首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Protein deglycase DJ-1 (DJ-1) is a multifunctional protein involved in various biological processes. However, it is unclear whether DJ-1 influences atherosclerosis development and plaque stability. Accordingly, we evaluated the influence of DJ-1 deletion on the progression of atherosclerosis and elucidate the underlying mechanisms. We examine the expression of DJ-1 in atherosclerotic plaques of human and mouse models which showed that DJ-1 expression was significantly decreased in human plaques compared with that in healthy vessels. Consistent with this, the DJ-1 levels were persistently reduced in atherosclerotic lesions of ApoE−/− mice with the increasing time fed by western diet. Furthermore, exposure of vascular smooth muscle cells (VSMCs) to oxidized low-density lipoprotein down-regulated DJ-1 in vitro. The canonical markers of plaque stability and VSMC phenotypes were evaluated in vivo and in vitro. DJ-1 deficiency in Apoe−/− mice promoted the progression of atherosclerosis and exaggerated plaque instability. Moreover, isolated VSMCs from Apoe−/−DJ-1−/− mice showed lower expression of contractile markers (α-smooth muscle actin and calponin) and higher expression of synthetic indicators (osteopontin, vimentin and tropoelastin) and Kruppel-like factor 4 (KLF4) by comparison with Apoe−/−DJ-1+/+ mice. Furthermore, genetic inhibition of KLF4 counteracted the adverse effects of DJ-1 deletion. Therefore, our results showed that DJ-1 deletion caused phenotype switching of VSMCs and exacerbated atherosclerotic plaque instability in a KLF4-dependent manner.  相似文献   

2.
Requirement for CD154 in the progression of atherosclerosis.   总被引:36,自引:0,他引:36  
Atherosclerosis is a systemic disease of the large arteries, and activation of inflammatory pathways is important in its pathogenesis. Increasing evidence supports the importance of CD40-CD154 interactions in atherosclerosis, interactions originally known to be essential in major immune reactions and autoimmune diseases. CD40 is present on atheroma-derived cells in vitro and in human atheromata in situ. Ligation of CD40 on atheroma-associated cells in vitro activates the production of chemokines, cytokines, matrix metalloproteinases, adhesion molecules and tissue factor, substances responsible for lesion progression and plaque destabilization. Administration of antibody against CD154 to low-density lipoprotein receptor-deficient mice has been shown to reduce atherosclerosis and decrease T-lymphocyte and macrophage content; however, only initial lesions were studied. Here, we determined the effect of genetic disruption of CD154 in ApoE-/- mice in both initial and advanced atherosclerotic lesions. Plaque area was reduced 550%. In contrast to previous reports, initial lesion development was not affected. Advanced plaques in CD154-/-ApoE-/- mice had a less-lipid-containing, collagen-rich, stable plaque phenotype, with a reduced T-lymphocyte/macrophage content. These data indicate that CD40-CD154 signaling is important in late atherosclerotic changes, such as lipid core formation and plaque destabilization.  相似文献   

3.
Myocardial infarction and stroke are two of the leading causes of death and primarily triggered by destabilization of atherosclerotic plaques. Fatty streaks are known to develop at sites in the arterial wall where shear stress is low. These fatty streaks can develop into more advanced plaques that are prone to rupture. Rupture leads to thrombus formation, which may subsequently result in a myocardial infarction or stroke. The relation between shear stress on the inner (endothelial) layer of the arterial wall in relation to plaque development has been studied extensively. However, a causal relation between adventitial shear forces and atherosclerosis development has never been considered.Arterial stiffening increases with age and may facilitate an increase in shear strain in the adventitial layer, an axial shear between artery and surrounding tissue. In the adventitial layer, a large number of inflammatory cells and perivascular structures are present that are subjected to shear strain. Cyclic strain applied to endothelial cells stimulates neovascularisation via different pathways. The conduit arteries in the human body (e.g. coronary and carotid artery) have their own nutrition supply: the vasa vasorum, which is located in the adventitial layer and sprouts into the intimal layer when atherosclerotic plaque develops. Increased plaque neovascularisation makes the plaques more prone to rupture. Therefore we hypothesize that increased shear strain facilitates the development of vulnerable plaques by stimulation of atherosclerotic plaque neovascularisation that sprouts from the adventitial vasa vasorum. Validation of this hypothesis paves the road to the use of adventitial shear strain (measured using a noninvasive ultrasound technique) as risk assessment in plaque.  相似文献   

