首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of pH on the binding of apotransferrin and diferric transferrin to reticulocyte membrane receptors was investigated using rabbit transferrin and rabbit reticulocyte ghosts, intact cells and a detergent-solubilized extract of reticulocyte membranes. The studies were performed within the pH range 4.5–8.0. The binding of apotransferrin to ghosts and membrane extracts and its uptake by intact reticulocytes was high at pH levels below 6.5 but decreased to very low values as the pH was raised above 6.5. By contrast, diferric transferrin showed a high level of binding and uptake between pH 7.0 and 8.0 in addition to binding only slightly less than did apotransferrin at pH values below 6.5. It is proposed that the high affinity of apotransferrin for its receptor at lower pH values and low affinity at pH 7.0 or above allow transferrin to remain bound to the receptor when it is within acidic intracellular vesicles, even after loss of its iron, but also allow ready release from the cell membrane when it is exteriorized by exocytosis after iron uptake. The binding of transferrin to the receptor throughout the endocytosis-exocytosis cycle may protect it from proteolytic breakdown and aid in its recycling to the outer cell membrane  相似文献   

2.
In this paper, we provide evidence for an incompletely glycosylated transferrin receptor (TfR) which is not transported to the plasma membrane in the sheep reticulocyte. Cleveland peptide maps of the native (preexisting) TfR and [35S]methionine-labeled TfR were different. If the receptors were deglycosylated before mapping, the peptides were identical. There was preferential binding of the [35S]TfR to Con A-Sepharose, indicating the existence of a higher density of high mannose chains on the 35S-labeled TfR. Moreover, when total [3H]mannose-labeled glycopeptides from reticulocytes were separated on a column of Bio-Gel P6, the [3H]mannose was associated with endoglycosidase H-sensitive high mannose or hybrid oligosaccharides, but not with complex sugars. After Percoll density gradient centrifugation, the [35S]TfR peaked in a fraction which separated from the bulk of the native TfR. The transmembrane glycoproteins, Band 3 and mature glycophorins, are not synthesized in the sheep reticulocyte. It appears that the reticulocyte, at this stage of red cell development, has lost the vesicles and/or proteins which are required to transport proteins from the site of translation to the cell surface.  相似文献   

3.
The transferrin receptor of sheep reticulocytes is released in vesicular form during in vitro incubation of the reticulocytes. A polyclonal antibody against the transferrin receptor slows down the release of the vesicles bearing the receptor, whereas transferrin and calf serum accelerate vesicle release. Vesicle formation and receptor release are inhibited at low temperatures and by the presence of inhibitors of ATP formation. In addition, lysosomotropic agents or transglutaminase inhibitors block receptor externalization. The externalized receptor has the same molecular size and peptide map as the receptor isolated from the membrane, suggesting that an intact receptor is removed and released from the cell. An unidentified peptide of 70 kDa is externalized with the transferrin receptor. Peptide maps show that the 70-kDa species is not a degradation product of the receptor. No function has yet been assigned to the 70-kDa peptide.  相似文献   

4.
We have assessed whether exosome formation is a significant route for loss of plasma membrane functions during sheep reticulocyte maturation in vitro. Although the recovery of transferrin binding activity in exosomes is at best approximately 25-30% of the lost activity, recoveries of over 50% of the lost receptor can be obtained if 125I-labelled transferrin receptor is measured using an that receptor instability may contribute to the less than quantitative recovery of the transferrin receptor. Significantly higher (75-80%) levels of the nucleoside transporter can be recovered in exosomes during red cell maturation using 3H-nitrobenzylthioinosine binding to measure the nucleoside transporter. These data suggest that exosome formation is a major route for removal of plasma membrane proteins during reticulocyte maturation and plasma membrane remodelling. We have also shown that both in vivo and in vitro, embryonic chicken reticulocytes form exosomes which contain the transferrin receptor. Thus, exosome formation is not restricted to mammalian red cells, but also occurs in red cells, which retain organelles, such as nuclei and mitochondria, into the mature red cell stage.  相似文献   

