首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 574 毫秒
1.
2.
Recombinant lycopene was generated by utilizing metabolically engineered Escherichia coli with yields being dependent upon inocula state. Yields were especially low in the case of cultures harboring high-copy plasmids that were established with inocula at the stationary growth phase. On the other hand, cultures derived using low-copy plasmid, however, yielded high amounts of lycopene irrespective of inocula state. Nevertheless, it showed still an inocula dependence pattern in lycopene productivity (mg/l/h). To further increase lycopene productivity, we applied a temperature-shift culture technique (37  25 °C). Using this method, we effectively enhanced lycopene productivity without any problematic phenomena. As a result, we were able to increase lycopene yield by approximately 20% compared to previous culture methods. In the present study, we were able to reach a final lycopene yield up to 260 mg/l for 60 h, which corresponds to the highest titer to date for the production of lycopene in E. coli.  相似文献   

3.
《Process Biochemistry》2007,42(2):289-293
Lycopene and β-carotene production were increased when oxygen-vectors, n-hexane and n-dodecane, were added to cultures of Blakeslea trispora because of the enhanced dissolved oxygen concentrations. With 1% (v/v) n-hexane or n-dodecane added in the medium, lycopene production was 51% or 78% higher and β-carotene production was 44% or 65% higher than that of the control, respectively. The highest lycopene and β-carotene production, 533 mg l−1and 596 mg l−1, were obtained when 1% (v/v) n-dodecane and 0.1% (w/v) Span 20 were added together, which were 2.1-fold and 1.8-fold of the control, respectively.  相似文献   

4.
A new class of steroidal therapeutics based on phylogenetic-guided design of covalent inhibitors that target parasite-specific enzymes of ergosterol biosynthesis is shown to prevent growth of the protozoan-Trypanosoma brucei, responsible for sleeping sickness. In the presence of approximately 15 ± 5 μM 26,27-dehydrolanosterol, T. brucei procyclic or blood stream form growth is inhibited by 50%. This compound is actively converted by the parasite to an acceptable substrate of sterol C24-methyl transferase (SMT) that upon position-specific side chain methylation at C26 inactivates the enzyme. Treated cells show dose-dependent depletion of ergosterol and other 24β-methyl sterols with no accumulation of intermediates in contradistinction to profiles typical of tight binding inhibitor treatments to azoles showing loss of ergosterol accompanied by accumulation of toxic 14-methyl sterols. HEK cells accumulate 26,27-dehydrolanosterol without effect on cholesterol biosynthesis. During exposure of cloned TbSMT to 26,27-dehydrozymosterol, the enzyme is gradually inactivated (kcat/kinact = 0.13 min 1/0.08 min 1; partition ratio of 1.6) while 26,27-dehydrolanosterol binds nonproductively. GC–MS analysis of the turnover product and bound intermediate released as a C26-methylated diol (C3-OH and C24-OH) confirmed substrate recognition and covalent binding to TbSMT. This study has potential implications for design of a novel class of chemotherapeutic leads functioning as mechanism-based inhibitors of ergosterol biosynthesis to treat neglected tropical diseases.  相似文献   

5.
Carotenoid formation was investigated in wild type and carotenogenic mutants of Blakeslea trispora after mating (−) and (+) strains. The highest yields of carotenoids, especially β-carotene was observed following mating. In vitro incorporation of geranylgeranyl pyrophosphate into phytoene and β-carotene corresponded to increased carotenogenesis in the mated strains. Immuno determination of phytoene synthase protein levels revealed that the amounts of this enzyme is concurrent with the increases in carotenoid content. In fungi, phytoene synthase together with lycopene cyclase are encoded by a fusion gene crtYB or carRA with two individual domains. These domains were both heterologously expressed in an independent manner and antisera raised against both. These antisera were used, to assess protein levels in mated and non-mated B. trispora. The phytoene synthase domain was detected as an individual soluble protein with a molecular weight of 40 kDa and the lycopene cyclase an individual protein of mass about 30 kDa present in the membrane fraction following sub-cellular fractionation. This result demonstrates a post-translational cleavage of the protein transcribed from a single mRNA into independent functional phytoene synthase and lycopene cyclase.  相似文献   