4.
Autophagy dysfunction in mouse atherosclerosis models has been associated with increased lipid accumulation, apoptosis and inflammation. Expression of cystatin C (CysC) is decreased in human atheroma, and CysC deficiency enhances atherosclerosis in mice. Here, we first investigated the association of autophagy and CysC expression levels with atheroma plaque severity in human atherosclerotic lesions. We found that autophagy proteins Atg5 and LC3β in advanced human carotid atherosclerotic lesions are decreased, while markers of dysfunctional autophagy p62/SQSTM1 and ubiquitin are increased together with elevated levels of lipid accumulation and apoptosis. The expressions of LC3β and Atg5 were positively associated with CysC expression. Second, we investigated whether CysC expression is involved in autophagy in atherosclerotic apoE‐deficient mice, demonstrating that CysC deficiency (CysC?/?) in these mice results in reduction of Atg5 and LC3β levels and induction of apoptosis. Third, macrophages isolated from CysC?/? mice displayed increased levels of p62/SQSTM1 and higher sensitivity to 7‐oxysterol‐mediated lysosomal membrane destabilization and apoptosis. Finally, CysC treatment minimized oxysterol‐mediated cellular lipid accumulation. We conclude that autophagy dysfunction is a characteristic of advanced human atherosclerotic lesions and is associated with reduced levels of CysC. The deficiency of CysC causes autophagy dysfunction and apoptosis in macrophages and apoE‐deficient mice. The results indicate that CysC plays an important regulatory role in combating cell death via the autophagic pathway in atherosclerosis.  相似文献   

5.
Mouse models of experimental atherosclerosis.   总被引:21,自引:0,他引:21  
Since 1992 the mouse has become an excellent model for experimental atherosclerosis research. Until 1992, the diet -- induced atherosclerosis mouse model has been used effectively, but the lesions tended to be small and were limited to early fatty-streak stage. This model was also criticized because of the toxicity and inflammatory responses due to the diet. In 1992 the first line of gene targeted animal models, namely apolipoprotein E -- knockout mice was developed. Of the genetically engineered models, the apoE -- deficient model is the only one that develops extensive atherosclerotic lesions on a chow diet. It is also the model in which the lesions have been characterized most thoroughly. The lesions develop into fibrous plaques; however, there is no evidence that plaque rupture occurs in this model. The LDL receptor - deficient model has elevated LDL levels, but no lesions, or only very small lesions, form on the chow diet, however, robust lesions do form on the western-type diet. The creation of apoE -- knockout mice has changed the face of atherosclerosis research.  相似文献   

6.
In the absence of disease, microvessels provide vessel wall nutrients to the tunica media, while the intima is fed by oxygen diffusion from the lumen. As disease evolves and the tunica intima thickens, oxygen diffusion is impaired, and microvessels become the major source for nutrients to the vessel wall. Microvessels serve as a port of entry for inflammatory cells, from the systemic circulation to the nascent atherosclerotic lesion. As disease progress, microvessels also play a role in intraplaque hemorrhage, lipid core expansion, and plaque rupture. In addition, microvessels are also involved in stent restenosis, and plaque regression. Therefore, microvessels are a pivotal component of atherosclerosis, and proper patient risk-stratification in the near future may include the detection of increased neovascularization in atherosclerotic lesions. This review divided in two parts summarizes the current understanding of atherosclerosis neovascularization, starting with the normal anatomy and physiology and progressing to more advanced stages of the disease. We will review the structure and function of vasa vasorum in health and disease, the mechanisms responsible for the angiogenic process, the role of the immune system, including inflammation and Toll-like receptors, and the pathology of microvessels in early atherosclerotic plaques. Furthermore, the review addresses the advanced stages of atherosclerosis, summarizing the progressive role for microvessels during disease progression, red blood cell extravasation, lipid core expansion, plaque rupture, healing, repair, restenosis, and disease regression, offering the clinician a state-of-the-art, "bench to bedside" approach to neovascularization in human atherosclerosis.  相似文献   

