首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
After saturating light illumination for 3 h the potential photochemical efficiency of photosystem Ⅱ (PSII) (FJF,, the ratio of variable to maximal fluorescence) decreased markedly and recovered basically to the level before saturating light illumination after dark recovery for 3 h in both soybean and wheat leaves, indicating that the decline in FJ/Fm is a reversible down-regulation. Also, the saturating light illumination led to significant decreases in the low temperature (77 K) chlorophyll fluorescence parameters F685 (chlorophyll a fluorescence peaked at 685 nm) and F685/F735 (F735, chlorophyll a fluorescence peaked at 735 nm) in soybean leaves but not in wheat leaves. Moreover, trypsin (a protease) treatment resulted in a remarkable decrease in the amounts of PsbS protein (a nuclear gene psbS-encoded 22 kDa protein) in the thylakoids from saturating light-illuminated (SI), but not in those from darkadapted (DT) and dark-recovered (DRT) soybean leaves. However, the treatment did not cause such a decrease in amounts of the PsbS protein in the thylakoids from saturating light-illuminated wheat leaves. These results support the conclusion that saturating light illumination induces a reversible dissociation of some light-harvesting complex Ⅱ (LHClI) from PSII reaction center complex in soybean leaf but not in wheat leaf.  相似文献   

2.
With a portable PAM-2000 fluorometer it was observed that responses of initial chlorophyll fluorescence Fo level to strong light were different in various plant species examined. When the photochemical efficiency of Photosystem II, Fv/Fm, declined, Fo increased significantly in leaves of some plants such as soybean and cotton, while Fo decreased remarkably in other plants such as wheat and barley. In order to explore the mechanism of the increase in Fo in soybean leaves, the change in D1 protein amount and effects of lincomycin and far-red light on these fluorescence parameters were observed by SDS–PAGE combined with gel scanning and chlorophyll fluorescence analysis. The following results were obtained. (1) The amount of inactive PS II reaction centers increased under strong light and decreased during subsequent dark recovery [Hong and Xu (1997) Chinese Sci Bull 42(8): 684–689]. (2) No net loss of D1 protein occurred after strong light treatment. (3) Lincomycin taken up through petioles following strong light treatment had no significant effect on D1 protein level and the decay of Fo in the dark. (4) Far-red light applied after strong light treatment could largely attenuate the increase in Fo and accelerate Fo decay in the dark. Based on these results, it is deduced that the increase in Fo under strong light is mainly due to reversible inactivation of part of PS II reaction centers, rather than the net loss of D1 protein and that reversible inactivation of PS II is prevalent in some plants.  相似文献   

3.
Using variable to maximum fluorescence (Fv/Fm) as the criterion, the down regulation of photosynthesis by high light stress was characterized in the detached leaves of Artabotrys hexapetatus. The decrease in Fv/Fm was corelated with the decrease in oxygen evolution by thylakoids isolated from high light exposed leaves. The decrease in Fv/Fm was linear with increasing time of exposure to high light. A comparison of recovery measured as Fv/Fm, in low light versus dark, revealed that the recovery in darkness was as significant as in low light. Since the relaxation of fluorescence was a rapid response after exposure to high light and the fact that the recovery occurs in total darkness, it is concluded that photoinhibition and down regulation of photosynthesis by high light are independent events.Abbreviation Fpl- initial plateau - Fm- maximum fluorescence - Fo- prompt fluorescence - Fv- variable fluorescence - PFD- photon flux density - PS I (II)- Photosystem I (II)  相似文献   