6.
To improve the growth of recombinant Pichia pastoris with a phenotype of MutS and expression of angiostatin, the effects of glycerol, sorbitol, acetate and lactic acid which were, respectively, added together with methanol in the expression phase, were studied in a 5-l fermentor. Methanol concentration was automatically controlled at 5 g/l by a methanol monitor and control system, while the feeding of the other carbon source was manually adjusted. The angiostatin production level was 108 mg/l when glycerol was added at an initial rate of 2.3 g/h and gradually increased to 9.9 g/h within an induction period of 96 h. The angiostatin concentration was 141 mg/l as sorbitol was used, while only 52 mg/l were obtained on acetate. The highest angiostatin production of 191 mg/l was achieved as lactic acid was used; whose feeding rate was gradually increased from 2.6 to 11.3 g/h. Lactic acid accumulated during the induction phase and reached 6.3 g/l at the end of fermentation. However, the accumulation of lactic acid did not interfere with angiostatin production, indicating that lactic acid to be a non-repressive carbon source. The average productivity and specific productivity of angiostatin obtained on lactic acid and methanol were, respectively, 2.96 and 0.044 mg/(g h), 1.7- and 2.5-fold of those obtained in the fermentation fed with glycerol and methanol.  相似文献   

7.
Squalene is an effective antioxidant and a potential chemopreventive agent. In this work, the effect of methyl jasmonate (MJA) on squalene biosynthesis in microalga Schizochytrium mangrovei was investigated. The maximum squalene content (1.17 ± 0.06 mg/g cell dry weight, DW) reached during the next 3 h after MJA treatment (0.1 mM) at 48 h of cultivation, which was 60% higher than that of control. The activity of squalene synthase (SS) increased 2-fold over control at this point. The maximum cholesterol content of 0.45 ± 0.03 mg/g DW was reached at hour 51 when MJA concentration was 0.4 mM, whereas the squalene content was lower at this point. The observations suggested that the increased squalene content was resulted from an increased activity of SS. MJA could be used to regulate the key enzymes in squalene biosynthetic pathway for the increased production of this compound in thraustochytrids. This research also provided novel information on the stimulation effect of methyl jasmonate on the biosynthesis of essential intermediate involved in the primary metabolism in microorganism.  相似文献   

8.
This work optimized the novel biotransformation process of podophyllotoxin to produce podophyllic acid by Pseudomonas aeruginosa CCTCC AB93066. Firstly, the biotransformation process was significantly affected by medium composition. 5 g/l of yeast extract and 5 g/l of peptone were favorable for podophyllic acid production (i.e. 25.3 ± 3.7 mg/l), while not beneficial for the cell growth of P. aeruginosa. This indicated that the accumulation of podophyllic acid was not corresponded well to the cell growth of P. aeruginosa. 0 g/l of sucrose was beneficial for podophyllic acid production (i.e. 34.3 ± 3.9 mg/l), which led to high podophyllotoxin conversion (i.e. 98.2 ± 0.1%). 1 g/l of NaCl was the best for podophyllic acid production (i.e. 47.6 ± 4.0 mg/l). Secondly, the production of podophyllic acid was significantly enhanced by fed-batch biotransformation. When each 100 mg/l of podophyllotoxin was added to the biotransformation system after 4, 10 and 25 h of culture, respectively, podophyllic acid concentration reached 99.9 ± 12.3 mg/l, enhanced by 284% comparing to one-time addition (i.e. 26.0 ± 2.1 mg/l). The fundamental information obtained in this study provides a simple and efficient way to produce podophyllic acid.  相似文献   

9.
Alkanes of defined carbon chain lengths can serve as alternatives to petroleum-based fuels. Recently, microbial pathways of alkane biosynthesis have been identified and enabled the production of alkanes in non-native producing microorganisms using metabolic engineering strategies. The chemoautotrophic bacterium Cupriavidus necator has great potential for producing chemicals from CO2: it is known to have one of the highest growth rate among natural autotrophic bacteria and under nutrient imbalance it directs most of its carbon flux to the synthesis of the acetyl-CoA derived polymer, polyhydroxybutyrate (PHB), (up to 80% of intracellular content). Alkane synthesis pathway from Synechococcus elongatus (2 genes coding an acyl-ACP reductase and an aldehyde deformylating oxygenase) was heterologously expressed in a C. necator mutant strain deficient in the PHB synthesis pathway. Under heterotrophic condition on fructose we showed that under nitrogen limitation, in presence of an organic phase (decane), the strain produced up to 670 mg/L total hydrocarbons containing 435 mg/l of alkanes consisting of 286 mg/l of pentadecane, 131 mg/l of heptadecene, 18 mg/l of heptadecane, and 236 mg/l of hexadecanal. We report here the highest level of alka(e)nes production by an engineered C. necator to date. We also demonstrated the first reported alka(e)nes production by a non-native alkane producer from CO2 as the sole carbon source.  相似文献   