7.
Yi GW  Zeng QT  Mao XB  Cheng M  Yang XF  Liu HT  Mao Y  Guo M  Ji QW  Zhong YC 《Cytokine》2011,53(3):320-326
BackgroundCXCL16 has been shown to be involved in atherosclerotic lesion development, but its role in preexisting lesions is still unclear. This study aims to assess the effect of CXCL16 on the stability of preexisting lesions.MethodsWe firstly measured plasma CXCL16 level in Apolipoprotein E–Knockout (ApoE KO) mice with either high-cholesterol diet (HCD) or normal diet (ND) by enzyme-linked immunosorbent assay (ELISA). Then, silastic collars were placed around the carotid arteries in HCD-ApoE KO mice to accelerate atherosclerotic lesions. Five weeks later, CXCL16 was overexpressed by intravenous injection of lentivirus carrying CXCL16 transgene. Two weeks after infection, lesions were stained with hematoxylin and eosin (HE) and with oil red O. Biomarkers in the lesions, such as MMPs, CCL2, VCAM-1 and TNF-α were measured by real-time polymerase chain reaction (RT-PCR), which indicate the instability of plaques.ResultsThe level of CXCL16 in plasma was higher in HCD-ApoE KO mice as compared to ND-ApoE KO mice. Circulating CXCL16 overexpression does not affect the size of preexisting plaques, but it leads to vulnerable plaque morphology and increases the expression of markers of plaque destabilization.ConclusionSystemic CXCL16 becomes much higher in atherosclerosis, and it could be a potential atherogenic biomarker. Overexpression of CXCL16 promotes the evolution of preexisting lesions to vulnerable plaques in ApoE KO mice.  相似文献   

8.
Atherosclerotic cardiovascular diseases (CVD) are the leading cause of mortality worldwide, accounting for greater than 19.106 deaths annually. Despite major advances in the treatment of CVD, a high proportion of CVD victims die suddenly while being apparently healthy, the great majority of these accidents being due to the rupture or erosion of a vulnerable coronary atherosclerotic plaque. Indeed, an acute heart attack is the first symptom of atherosclerosis in as much as 50% of individuals with severe disease. A non-invasive imaging methodology allowing the early detection of vulnerable atherosclerosis in selected individuals prior to the occurrence of any symptom would therefore be of great public health benefit. Nuclear imaging could potentially allow the identification of vulnerable patients by non-invasive scintigraphic imaging following administration of a radiolabeled tracer. The development of radiolabeled probes that specifically bind to and allow the in vivo imaging of vulnerable atherosclerotic plaques is therefore the subject of intense ongoing experimental and clinical research. Radiotracers targeted at the inflammatory process seem particularly relevant and promising. Recently, macrophage targeting allowed the experimental in vivo detection of atherosclerosis using either SPECT or PET imaging. A few tracers have also been evaluated clinically. Targeting of apoptosis and macrophage metabolism both allowed the imaging of vulnerable atherosclerotic plaques in the carotid vessels of patients. However, nuclear imaging of vulnerable plaques at the level of the coronary arteries remains a challenging issue because of the small size of atherosclerotic lesions and of their vicinity with blood and the circulating tracer activity.  相似文献   

9.
Mouse models of atherosclerosis are extensively being used to study the mechanisms of atherosclerotic plaque development and the results are frequently extrapolated to humans. However, major differences have been described between murine and human atherosclerotic lesions and the determination of similarities and differences between these species has been largely addressed recently. This study takes over and extends previous studies performed by our group and related to the biomechanical characterization of both mouse and human atherosclerotic lesions. Its main objective was to determine the distribution and amplitude of mechanical stresses including peak cap stress (PCS) in aortic vessels from atherosclerotic apoE-/- mice, in order to evaluate whether such biomechanical data would be in accordance with the previously suggested lack of plaque rupture in this model. Successful finite element analysis was performed from the zero-stress configuration of aortic arch sections and mainly indicated (1) the modest role of atherosclerotic lesions in the observed increase in residual parietal stresses in apoE-/- mouse vessels and (2) the low amplitude of murine PCS as compared to humans. Overall, the results from the present study support the hypothesis that murine biomechanical properties and artery size confer less propensity to rupture for mouse lesions in comparison with those of humans.  相似文献   

10.
PURPOSE OF REVIEW: Decades of literature have unambiguously demonstrated regression and remodeling of atherosclerotic lesions, including advanced plaques. Recent insights into underlying mechanisms are reviewed. RECENT FINDINGS: Factors promoting regression include decreased apolipoprotein B-lipoprotein retention within the arterial wall, efflux of cholesterol and other harmful lipids from plaques, and emigration of lesional foam cells followed by entry of healthy phagocytes that remove necrotic debris and other plaque components. Cellular lipid efflux and foam cell emigration can occur surprisingly rapidly once the plaque milieu is improved. Lipid efflux and foam cell emigration each involve specific molecular mediators, many of which have been identified. Necrotic debris removal can be surprisingly comprehensive, with essentially full disappearance documented in animal models. SUMMARY: The essential prerequisite for regression is robust improvement in plaque milieu, meaning large plasma reductions in atherogenic apolipoprotein B-lipoproteins or brisk enhancements in 'reverse' lipid transport from plaque into liver. Importantly, the processes of regression are consistent with rapid correction of features characteristic of the rupture-prone, vulnerable plaques responsible for acute coronary syndromes. New interventions to lower apolipoprotein B-lipoprotein levels and enhance reverse lipid transport may allow regression to become a widespread clinical goal. Strategies based on recent mechanistic insights may facilitate further therapeutic progress.  相似文献   