4.
The dark-relaxation kinetics of variable fluorescence, Fv, in intact green leaves of Pisum stativum L. and Dolichos lablab L. were analyzed using modulated fluorometers. Fast (t1/2 = 1 s) and slow (t1/2 = 7–8 s) phases in fv dark-decay kinetics were observed; the rate and the relative contribution of each phase in total relaxation depended upon the fluence rate of the actinic light and the point in the induction curve at which the actinic light was switched off. The rate of the slow phase was accelerated markedly by illumination with far-red light; the slow phase was abolished by methyl viologen. The halftime of the fast phase of Fv dark decay decreased from 250 ms in dark-adapted leaves to 12–15 ms upon adaptation to red light which is absorbed by PSII. The analysis of the effect of far-red light, which is absorbed mainly by PSI, on Fv dark decay indicates that the slow phase develops when a fraction of QA (the primary stable electron acceptor of PSII) cannot transfer electrons to PSI because of limitation on the availability of P700+ (the primary electron donor of PSI). After prolonged illumination of dark-adapted leaves in red (PSII-absorbed) light, a transient. Fv rise appears which is prevented by far-red (PSI-absorbed) light. This transient fv rise reflects the accumulation of QA in the dark. The observation of this transient Fv rise even in the presence of the uncoupler carbonylcyanide m-chlorophenyl hydrazone (CCCP) indicates that a mechanism other than ATP-driven back-transfer of electrons to QA may be responsible for the phenomenon. It is suggested that the fast phase in Fv dark-decay kinetics represents the reoxidation of QA by the electron-transport chain to PSI, whereas the slow phase is likely to be related to the interaction of QA with the donor side of PSII.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - FO initial fluorescence level - Fv variable fluorescence - P700 primary electron donor of PSI - PSI, II photosystem I, II - QA (QA ) QB (QB ) primary and secondary stable electron acceptor of PSII in oxidized (reduced) state Supported by grant B6.1/88 DST, Govt. of India.  相似文献   

5.
We studied the leaf structural, water status, and fast fluorescence responses of two palms, Socratea exorrhiza and Scheelea zonensis, under natural dry season conditions in a clearing (high light [HL] palms) and the forest understory (low light [LL] palms) on Barro Colorado Island, Panama. HL-Socratea leaves were more shade-adapted, less xeromorphic, and more strongly affected by drought than HL-Scheelea. Fv/Fm (the ratio of variable to maximum chlorophyll fluorescence) and t½ (the half-rise time of Fm) was lower in HL-leaves of both species, indicating photoinhibition. In HL-Scheelea, the light-induced reduction of Fv/Fm was much less than in HL-Socratea, and Fv/Fm recovered completely overnight. Patterns of relative water content, specific leaf dry weight, stable carbon isotope composition, and leaf conductance suggest that increased drought resistance in Scheelea reduces susceptibility to photoinhibition. An increase in Fo indicated the inactivation of PSII reaction centers in HL-Socratea. The very low chlorophyll a/b ratio and alterations in chloroplast ultrastructure in HL-Socratea are consistent with photoinhibition. Under LL, the species showed no appreciable interspecific differences in chlorophyll fluorescence. Excess light leads to low values of Fv/Fm in HL-plants relative to LL-plants on both leaf surfaces, particularly on the lower surface, due to a decrease of Fm in both surfaces and an increase in F., of lower surface. For both species, Fo for the lower surfaces of HL-plants was higher and t½ was markedly lower than for the upper surface, as is typical for shade-adapted leaves. Xeromorphic leaf structure may reduce susceptibility to photoinhibition during the dry season. Drought-enhanced photoinhibition could limit the ability of some species to exploit treefall gaps.  相似文献   