10.
The effect of oxygen transfer rate (OTR) on β-carotene production by Blakelsea trispora in shake flask culture was investigated. The results indicated that the concentration of β-carotene (704.1 mg/l) was the highest in culture grown at maximum OTR of 20.5 mmol/(l h). In this case, the percentage of zygospores was over 50.0% of the biomass dry weight. On the other hand, OTR level higher than 20.5 mmol/(l h) was found to be detrimental to cell growth and pigment formation. To elucidate the effect of oxidative stress on β-carotene synthesis, the accumulation of hydrogen peroxide during fermentation under different OTRs was determined. A linear response of β-carotene synthesis to the level of H2O2 was observed, indicating that β-carotene synthesis is stimulated by H2O2. However, there was an optimal concentration of H2O2 (2400 μM) in enhancing β-carotene synthesis. At a higher concentration of H2O2, β-carotene decreased significantly due to its toxicity.  相似文献   

11.
The effect of the changes of culturing environments of Aspergillus terreus on lovastatin production was investigated in the study. A relatively low supplement of dissolved O2 (DO) by the fungus almost stopped performing product formation. With the DO controlled at 20%, lovastatin production using a 5-l fermenter enhanced by 38%, biomass production decreased by 25% and sugar utilization increased by 18%, as compared with the shaking-flask culture. Meanwhile, an average diameter 0.95 mm of compact pellets was found. We thus concluded that pellet formation with a narrow size distribution dominated lovastatin production by A. terreus, which was closely affected by the relatively saturated level of DO. Nevertheless, manipulating the broth pH at 5.5–7.5 starting from 48 h provided no benefit to product formation although biomass production was reduced largely. In the part of work, a pH/DO interaction was also confirmed.A simple temperature-shift method (28–23 °C) was proved surprisingly valuable to the fermentation process. Such experiments showed that the maximum of lovastatin production was further enhanced by 25% (572 mg/l at day 10) in comparison with that when the fungus was cultured at 28 °C. The timing to initiate the temperature-shift (96 h) corresponded to that of pellet formation and the subsequent core compactness. Hence, it was found that lovastatin production by A. terreus favored sub-optimal growth conditions.  相似文献   

12.
BackgroundFrequent opportunist fungal infections and the resistance to available antifungal drugs promoted the development of new alternatives for treatment, like antifungal drug combinations.AimsThis work aimed to detect the antifungal synergism between statins and azoles by means of an agar-well diffusion bioassay with Saccharomyces cerevisiae ATCC 32051 and Candida utilis Pr1–2 as test strains.MethodsSynergistic antifungal effects were tested by simultaneously adding a sub inhibitory concentration (SIC) of statin (atorvastatin, lovastatin, pravastatin, rosuvastatin or simvastatin) plus a minimal inhibitory concentration (MIC) of azole (clotrimazole, fluconazole, itraconazole, ketoconazole or miconazole) to yeast-embedded YNB agar plates, and a positive result corresponded to a yeast growth inhibition halo higher than that produced by the MIC of the azole alone. Yeast cell ergosterol quantification by RP-HPLC was used to confirm statin–azole synergism, and ergosterol rescue bioassays were performed for evaluating statin-induced ergosterol synthesis blockage.ResultsGrowth inhibition was significantly increased when clotrimazole, fluconazole, itraconazole, ketoconazole and miconazole were combined with atorvastatin, lovastatin, rosuvastatin and simvastatin. Highest growth inhibition increments were observed on S. cerevisiae (77.5%) and C. utilis (43.2%) with a SIC of simvastatin plus a MIC of miconazole, i.e. 4 + 2.4 μg/ml or 20 + 4.8 μg/ml, respectively. Pravastatin showed almost no significant effects (0–7.6% inhibition increase). Highest interaction ratios between antifungal agents corresponded to simvastatin–miconazole combinations and were indicative of synergism. Synergism was also confirmed by the increased reduction in cellular ergosterol levels (S. cerevisiae, 40% and C. utilis, 22%). Statin-induced ergosterol synthesis blockage was corroborated by means of ergosterol rescue bioassays, pravastatin being the most easily abolished inhibition whilst rosuvastatin being the most ergosterol-refractory.ConclusionsSelected statin–azole combinations might be viable alternatives for the therapeutic management of mycosis at lower administration doses or with a higher efficiency.  相似文献   