5.
Endocytosis and intracellular processing of transferrin (Tf) and Tf receptors were examined in rat reticulocytes. Subcellular fractionation revealed that Tf enters a non-lysosomal endocytic compartment with a density between those of plasma membrane and lysosomes. After 20 min of uptake at (37 degrees C) 35 to 40% of cell-associated Tf was contained in this intermediate-density compartment. To test the fidelity of colloidal gold-Tf (AuTf) as a probe for Tf processing, reticulocytes were fractionated after uptake of 131I-Tf and 125I-AuTf. The subcellular distributions of the two ligands were indistinguishable by this method, a result suggesting that AuTf is processed similarly to Tf. Electron microscopy revealed that AuTf entered multivesicular endosomes (MVEs) as well as various small vesicles and tubular structures. In addition MVE exocytosis was observed with discharge of inclusion vesicles and associated AuTf. AuTf was bound to the outside of these vesicles both before and after exocytosis. These data suggest that Tf receptors are shed from developing reticulocytes by incorporation into the limiting membrane of inclusion vesicles, followed by discharge of these vesicles by MVE exocytosis. As further evidence of this process, we isolated inclusion vesicles after their discharge and found them to contain Tf receptors. Moreover, the rate of Tf receptor shedding by inclusion vesicle discharge matches Tf receptor loss rates closely enough to suggest that this is the primary path of receptor loss during reticulocyte development.  相似文献   

6.
The fate of the transferrin receptor during in vitro maturation of sheep reticulocytes has been followed using FITC- and 125l-labeled anti-transferrin-receptor antibodies. Vesicles containing peptides that comigrate with the transferrin receptor on polyacrylamide gels are released during incubation of sheep reticulocytes, tagged with anti-transferrin-receptor anti-bodies. Vesicle formation does not require the presence of the anti-transferrin-receptor antibodies. Using 125l-surface-labeled reticulocytes, it can be shown that the 125l-labeled material which is released is retained by an immunoaffinity column of the anti-transferrin-receptor antibody. Using reticulocytes tagged with 125l-labeled anti-transferrin-receptor antibodies to follow the formation of vesicles, it can be shown that at 0°C or in phosphate-buffered saline the rate of vesicle release is less than that at 37°C in culture medium. There is selective externalization of the antibody-receptor complex since few other membrane proteins are found in the externalized vesicles. The anti-transferrin-receptor antibodies cause redistribution of the receptor into patches that do not appear to be required for vesicle formation.  相似文献   

7.
Dimethylsulfoxide (DMSO) induces hemoglobin synthesis and erythroid differentiation of Friend erythroleukemia cells in vitro. Induction is accompanied by increased transferrin-binding activity which is necessary for the cellular acquisition of iron from transferrin for hemoglobin synthesis. There are Friend cell variants in which hemoglobin synthesis is not induced by DMSO unless exogenous hemin is also present. In this study we have compared the inducibility of transferrin receptors and iron incorporation in DMSO-inducible (745) and -uninducible (M-18 and TG-13) Friend cell lines. Cellular transferrin-binding sites were estimated by Scatchard analysis of data obtained from specific binding of [125I]transferrin by the cells. Our results show that unlike 745, DMSO treatment of the variant cell lines M-18 and TG-13 does not result in increased transferrin-binding activity. The number of transferrin-binding sites and the rate of iron uptake is similar in uninduced 745 and DMSO-treated M-18 and TG-13 cells. Although exposure of M-18 cells to DMSO and hemin induces hemoglobinization, this treatment does not cause induction of transferrin receptors. These results indicate that the primary defect in M-18 cells may be the uninducibility of transferrin receptors. We have also shown that exposure of 745 cells to hemin during DMSO treatment prevents the induction of transferrin receptors, suggesting that hemin may control the expression of transferrin receptors in erythroid cells.  相似文献   

8.
Sheep reticulocytes from phlebotomized animals have a total transferrin binding potential that may exceed by an order of magnitude the surface binding capacity. Steady state uptake of transferrin at 37 degrees C is generally less than 50% of the total transferrin binding capacity. During long-term incubation of the reticulocytes, all transferrin binding ability is lost, the ability to internalize being lost most rapidly. The loss in ability to bind transferrin during long-term incubation is independent of the number of surface transferrin binding sites, since removal of surface receptors with pronase does not affect the rate of loss of the internal pool of receptors during long-term incubation. Moreover, after removing surface receptors with pronase, only a fraction of the original number of receptors is restored to the surface, despite the presence of a large pool of internal receptors. These data suggest that only a fraction of the internal pool of receptors is capable of recycling to the cell surface in sheep reticulocytes.  相似文献   