6.
This contribution is a practical guide to the measurement of the different chlorophyll (Chl) fluorescence parameters and gives examples of their development under high-irradiance stress. From the Chl fluorescence induction kinetics upon irradiation of dark-adapted leaves, measured with the PAM fluorometer, various Chl fluorescence parameters, ratios, and quenching coefficients can be determined, which provide information on the functionality of the photosystem 2 (PS2) and the photosynthetic apparatus. These are the parameters Fv, Fm, F0, Fm′, Fv′, NF, and ΔF, the Chl fluorescence ratios Fv/Fm, Fv/F0, ΔF/Fm′, as well as the photochemical (qP) and non-photochemical quenching coefficients (qN, qCN, and NPQ). qN consists of three components (qN = qE + qT + qI), the contribution of which can be determined via Chl fluorescence relaxation kinetics measured in the dark period after the induction kinetics. The above Chl fluorescence parameters and ratios, many of which are measured in the dark-adapted state of leaves, primarily provide information on the functionality of PS2. In fully developed green and dark-green leaves these Chl fluorescence parameters, measured at the upper adaxial leaf side, only reflect the Chl fluorescence of a small portion of the leaf chloroplasts of the green palisade parenchyma cells at the upper outer leaf half. Thus, PAM fluorometer measurements have to be performed at both leaf sides to obtain information on all chloroplasts of the whole leaf. Combined high irradiance (HI) and heat stress, applied at the upper leaf side, strongly reduced the quantum yield of the photochemical energy conversion at the upper leaf half to nearly zero, whereas the Chl fluorescence signals measured at the lower leaf side were not or only little affected. During this HL-stress treatment, qN, qCN, and NPQ increased in both leaf sides, but to a much higher extent at the lower compared to the upper leaf side. qN was the best indicator for non-photochemical quenching even during a stronger HL-stress, whereas qCN and NPQ decreased with progressive stress even though non-photochemical quenching still continued. It is strongly recommended to determine, in addition to the classical fluorescence parameters, via the PAM fluorometer also the Chl fluorescence decrease ratio RFd (Fd/Fs), which, when measured at saturation irradiance is directly correlated to the net CO2 assimilation rate (P N) of leaves. This RFd-ratio can be determined from the Chl fluorescence induction kinetics measured with the PAM fluorometer using continuous saturating light (cSL) during 4–5 min. As the RFd-values are fast measurable indicators correlating with the photosynthetic activity of whole leaves, they should always be determined via the PAM fluorometer parallel to the other Chl fluorescence coefficients and ratios.  相似文献   

7.
利用不同剂量的137Cs-γ射线对毛竹(Phyllostachys heterocycla ‘Pubescens’)种子进行辐射,测定实生苗叶片中的光合色素含量和叶绿素荧光参数等指标,探讨辐射对毛竹幼苗生长的影响,为筛选有利的突变单株奠定良好基础。结果表明:30或60Gy的137Cs-γ射线辐射后,毛竹幼苗的光合色素含量以及最大荧光强度(Fm)、可变荧光强度(Fv)、PSII最大光化学效率(Fv/Fm)、PSII的潜在活性(Fv/Fo)、PSII实际光化学效率(Yield)和表观光合电子传递速率(ETR)等荧光参数值均高于90Gy辐射处理,说明较低剂量辐射后PSII反应中心的能量捕获效率高,且具有较强的光合能力;而90Gy的137Cs-γ射线辐射对毛竹的影响则与之相反。不同处理剂量之间叶片光能耗散程度以及表观光合电子传递速率-光合有效辐射(ETR-PAR)响应曲线的分析结果也进一步证实了以上结论。  相似文献   

8.
The use of chlorophyll fluorescence as a method for detecting and monitoring plant stress arising from Tetranychus urticae (Koch) feeding injury was investigated. The effect of mite density (1–32 mites per 1.5 cm2 of leaf) and the duration of the feeding period (1–5 days) on the chlorophyll fluorescence parameters of bean (Phaseolus vulgaris) leaves were examined. Changes in chlorophyll fluorescence parameters were dependent both on mite density and duration of feeding. Decreases in F o, the initial fluorescence and F m, the maximum fluorescence led to a decrease in the ratio of variable to maximum fluorescence, F v/F m. The decrease in F v/F m is typical of the response of many plants to a wide range of environmental stresses and indicates a reduced efficiency of photosystem II (PSII) photochemistry. T 1/2, which is proportional to the pool size of electron acceptors on the reducing side of PSII, was also reduced in response to mite-feeding injury. The leaf chlorophyll content decreased with increasing mite density and duration of feeding but did not appear to contribute to the decrease in F v/F m. Chlorophyll fluorescence is an effective method for detecting and monitoring stress in T. urticae-injured bean leaves.  相似文献   