13.
14.
This research was performed based on a comparative study on fungal lipid production by a locally isolated strain Cunninghamella bainieri 2A1 in batch culture and repeated-batch culture using a nitrogen-limited medium. Lipid production in the batch culture was conducted to study the effect of different agitation rates on the simultaneous consumption of ammonium tartrate and glucose sources. Lipid production in the repeated-batch culture was studied by considering the effect of harvesting time and harvesting volume of the culture broth on the lipid accumulation. The batch cultivation was carried out in a 500 ml Erlenmeyer flask containing 200 ml of the fresh nitrogen-limited medium. Microbial culture was incubated at 30 °C under different agitation rates of 120, 180 and 250 rpm for 120 h. The repeated-batch culture was performed at three harvesting times of 12, 24 and 48 h using four harvesting cultures of 60%, 70%, 80% and 90%. Experimental results revealed that nitrogen source (ammonium tartrate) was fully utilized by C. bainieri 2A1 within 24 h in all agitation rates tested. It was also observed that a high amount of glucose in culture medium was consumed by C. bainieri 2A1 at 250 rpm agitation speed during the batch fermentation. Similar results showed that the highest lipid concentration of 2.96 g/L was obtained at an agitation rate of 250 rpm at 120 h cultivation time with the maximum lipid productivity of 7.0 × 10−2 mg/ml/h. On the other hand, experimental results showed that the highest lipid concentration produced in the repeated-batch culture was 3.30 g/L at the first cycle of 48 h harvesting time using 70% harvesting volume, while 0.23 g/L gamma-linolenic acid (GLA) was produced at the last cycle of 48 h harvesting time using 80% harvesting volume.  相似文献   

15.
The current work aims to stimulate the production of rhoifolin and tiliroside as two valuable phytochemicals from Chorisia chodatii Hassl. and Chorisia speciosa A. St.-Hil. callus cultures. A comparison between three explants from the in vitro germinated seedlings of both species for callus induction and accumulation of both flavonoids was carried out. Highly efficient calluses were induced from the leaves, stems and roots of C. chodatii seedlings on Gamborg’s B5 (B5) and Murashige and Skoog (MS) media containing 2.0 mg/l β-naphthalene acetic acid (NAA) and 0.5 mg/l 6-benzyladenin (BA) or kinetin (Kn), while those of C. speciosa seedlings efficiently produced calluses on both media supplemented with 0.5 or 1.0 mg/l NAA and 0.5 mg/l BA. Besides, the highest contents of rhoifolin (1.927 mg/g DW) and tiliroside (1.776 mg/g DW) from C. speciosa cultures were obtained from the calluses of seedlings’ roots and stems maintained on B5 medium containing 1.0 mg/l NAA and 0.5 mg/l BA, respectively. On the other hand, the maximum rhoifolin content (0.555 mg/g DW) from C. chodatii cultures was obtained from the calluses of seedlings’ stems grown on B5 medium supplemented with 2.0 mg/l NAA and 0.5 mg/l BA, whereas the highest tiliroside content (0.547 mg/g DW) was provided by the root explants on B5 medium containing 2.0 mg/l NAA and 0.5 mg/l Kn. Both flavonoids were bioaccumulated in greater amounts than the wild and cultivated intact plants, which provides a promising tool for their future commercial production under a controlled environment, independent of climate and soil conditions.  相似文献   

16.
Ligninolytic enzyme production and polyphenolic compound extraction by liquid-state culture of Phanerochaete chrysosporium ATCC 24275 was investigated by employing apple pomace sludge and synthetic medium. Different physico-chemical and biological parameters namely viscosity, zeta potential and particle size, viability and enzyme production were investigated. The ligninolytic enzyme production was higher in apple pomace sludge (45 U/l of laccase, 220 U/l of MnP and 6.5 U/l of LiP) than in synthetic medium (17 U/l of laccase, 37 U/l of MnP and 6 U/l). These maximal activities were found during the stationary and decline phase. It was also found that enzyme production was strongly correlated with P. chrysoporium viability in both synthetic medium and apple pomace sludge. Moreover, physico-chemical parameters, such as particle size, zeta potential and viscosity were strongly correlated to the viability of P. chrysosporium and to the ligninolytic enzyme production. An increase in polyphenol content extracted by acetone (383–720 mg GAE/l) was observed during fermentation of apple pomace and it was found that the polyphenol content extracted by ethanol increased ~1.5 fold until 67 h of fermentation and later it decreased. It was found that antioxidant activity increased to 35% and eventually decreased based on the change in the polyphenol content.  相似文献   