9.
Specific and tight binding of Fe(III) by transferrin does not occur unless a suitable anion is concomitantly bound. Bicarbonate, which normally occupies the anion binding site of the protein, may be replaced by an oxalate ion. The resulting ternary complex of Fe(III), transferrin and oxalate is less than 35% as effective as the bicarbonate complex in serving as an iron donor for heme synthesis by the reticulocyte. However, the binding of transferrin to the reticulocyte is not altered by the substitution of oxalate for bicarbonate. When both the oxalate and bicarbonate forms are incubated with reticulocytes, the uptake of iron from the bicarbonate complex is substantially depressed. The free oxalate ion, at the same concentration as the ternary Fe-transferrin-oxalate complex, does not alter the uptake of iron by reticulocytes from the native form of transferrin. The ternary Fe-transferrin-malonate complex is also less efficient than the bicarbonate complex as an iron donor to the reticulocyte, but the effect is less striking than that observed with the oxalate complex. The hypothesis is advanced that the mechanism of iron uptake from transferrin during the transferrin-reticulocyte interaction first entails an attack upon the anion bound to the protein, following which iron release to the heme-synthesizing apparatus of the cell takes place.  相似文献   

10.
At 4 degrees C transferrin bound to receptors on the reticulocyte plasma membrane, and at 37 degrees C receptor-mediated endocytosis of transferrin occurred. Uptake at 37 degrees C exceeded binding at 4 degrees C by 2.5-fold and saturated after 20-30 min. During uptake at 37 degrees C, bound transferrin was internalized into a trypsin- resistant space. Trypsinization at 4 degrees C destroyed surface receptors, but with subsequent incubation at 37 degrees C, surface receptors rapidly appeared (albeit in reduced numbers), and uptake occurred at a decreased level. After endocytosis, transferrin was released, apparently intact, into the extracellular space. At 37 degrees C colloidal gold-transferrin (AuTf) clustered in coated pits and then appeared inside various intracellular membrane-bounded compartments. Small vesicles and tubules were labeled after short (5-10 min) incubations at 37 degrees C. Larger multivesicular endosomes became heavily labeled after longer (20-35 min) incubations. Multivesicular endosomes apparently fused with the plasma membrane and released their contents by exocytosis. None of these organelles appeared to be lysosomal in nature, and 98% of intracellular AuTf was localized in acid phosphatase-negative compartments. AuTf, like transferrin, was released with subsequent incubation at 37 degrees C. Freeze-dried and freeze-fractured reticulocytes confirmed the distribution of AuTf in reticulocytes and revealed the presence of clathrin-coated patches amidst the spectrin coating the inner surface of the plasma membrane. These data suggest that transferrin is internalized via coated pits and vesicles and demonstrate that transferrin and its receptor are recycled back to the plasma membrane after endocytosis.  相似文献   

11.
Experiments were performed to examine the fate of transferrin receptors in reticulocytes as these cells mature in vivo to erythrocytes. Reticulocytosis, synchronized by administration of actinomycin D, was induced in adult rabbits. Simultaneous measurements were made of haematological parameters and the interaction between transferrin and reticulocytes while the cells matured in vivo to erythrocytes. As the reticulocytes matured there was a parallel decline in their ability to take up transferrin and transferrin iron. At the same time, there was a proportionate decrease in the density of receptors for transferrin on the reticulocyte surface. The affinity of the receptors for transferrin remained unaltered during the maturation process. It was concluded that the inability of erythrocytes to take up transferrin or its iron is due primarily to the loss of transferrin receptors from the maturing reticulocyte surface.  相似文献   

12.
Transferrin receptors during rabbit reticulocyte maturation.   总被引:1,自引:0,他引:1  
Experiments were performed to examine the fate of transferrin receptors in reticulocytes as these cells mature in vivo to erythrocytes. Reticulocytosis, synchronized by administration of actinomycin D, was induced in adult rabbits. Simultaneous measurements were made of haematological parameters and the interaction between transferrin and reticulocytes while the cells matured in vivo to erythrocytes. As the reticulocytes matured there was a parallel decline in their ability to take up transferrin and transferrin iron. At the same time, there was a proportionate decrease in the density of receptors for transferrin on the reticulocyte surface. The affinity of the receptors for transferrin remained unaltered during the maturation process. It was concluded that the inability of erythrocytes to take up transferrin or its iron is due primarily to the loss of transferrin receptors from the maturing reticulocyte surface.  相似文献   

