepper plants were measured in a small chamber in which the temperature, relative humidity, and carbon dioxide concentration of recirculated air were controlled and measured. The data reported were obtained by noting the response of pepper plants to all combinations of the following treatments: high light, 1.5 × 106 ergs per square centimeter per second; low light, 3.0 × 104 ergs per square centimeter per second; three levels of CO2: 50, 268, and 730 parts per million; nutrient solution osmotic potentials of −0.5, −5.0, −7.5, and −9.5 bars.  相似文献   

15.
A perfusion method for assaying nitrogenase activity (acetylene reduction) in marine sediments was developed. The method was used to assay sediment cores from Spartina alterniflora (salt marsh), Zostera marina (sea grass), and Thalassia testudinum (sea grass) communities, and the results were compared with those of conventional sealed-flask assays. Rates of ethylene production increased progressively with time in the perfusion assays, reaching plateau values of 2 to 3 nmol · g of dry sediment−1 · h−1 by 10 to 20 h. Depletion of interstitial NH4+ was implicated in this stimulation of nitrogenase activity. Initial acetylene reduction rates determined by the perfusion assay of cores from the Spartina community ranged from 0.15 to 0.60 nmol of C2H4 · g of dry sediment−1 · h−1. These rates were similar to those for sediments assayed in sealed flasks without seawater when determined over linear periods of C2H4 production. Initial values obtained by using the perfusion method were 0.66 nmol of C2H4 · g of dry sediment−1 · h−1 for sediments from Zostera communities and 0.70 nmol of C2H4 · g of dry sediment−1 · h−1 for sediments from Thalassia communities. In all cases, rates determined by simultaneous slurry assays were lower than those determined by the perfusion method.  相似文献   

16.
Anaerobic ammonium oxidation (anammox) and nitrite-dependent anaerobic methane oxidation (n-damo) are two of the most recent discoveries in the microbial nitrogen cycle. In the present study, we provide direct evidence for the cooccurrence of the anammox and n-damo processes in a flooded paddy field in southeastern China. Stable isotope experiments showed that the potential anammox rates ranged from 5.6 to 22.7 nmol N2 g−1 (dry weight) day−1 and the potential n-damo rates varied from 0.2 to 2.1 nmol CO2 g−1 (dry weight) day−1 in different layers of soil cores. Quantitative PCR showed that the abundance of anammox bacteria ranged from 1.0 × 105 to 2.0 × 106 copies g−1 (dry weight) in different layers of soil cores and the abundance of n-damo bacteria varied from 3.8 × 105 to 6.1 × 106 copies g−1 (dry weight). Phylogenetic analyses of the recovered 16S rRNA gene sequences showed that anammox bacteria affiliated with “Candidatus Brocadia” and “Candidatus Kuenenia” and n-damo bacteria related to “Candidatus Methylomirabilis oxyfera” were present in the soil cores. It is estimated that a total loss of 50.7 g N m−2 per year could be linked to the anammox process, which is at intermediate levels for the nitrogen flux ranges of aerobic ammonium oxidation and denitrification reported in wetland soils. In addition, it is estimated that a total of 0.14 g CH4 m−2 per year could be oxidized via the n-damo process, while this rate is at the lower end of the aerobic methane oxidation rates reported in wetland soils.  相似文献   

17.
The second-order rate constants for the microbial transformation of a series of phenols were correlated with the physicochemical properties of the phenols. The compounds studied were phenol, p-methylphenol, p-chlorophenol, p-bromophenol, p-cyanophenol, p-nitrophenol, p-acetylphenol, and p-methoxyphenol. Phenol-grown cells of Pseudomonas putida U transformed these compounds. Microbial transformation rate constants ranged from (1.5 ± 0.99) × 10−14 liter · organism−1 · h−1 for p-cyanophenol to (7.0 ± 1.3) × 10−12 liter · organism−1 · h−1 for phenol. Linear regression analyses of rate constants and electronic, steric, and hydrophobic parameters showed that van der Waal's radii gave the best coefficient of determination (r2 = 0.956). Products identified by thin-layer chromatography and liquid chromatography indicated that the phenols were microbially oxidized to the corresponding catechols.  相似文献   