9.
Light modulation of the ability of three artificial quinones, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), 2,6-dichloro-p-benzoquinone (DCBQ), and tetramethyl-p-benzoquinone (duroquinone), to quench chlorophyll (Chl) fluorescence photochemically or non-photochemically was studied to simulate the functions of endogenous plastoquinones during the thermal phase of fast Chl fluorescence induction kinetics. DBMIB was found to suppress by severalfold the basal level of Chl fluorescence (Fo) and to markedly retard the light-induced rise of variable fluorescence (Fv). After irradiation with actinic light, Chl fluorescence rapidly dropped down to the level corresponding to Fo level in untreated thylakoids and then slowly declined to the initial level. DBMIB was found to be an efficient photochemical quencher of energy in Photosystem II (PSII) in the dark, but not after prolonged irradiation. Those events were owing to DBMIB reduction under light and its oxidation in the dark. At high concentrations, DCBQ exhibited quenching behaviours similar to those of DBMIB. In contrast, duroquinone demonstrated the ability to quench Fv at low concentration, while Fo was declined only at high concentrations of this artificial quinone. Unlike for DBMIB and DCBQ, quenched Fo level was attained rapidly after actinic light had been turned off in the presence of high duroquinone concentrations. That finding evidenced that the capacity of duroquinone to non-photochemically quench excitation energy in PSII was maintained during irradiation, which is likely owing to the rapid electron transfer from duroquinol to Photosystem I (PSI). It was suggested that DBMIB and DCBQ at high concentration, on the one hand, and duroquinone, on the other hand, mimic the properties of plastoquinones as photochemical and non-photochemical quenchers of energy in PSII under different conditions. The first model corresponds to the conditions under which the plastoquinone pool can be largely reduced (weak electron release from PSII to PSI compared to PSII-driven electron flow from water under strong light and weak PSI photochemical capacity because of inactive electron transport on its reducing side), while the second one mimics the behaviour of the plastoquinone pool when it cannot be filled up with electrons (weak or moderate light and high photochemical competence of PSI).  相似文献   

10.
The (Fpl-Fo)/Fv value of the fluorescence induction curve is shown to be a more suitable parameter to detect a wider range of heat stress damage to thylakoid membranes as compared to quantities t 1/2 (time of fluorescence rise from Fo to (Fo+Fm)/2 level) and % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaacq% aHepaDaaaaaa!39D5!\[\overline \tau \] (the fluorescence induction time defined as the area above the induction curve normalized to Fv=1). A method for exact and automatic Fpl determination is presented.A break point in the quality and behaviour of the fluorescence induction curve of barley leaves incubated at 49°C was reached at the moment (about 240 s) when the transformation of PS II active (QB-reducing) to PS II inactive (QB-non-reducing) centres was completed. The meaning of the standard Fv and Fv/Fm parameter was then changed.The method of Fpl determination described here may help to increase the analytical value of the standard chlorophyll fluorometers.Abbreviations Fo initial fluorescence - Fm maximal fluorescence - Fpl fluorescence at first inflection point (plateau) - Fv variable fluorescence (Fv=Fm–Fo) - PSM plant stress meter - SD standard deviation  相似文献   