13.
14.
Incubation of reticulocytes with EDTA, EGTA (ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid) and BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid), but not with desferrioxamine B, at temperatures above 20 degrees C resulted in the loss of their ability to take up iron in a temperature-, time- and concentration-dependent manner. No inhibition of transferrin or iron uptake occurred if the incubations were performed at 20 degrees C or below. At higher temperatures, the inhibition was attributable to loss of functional transferrin receptors, not to altered affinity or endocytosis of the remaining receptors. The changes could not be reversed by washing the cells and reincubation in the presence of Ca2+, Mg2+ or Zn2+. However, they could be completely prevented by performing the initial incubation with chelators in the presence of diferric transferrin and partly prevented by the use of apotransferrin. Incubation with the chelators resulted in much less reduction in the ability of the cells to bind anti-transferrin receptor immunoglobulin than transferrin. The fate of the receptor was studied by polyacrylamide gel electrophoresis of reticulocyte membrane proteins before and after extraction with Triton X-100, and by immunological staining of Western blots for the transferrin receptor. Treatment of the cells with EDTA led to a loss of the ability of Triton X-100 to solubilize the receptor and its retention in the Triton-insoluble cytoskeletal matrix of the cells. It is concluded that incubation of reticulocytes with the chelators at temperatures above 20 degrees C causes an altered interaction of the transferrin receptor with the cytoskeleton. This change, which is probably due to chelation of Ca2+ in the cell membrane, is accompanied by an irreversible loss of the receptor's ability to bind transferrin.  相似文献   

15.
1. A further characterization and localization of the membrane receptor for transferrin on rat reticulocytes is described. PAGE studies with a purified membrane complex B2, from which the functional role in transferrin binding and iron uptake has been shown previously, showed that the transferrin receptor is localized on a membrane protein with a mol. wt of approximately 70-80.10(3). 2. Selective solubilization of the rat reticulocyte membrane has shown that this receptor protein belongs to one of the minor integral membrane polypeptides, embedded in the lipid bilayer of the membrane. 3. Proteolipid complexes, glycolipids and sialoglycoproteins of the rat reticulocyte membrane play no direct role in the binding capacity of the receptor.  相似文献   

16.
These studies assessed the fate and localization of incoming iron in 6-8-day rat reticulocytes during inhibition of heme synthesis by succinylacetone. Succinylacetone inhibition of heme synthesis increased iron uptake by increasing the rate of receptor recycling without affecting receptor KD for transferrin, transferrin uptake, or total receptor number. Its net effect was to amplify the number of surface transferrin receptors by recruitment of receptors from an intracellular pool. Despite increased iron influx in inhibited cells, only 2-4% of total incoming iron was diverted into ferritin. The majority of incoming iron (65-80%) in succinylacetone-inhibited cells was recovered in the stroma, where ultrastructural and enzymic analyses revealed it to be accumulated mainly in mitochondria. Intramitochondrial iron (70-75%) was localized mainly in the inner membrane fraction. Removal of succinylacetone restored heme synthesis, utilizing iron accumulated within mitochondria for its support. Thus, inhibition of heme synthesis in rat reticulocytes results in accumulation of incoming iron in a functional mobile intramitochondrial precursor iron pool used directly for heme synthesis. Under normal conditions, there is no significant intracellular or intramitochondrial iron pool in reticulocytes, which are therefore dependent upon continuous delivery of transferrin-bound iron to maintain heme synthesis. Ferritin plays an insignificant role in iron metabolism of reticulocytes.  相似文献   