18.
Diel nitrogen fixation studies were conducted with assemblages of cyanobacteria sampled from surface blooms on Sanctuary Lake, Pa. The studies were conducted between July and September of 1982 to 1985 by using the acetylene reduction technique. Assemblages with the lowest cell concentrations (0.9 × 109 to 1.0 × 109 cells per liter) exhibited nitrogen fixation activity throughout the day, with maximum fixation rates occurring in mid to late afternoon; fixation proceeded throughout the night at rates equivalent to 23 to 28% of the afternoon maximum. In studies conducted with the highest cell concentrations (3.7 × 109 to 6.7 × 109 cells per liter), fixation rates reached maximum values in mid to late morning. The rates declined rapidly throughout the midday period and subsequently ceased from late afternoon until sunrise on the following day. The afternoon decline and cessation of fixation exhibited by high cell concentrations correlated with photosynthetically induced low total CO2 and supersaturating O2 concentrations. The midday decline could be prevented and partially reversed by experimentally lowering O2 and increasing total CO2 concentrations. Under experimental conditions which simultaneously prevented supersaturating O2 concentrations and maintained high total CO2 availability, nitrogen fixation continued throughout the solar day, with maximum rates occurring at midday. These observations indicate that temporal changes in photosynthetic activity may affect diel fluctuations in nitrogen fixation.  相似文献   

19.
Measurement of ethylene binding in plant tissue   总被引:11,自引:7,他引:4       下载免费PDF全文
Sisler EC 《Plant physiology》1979,64(4):538-542
Tobacco leaves were exposed to 14C-labeled ethylene (3.7 × 10−2 microliters per liter) in the presence and absence of unlabeled ethylene and other compounds. Most of the [14C]ethylene appears to be bound to displaceable sites. Lineweaver-Burk plots for a one-half maximum response in a tobacco leaf respiration test gave a value of 0.3 microliter per liter for ethylene, 50 microliters per liter for propylene, and 266 microliters per liter for carbon monoxide. Scatchard plots for displacement of [14C]ethylene from the site gave 0.27 microliters per liter for ethylene, 42 microliters per liter for propylene, and 746 microliters per liter for carbon monoxide. At 2%, CO2 displaces about 35% of the bound ethylene, but increasing the concentration to 10% does not displace the remaining [14C]ethylene. A value of 3.5 nanomolar was calculated for the concentration of ethylene-binding sites available to exogenous ethylene. This does not account for the sites occupied by endogenous ethylene, and the total number of binding sites is probably somewhat higher. Using tissue culture material, the system was shown to be stable to freezing and thawing; and the π-acceptors, carbon monoxide, cyanide, n-butyl isocyanide, phosphorous trifluoride, and tetrafluoroethylene, were shown to compete with ethylene for binding.  相似文献   

20.
Degradation of dimethyl sulfide and methanethiol in slurries prepared from sediments of minerotrophic peatland ditches were studied under various conditions. Maximal aerobic dimethyl sulfide-degrading capacities (4.95 nmol per ml of sediment slurry · h−1), measured in bottles shaken under an air atmosphere, were 10-fold higher than the maximal anaerobic degrading capacities determined from bottles shaken under N2 or H2 atmosphere (0.37 and 0.32 nmol per ml of sediment slurry · h−1, respectively). Incubations under experimental conditions which mimic the in situ conditions (i.e., not shaken and with an air headspace), however, revealed that aerobic degradation of dimethyl sulfide and methanethiol in freshwater sediments is low due to oxygen limitation. Inhibition studies with bromoethanesulfonic acid and sodium tungstate demonstrated that the degradation of dimethyl sulfide and methanethiol in these incubations originated mainly from methanogenic activity. Prolonged incubation under a H2 atmosphere resulted in lower dimethyl sulfide degradation rates. Kinetic analysis of the data resulted in apparent Km values (6 to 8 μM) for aerobic dimethyl sulfide degradation which are comparable to those reported for Thiobacillus spp., Hyphomicrobium spp., and other methylotrophs. Apparent Km values determined for anaerobic degradation of dimethyl sulfide (3 to 8 μM) were of the same order of magnitude. The low apparent Km values obtained explain the low dimethyl sulfide and methanethiol concentrations in freshwater sediments that we reported previously. Our observations point to methanogenesis as the major mechanism of dimethyl sulfide and methanethiol consumption in freshwater sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号