11.
P. Giorio 《Photosynthetica》2011,49(3):371-379
Tomato and pepper leaves were clipped with black leaf clips for dark adaptation under solar radiation in the late spring or early summer 2010 in southern Italy. The leaves showed highly variable maximum PSII quantum yield (Fv/Fm = 0.026−0.802) using a continuous-excitation fluorometer Pocket PEA. These results were confirmed using the modulated fluorometer FMS1 on tomato leaves in mid summer, with Fv/Fm as low as 0.222 ± 0.277 due to nearly equal minimum (Fo) and maximum (Fm) fluorescence emission. A significant clip effect on Fv/Fm occurred after only 12 (tomato) or 25 (pepper) min. Increasing the leaf temperature from 25 to 50°C reportedly induced an Fo increase and Fm decrease so that Fv/Fm approached zero. The hypothesis that black leaf clips overheated under intense solar irradiance was verified by shrouding the clipped leaves with aluminum foil. In clipped leaves of pepper, Fv/Fm with the black clip/Pocket-PEA was 0.769 ± 0.025 (shrouded) and as low as 0.271 ± 0.163 (nonshrouded), the latter showing a double Fo and 32% lower Fm. An 8% clip effect on Fv/Fm was observed with the white clip/FMS1. To avoid the clip effect in high irradiance environments, Fv/Fm measurements with black clip/Pocket PEA system required leaf dark adaptation with radiation-reflecting shrouds. It would be useful if manufacturing companies could develop better radiation-reflecting leaf clips for the Pocket PEA fluorometer.  相似文献   

12.
The use of black leaf-clips for dark adaptation under high solar radiation conditions is reported to underestimate the maximum quantum yield of PSII photochemistry (Fv/Fm) measured by the continuous-excitation fluorometer Pocket PEA. The decrease in Fv/Fm was due to a rise in minimum fluorescence emission (Fo), probably resulting from increased leaf temperature (Tl). In field-grown tomato and pepper, fluorescence parameters and Tl in the region covered by the black leaf clip were measured in clipped leaves exposed to solar radiation during dark adaptation (clipped-only leaves) and in clipped leaves protected from solar radiation by aluminium foil (shrouded clipped leaves). Results confirmed significant Fv/Fm underestimates in clipped-only leaves primarily due to increased Fo. In one tomato experiment, Tl increased from 30 to 44.5°C in clipped-only leaves, with a negligible rise in shrouded clipped leaves. In two respective pepper experiments, Tl in clipped-only leaves increased from 27 to 36.2°C and 33 to 40.9°C. Based on the results of this study, a clip-effect parameter (PCE) on fluorescence emission is proposed as the difference for Fv/Fm (or ?Fo/Fm) between shrouded clipped leaves and clipped-only leaves, which resulted to be 0.706 for tomato, and 0.241 and 0.358 for the two pepper experiments.  相似文献   

13.
Kalanchoë daigremontiana, a CAM plant grown in a greenhouse, was subjected to severe water stress. The changes in photosystem II (PSII) photochemistry were investigated in water‐stressed leaves. To separate water stress effects from photoinhibition, water stress was imposed at low irradiance (daily peak PFD 150 μmol m?2 s?1). There were no significant changes in the maximal efficiency of PSII photochemistry (Fv/Fm), the traditional fluorescence induction kinetics (OIP) and the polyphasic fluorescence induction kinetics (OJIP), suggesting that water stress had no direct effects on the primary PSII photochemistry in dark‐adapted leaves. However, PSII photochemistry in light‐adapted leaves was modified in water‐stressed plants. This was shown by the decrease in the actual PSII efficiency (ΦPSII), the efficiency of excitation energy capture by open PSII centres (Fv′/Fm′), and photochemical quenching (qP), as well as a significant increase in non‐photochemical quenching (NPQ) in particular at high PFDs. In addition, photoinhibition and the xanthophyll cycle were investigated in water‐stressed leaves when exposed to 50% full sunlight and full sunlight. At midday, water stress induced a substantial decrease in Fv/Fm which was reversible. Such a decrease was greater at higher irradiance. Similar results were observed in ΦPSII, qP, and Fv′/Fm′. On the other hand, water stress induced a significant increase in NPQ and the level of zeaxanthin via the de‐epoxidation of violaxanthin and their increases were greater at higher irradiance. The results suggest that water stress led to increased susceptibility to photoinhibition which was attributed to a photoprotective process but not to a photodamage process. Such a photoprotection was associated with the enhanced formation of zeaxanthin via de‐epoxidation of violaxanthin. The results also suggest that thermal dissipation of excess energy associated with the xanthophyll cycle may be an important adaptive mechanism to help protect the photosynthetic apparatus from photoinhibitory damage for CAM plants normally growing in arid and semi‐arid areas where they are subjected to a combination of water stress and high light.  相似文献   