17.
Insulin stimulates the accumulation of iron by isolated fat cells by increasing the uptake of diferric transferrin. Analysis of the cell-surface binding of diferric 125I-transferrin indicated that insulin caused a 3-fold increase in the cell surface number of transferrin receptors. This result was confirmed by the demonstration that insulin increases the binding of an anti-rat transferrin receptor monoclonal antibody (OX-26) to the surface of fat cells. The basis of this effect of insulin was examined by investigating the number of transferrin receptors in membrane fractions isolated from disrupted fat cells. Two methods were employed. First the binding isotherm of diferric 125I-transferrin to the isolated membranes was studied. Second, the membranes were solubilized with detergent, and the number of transferrin receptors was measured by immunoblotting using the monoclonal antibody OX-26. It was observed that insulin treatment of intact fat cells resulted in an increase in the number of transferrin receptors located in the isolated plasma membrane fraction of the disrupted fat cells. Furthermore, the increase in the number of plasma membrane transferrin receptors was associated with a concomitant decrease in the transferrin receptor number in a low density microsome fraction previously shown to consist of intracellular membranes. This redistribution of transferrin receptors between cellular membrane fractions in response to insulin is remarkably similar to the regulation by insulin of glucose transporters and type II insulin-like growth factor receptors. We conclude that insulin stimulates fat cell iron uptake by a mechanism that may involve the redistribution of transferrin receptors from an internal membrane compartment (low density microsomes) to the cell surface (plasma membrane).  相似文献   

18.
Kinetic analysis of transferrin receptor properties in 6-8 day rat reticulocytes showed the existence of a single class of high-affinity receptors (Kd 3-10 nM), of which 20-25% were located at the cell surface and the remainder within an intracellular pool. Total transferrin receptor cycling time was 3.9 min. These studies examined the effects of various inhibitors on receptor-mediated transferrin iron delivery in order to define critical steps and events necessary to maintain the functional integrity of the pathway. Dansylcadaverine inhibited iron uptake by blocking exocytic release of transferrin and return of receptors to the cell surface, but did not affect transferrin endocytosis; this action served to deplete the surface pool of transferrin receptors, leading to shutdown of iron uptake. Calmidazolium and other putative calmodulin antagonists exerted an identical action on iron uptake and receptor recycling. The inhibitory effects of these agents on receptor recycling were overcome by the timely addition of Ca2+/ionomycin. From correlative analyses of the effects of these and other inhibitors, it was concluded that: (1) dansylcadaverine and calmodulin antagonists inhibit iron uptake by suppression of receptor recycling and exocytic transferrin release, (2) protein kinase C, transglutaminase, protein synthesis and release of transferrin-bound iron are not necessary for the functional integrity of the iron delivery pathway, (3) exocytic transferrin release and concomitant receptor recycling in rat reticulocytes is dependent upon Ca2+/calmodulin, (4) dansylcadaverine, dimethyldansylcadaverine and calmidazolium act on iron uptake by interfering with calmodulin function, and (5) the endocytotic and exocytotic arms of the iron delivery pathway are under separate regulatory control.  相似文献   

19.
The intravesicular pH of intact rabbit reticulocytes was measured by two methods; one based on the intracellular:extracellular distribution of DMO (5, 5, dimethyl + oxazolidin-2,4-dione), methylamine, and chloroquine and the other by quantitative fluorescence microscopy of cell-bound transferrin. The latter method was also applied to nucleated erythroid cells from the fetal rat liver. A pH value of approximately 5.4 was obtained with both methods and in both types of cells. Treatment of the cells with lysosomotrophic agents, metabolic inhibitors, and ionophores elevated the intravesicular pH and inhibited iron uptake from transferrin. When varying concentrations of NH4Cl were used, a close correlation was observed between the inhibition of iron uptake and elevation of the intravesicular pH. At pH 5.4 iron release from rabbit iron-bicarbonate transferrin in vitro was much more rapid than from iron-oxalate transferrin. The bicarbonate complex donates its iron to rabbit reticulocytes approximately twice as quickly as the oxalate complex. It is concluded that the acidic conditions within the vesicles provide the mechanism for iron release from the transferrin molecule after its endocytosis and that the low vesicular pH is dependent on cellular metabolism.  相似文献   

20.
1. A comparative study was made of transferrin and iron uptake by rabbit, rat and human reticulocytes and chick embryo erythrocytes from rabbit, rat, human, chicken and porcine transferrins, human lactoferrin and chicken conalbumin. 2. Three methods were used, viz. direct and competitive uptake studies of transferrin and iron by the four species of cells, and competitive studies of transferrin binding by solubilized membrane receptors (rabbit reticulocytes only). 3. Methods were devised to analyse the data so as to obtain indices of relatedness or relative affinities of each type of heterologous transferrin in rates of iron uptake found with transferrin and cells from various species are largely due to variation in the affinity of cellular receptors for different transferrins. 5. It is concluded that the procedure used in this investigation allow the assessment of phylogenetic relationships and evolutionary trends obtained by structural studies of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号