17.
This study is aimed at identifying the proteins that are up-regulated during astaxanthin accumulation in Haematococcus lacustris. For this H. lacustris cells were cultivated in photobioreactors under normal light irradiance of 40 μE m?2 s?1 for 6 days and then induced to accumulate astaxanthin for 3 days further by exposure to continuous high irradiance of 200 μE m?2 s?1 with fluorescent lamps as light source after the cells reached the stationary phase in a nitrogen-depleted condition. Under this condition, the average astaxanthin content per cell increased from 91 mg/l up to 406 mg/l after 3 days of induction. The proteomics data from a two-dimensional electrophoretic comparison demonstrated that a combination of nitrogen source depletion and 1 h high light have significantly changed the pattern of protein expression in H. lacustris. A total of 49 protein spots were picked after 1 h of stress induction. They consisted of 13 down-regulated proteins and 36 up-regulated proteins. Fifteen proteins which had highly up-regulated expression were further analyzed by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The results will point toward interesting proteins that can be pursued for further analysis of astaxanthin biosynthesis pathway.  相似文献   

18.
Acute toxicity and genotoxicity of imidacloprid (IMI) was evaluated on Hypsiboas pulchellus (Anura: Hylidae) tadpoles exposed under laboratory conditions. A lethal effect was used as the end point for lethality, whereas the frequency of micronuclei (MNs) and DNA single-strand breaks evaluated by the single cell gel electrophoresis assay were employed as end points for genotoxicity. Experiments were performed on tadpoles at stage 36 (range, 35–37) according to the classification proposed by Gosner. Mortality studies revealed an LC50 (96 h) value of 84.91 mg/L IMI (95% confidence limits, 77.20–93.04). While increased frequency of MNs was observed when 15 and 30 mg/L were assayed for 48 h, only 15 mg/L increased the frequency of MNs in tadpoles exposed for 96 h. Furthermore, other nuclear abnormalities, i.e., binucleated cells and blebbed and notched nuclei, were induced in tadpoles exposed for both 48 h when treated with 15 mg/L and 96 h when treated with 15 and 30 mg/L. An increase in the genetic damage index was observed in tadpoles treated with 30 mg/L for 48 and 96 h. This study represents the first evidence of acute lethal and sublethal effects exerted by IMI on tadpoles of an amphibian species native to Argentina. Finally, our findings highlight the hazardous properties of this insecticide for nontarget living species exposed to this agrochemical.  相似文献   

19.
Capsaicin is employed as a condiment and colorant in the cosmetic and pharmaceutical industries. Metabolism of capsaicin produces reactive phenoxy radicals, which inflict damage to DNA. Micronutrients such as zinc and selenium facilitate the expression of tissue repair factors, and lycopene has natural antioxidant action. The current study investigated the possible protective role of zinc, selenium and lycopene singly and in combination in ameliorating capsaicin induced mutagenicity. Fifty four Swiss albino mice received the vehicle, zinc (10 mg/kg), selenium (2 mg/kg), lycopene (2 mg/kg) alone, capsaicin alone (2 mg/kg), and capsaicin along with zinc (10 mg/kg), selenium (2 mg/kg) and lycopene (2 mg/kg) in combination by the oral route for 32 days. Animals were killed 24 h after the last treatment, and micronuclei formation in bone marrow and peripheral blood were assessed. Antioxidant status in plasma, the total protein, nucleic acids, and DNA fragmentation was assessed in the liver homogenate. Capsaicin substantially damaged nuclear material and increased oxidative stress. Individual therapy with lycopene was most effective in reducing micronuclei formation, lipid peroxidation, and in augmenting ferric reducing ability of plasma. This was closely followed by zinc and selenium. Zinc protected against DNA fragmentation followed by lycopene and selenium. The combination therapy was effective over individual treatment against DNA fragmentation, micronuclei and malondialdehyde formation. The combination did not exert a substantial benefit over individual therapy in enhancing the total antioxidant ability of plasma. The risk of capsaicin induced mutagenicity was lowered with the combination by reducing the generation of free radicals and by enhancing tissue repair.  相似文献   

20.
The potential advantages of biological production of chemicals or fuels from biomass at high temperatures include reduced enzyme loading for cellulose degradation, decreased chance of contamination, and lower product separation cost. In general, high temperature production of compounds that are not native to the thermophilic hosts is limited by enzyme stability and the lack of suitable expression systems. Further complications can arise when the pathway includes a volatile intermediate. Here we report the engineering of Geobacillus thermoglucosidasius to produce isobutanol at 50 °C. We prospected various enzymes in the isobutanol synthesis pathway and characterized their thermostabilities. We also constructed an expression system based on the lactate dehydrogenase promoter from Geobacillus thermodenitrificans. With the best enzyme combination and the expression system, 3.3 g/l of isobutanol was produced from glucose and 0.6 g/l of isobutanol from cellobiose in G. thermoglucosidasius within 48 h at 50 °C. This is the first demonstration of isobutanol production in recombinant bacteria at an elevated temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号