14.
Eight chlorophyll b deficient nuclear mutants of pea (Pisum sativum L.) have been characterized by low temperature fluorescence emission spectra of their leaves and by the ultrastructure, photochemical activities and polypeptide compositions of the thylakoid membranes. The room temperature fluorescence induction kinetics of leaves and isolated thylakoids have also been recorded. In addition, the effects of Mg2+ on the fluorescence kinetics of the membranes have been investigated. The mutants are all deficient in the major polypeptide of the light-harvesting chlorophyll a/b protein of photosystem II. The low temperature fluorescence emission spectra of aurea-5106, xantha-5371 and –5820 show little or no fluorescence around 730 nm (photosystem I fluorescence), but possess maxima at 685 and 695 nm (photosystem II fluorescence). These three mutants have low photosystem II activities, but significant photosystem I activities. The long-wavelength fluorescence maximum is reduced for three other mutants. The Mg2+ effect on the variable component of the room temperature fluorescence (685 nm) induction kinetics is reduced in all mutants, and completely absent in aurea-5106 and xantha-5820. The thylakoid membranes of these 2 mutants are appressed pairwise in 2-disc grana of large diameter. Chlorotica-1-206A and–130A have significant long-wavelength maxima in the fluorescence spectra and show the largest Mg2+ enhancement of the variable part of the fluorescence kinetics. These two mutants have rather normally structured chloroplast membranes, though the stroma regions are reduced. The four remaining mutants are in several respects of an intermediate type.Abbreviations Chl chlorophyll - CPI Chi-protein complex I, Fo, Fv - Fm parameters of room temperature chlorophyll fluorescence induction kinetics - F685, F695 and F-1 components of low temperature chlorophyll emission with maximum at 685, 695 and ca 735 nm, respectively - PSI photosystem I - PSII photosystem II - LHCI and LHCII light-harvesting chlorophyll a/b complexes associated with PSI and PSII, respectively - SDS sodium dodecyl sulfate  相似文献   

15.
This paper reports on the fast fluorescence responses of Gardenia jasminoides Ellis plantlets, at two successive stages (shoot multiplication and root induction) of culture in vitro. We test whether plantlets in vitro suffer photoinhibition during culture and whether the degree of photoautotrophy of these mixotrophic plantlets has any effect on the extent of photoinhibitory impairment. In this regard the effects of different sucrose levels in the medium and PPFD during growth on the development of photoautotrophy and the extent of photoinhibition were evaluated. Plantlets were grown under low, intermediate, and high (50, 100, and 300 mol m-2 s-1) PPFD, and at 3 different sucrose concentrations (0.5, 1.5, and 3.0%, w/v) in the medium, during shoot multiplication. During root induction the same growth conditions were assayed except for the high PPFD. The development of photoautotrophy was assessed via the difference between the stable carbon isotope composition of sucrose used as heterotrophic carbon source and that of leaflets grown in vitro. Plantlets from root induction showed more developed photoautotrophy than those from shoot multiplication. For both stages the low-sucrose medium stimulated the photoautotrophy of plantlets in vitro. In addition, intermediate PPFD induced photoautotrophy during shoot multiplication. For plantlets of both culture stages at the lowest PPFD no photoinhibition occurred irrespective of the sucrose concentration in media. However, during the shoot multiplication stage chlorophyll fluorescence measurements showed a decrease in F v /F m and in t 1/2 as growing PPFD increased, indicating photoinhibitory damage. The decline of F v /F m was caused mostly by an increase in F o , indicating the inactivation of PSII reaction centers. However plantlets growing under low sucrose showed reduced susceptibility to photoinhibition. During root induction, only plantlets cultured with high sucrose showed a decrease in F v /F m as PPFD increased, although t 1/2 remained unchanged. In this case, the decline of F v /F m was mostly due to a decrease in F m , which indicates increased photoprotection rather than occurrence of photodamage. Therefore, growth in low-sucrose media had a protective effect on the resistance of PSII to light stress. In addition, plantlets were more resistant to photoinhibition during root induction than during shoot multiplication. Results suggest that increased photoautotrophy of plantlets reduces susceptibility to photoinhibition during gardenia culture in vitro.Abbreviations AP apparent photosynthesis - Chl total chlorophyll content - Chl a/b chlorophyll a-to-b ratio - Chl/Car total chlorophyll-to-carotenoids ratio - 13C ratio of 13C/12C relative to PeeDee belemnite standard - F m maximum chlorophyll fluorescence - F o fluorescence emission when all reaction centres are open and the photochemical quenching is minimal - F v variable chlorophyll fluorescence (F m -F o ) - F v /F m the ratio of variable to maximum chlorophyll fluorescence, indicator photochemical efficiency of PSII - MS medium Murashige and Skoog (1962) medium - PPFD photosynthetic photon flux density - Rd dark respiration, t 1/2 the half-time of the increase from F o to F m - IAA indole butyric acid  相似文献   

16.
Cold-hardened rye leaves have been shown to be more resistant to low temperature photoinhibition than non-hardened rye leaves. Isolated mesophyll cells from winter rye (Secale cereale L. cv. Musketeer) were exposed to photoinhibitory light conditions to estimate the importance of leaf morphology and leaf optical properties in the resistance of cold-hardened rye leaves to photoinhibition. Cold-hardened rye cells showed more resistance to photoinhibition than non-hardened rye cells when monitored with chlorophyll a variable to maximal fluorescence ratio (Fv/Fm). Thus, leaf morphology does not contribute to the resistance of cold-hardened rye leaves to low temperature photoinhibition. However, cold-hardened and non-hardened rye cells showed a similar extent of photoinhibition when photsynthetic CO2 fixation rates were measured. They also showed the same capacity to recover from photoinhibition. During both photoinhibition and recovery, Fv/Fm and light limited CO2 fixation rates showed different kinetics. We propose that inactivation and subsequent reactivation during recovery of some light activated Calvin cycle enzymes explain the greater extent of photoinhibition of light limited CO2 fixation and its faster recovery compared to Fv/Fm kinetics during photoinhibition.  相似文献   

17.
In a previous study, we characterized a high chlorophyll fluorescence Ipal mutant of Arabidopsis thallana, in which approximately 20% photosystem (PS) Ⅱ protein is accumulated. In the present study, analysis of fluorescence decay kinetics and thermoluminescence profiles demonstrated that the electron transfer reaction on either the donor or acceptor side of PSII remained largely unaffected in the Ipa1 mutant. In the mutant, maximal photochemical efficiency (Fv/Fm, where Fm is the maximum fluorescence yield and Fv is variable fluorescence) decreased with increasing light intensity and remained almost unchanged in wildtype plants under different light conditions. The Fv/Fm values also increased when mutant plants were transferred from standard growth light to low light conditions. Analysis of PSll protein accumulation further confirmed that the amount of PSll reaction center protein is correlated with changes in Fv/Fm in Ipal plants. Thus, the assembled PSll in the mutant was functional and also showed increased photosensitivity compared with wild-type plants.  相似文献   

18.
The effect of freezing stress on chlorophyll fluorescence was examined in leaves of five genotypes of blackcurrant (Ribes nigrum L.). Minimum fluorescence (Fo), variable fluorescence (Fv) and the time for Fv to decay to half its maximum value (q1/2) all varied between genotypes. Freezing stress significantly reduced Fo in all genotypes, but the effect of freezing stress on Fv was non-significant. Freezing stress significantly increased q1/2, but the effect varied significantly between genotypes. The increase in q1/2 induced by freezing stress was greatest in the cultivar Baldwin and least in the accession Ri-74020-6. The effects of freezing on chlorophyll fluorescence, particularly q1/2, corresponded to the susceptibility of the genotypes to spring frosts. It is concluded that chlorophyll fluorescence can provide a rapid screening technique for assessing frost hardiness in blackcurrant.  相似文献   

19.
D. H. Greer  W. A. Laing  T. Kipnis 《Planta》1988,174(2):152-158
Photoinhibition of photosynthesis was induced in attached leaves of kiwifruit grown in natural light not exceeding a photon flux density (PFD) of 300 mol·m-2·s-1, by exposing them to a PFD of 1500 mol·m-2·s-1. The temperature was held constant, between 5 and 35° C, during the exposure to high light. The kinetics of photoinhibition were measured by chlorophyll fluorescence at 77K and the photon yield of photosynthetic O2 evolution. Photoinhibition occurred at all temperatures but was greatest at low temperatures. Photoinhibition followed pseudo first-order kinetics, as determined by the variable fluorescence (F v) and photon yield, with the long-term steady-state of photoinhibition strongly dependent on temperature wheareas the observed rate constant was only weakly temperature-dependent. Temperature had little effect on the decrease in the maximum fluorescence (F m) but the increase in the instantaneous fluorescence (F o) was significantly affected by low temperatures in particular. These changes in fluorescence indicate that kiwifruit leaves have some capacity to dissipate excessive excitation energy by increasing the rate constant for non-radiative (thermal) energy dissipation although temperature apparently had little effect on this. Direct photoinhibitory damage to the photosystem II reaction centres was evident by the increases in F o and extreme, irreversible damage occurred at the lower temperatures. This indicates that kiwifruit leaves were most susceptible to photoinhibition at low temperatures because direct damage to the reaction centres was greatest at these temperatures. The results also imply that mechanisms to dissipate excess energy were inadequate to afford any protection from photoinhibition over a wide temperature range in these shade-grown leaves.Abbreviations and symbols fluorescence yield correction coefficient - F o, F m, F v instantaneous, maximum, variable fluorescence - K D, K F, K P, K T rate constants for non-radiative energy dissipation, fluorescence, photochemistry, energy transfer to photosystem I - PFD photon flux density - PSI, II photosystem I, II - i photon yield of photosynthesis (incident light)  相似文献   

20.
A comparison of the effects of a rapidly imposed water deficit with different leaf ages on chlorophyll a fluorescence and gas exchange was performed in maize (Zea mays L.) plants. The relationships between photosynthesis and leaf relative turgidity (RT) and ion leakage were further investigated. Leaf dehydration substantially decreased net photosynthetic rate (A) and stomatal conductance (G s), particularly for older leaves. With dehydration time, F v /F m maintained a relatively stable level for youngest leaves but significantly decreased for the older leaves. The electron transport rate (ETR) sharply decreased with intensifying dehydration and remained at lower levels during continuous dehydration. The photochemical quenching of variable chlorophyll fluorescence (q P) gradually decreased with dehydration intensity for the older leaves but increased for the youngest leaves, whereas dehydration did not affect the nonphotochemical chlorophyll fluorescence quenching (NPQ) for the youngest leaves but remarkably decreased it for the older leaves. The leaf RT was significantly and positively correlated with its F v /F m, ETR, and q P, and the leaf ion leakage was significantly and negatively correlated with F v /F m and NPQ. Our results suggest that the photosynthetic systems of young and old leaves decline at different rates when exposed to rapid dehydration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号