11.
Caveolin-1 (Cav-1) is a regulatory protein of the arterial wall, but its role in human atherosclerosis remains unknown. We have studied the relationships between Cav-1 abundance, atherosclerotic plaque characteristics and clinical manisfestations of atherosclerotic disease.We determined Cav-1 expression by western blotting in atherosclerotic plaques harvested from 378 subjects that underwent carotid endarterectomy. Cav-1 levels were significantly lower in carotid plaques than non-atherosclerotic vascular specimens. Low Cav-1 expression was associated with features of plaque instability such as large lipid core, thrombus formation, macrophage infiltration, high IL-6, IL-8 levels and elevated MMP-9 activity. Clinically, a down-regulation of Cav-1 was observed in plaques obtained from men, patients with a history of myocardial infarction and restenotic lesions. Cav-1 levels above the median were associated with absence of new vascular events within 30 days after surgery [0% vs. 4%] and a trend towards lower incidence of new cardiovascular events during longer follow-up. Consistent with these clinical data, Cav-1 null mice revealed elevated intimal hyperplasia response following arterial injury that was significantly attenuated after MMP inhibition. Recombinant peptides mimicking Cav-1 scaffolding domain (Cavtratin) reduced gelatinase activity in cultured porcine arteries and impaired MMP-9 activity and COX-2 in LPS-challenged macrophages. Administration of Cavtratin strongly impaired flow-induced expansive remodeling in mice. This is the first study that identifies Cav-1 as a novel potential stabilizing factor in human atherosclerosis. Our findings support the hypothesis that local down-regulation of Cav-1 in atherosclerotic lesions contributes to plaque formation and/or instability accelerating the occurrence of adverse clinical outcomes. Therefore, given the large number of patients studied, we believe that Cav-1 may be considered as a novel target in the prevention of human atherosclerotic disease and the loss of Cav-1 may be a novel biomarker of vulnerable plaque with prognostic value.  相似文献   

12.
Hepcidin has emerged as the key hormone in the regulation of iron balance and recycling. Elevated levels increase iron in macrophages and inhibit gastrointestinal iron uptake. The physiology of hepcidin suggests an additional mechanism by which iron depletion could protect against atherosclerotic lesion progression. Without hepcidin, macrophages retain less iron. Very low hepcidin levels occur in iron deficiency anemia and also in homozygous hemochromatosis. There is defective retention of iron in macrophages in hemochromatosis and also evidently no increase in atherosclerosis in this disorder. In normal subjects with intact hepcidin responses, atherosclerotic plaque has been reported to have roughly an order of magnitude higher iron concentration than that in healthy arterial wall. Hepcidin may promote plaque destabilization by preventing iron mobilization from macrophages within atherosclerotic lesions; the absence of this mobilization may result in increased cellular iron loads, lipid peroxidation, and progression to foam cells. Marked downregulation of hepcidin (e.g., by induction of iron deficiency anemia) could accelerate iron loss from intralesional macrophages. It is proposed that the minimally proatherogenic level of hepcidin is near the low levels associated with iron deficiency anemia or homozygous hemochromatosis. Induced iron deficiency anemia intensely mobilizes macrophage iron throughout the body to support erythropoiesis. Macrophage iron in the interior of atherosclerotic plaques is not exempt from this process. Decreases in both intralesional iron and lesion size by systemic iron reduction have been shown in animal studies. It remains to be confirmed in humans that a period of systemic iron depletion can decrease lesion size and increase lesion stability as demonstrated in animal studies. The proposed effects of hepcidin and iron in plaque progression offer an explanation of the paradox of no increase in atherosclerosis in patients with hemochromatosis despite a key role of iron in atherogenesis in normal subjects.  相似文献   

13.
BACKGROUND: Atherosclerotic plaques are heterogeneous vascular lesions. Changes in cell plaque composition are fundamental events inside the plaque microenvironment that are strictly related to the clinical outcome of these lesions (organ damage). The knowledge of these modifications may help to better understand the pathophysiological mechanisms of atherosclerosis. METHODS: We report on a flow cytometry method to characterize and quantify the cell subpopulations in human atherosclerotic plaques. Cells were obtained from endarterectomy specimens after collagenase digestion. Both surface and intracytoplasmic antigens were labeled. RESULTS: Our data demonstrated that the method we described allowed the characterization of cell populations that compose the atherosclerotic plaque, avoiding contamination by tunica media smooth muscle cells and the noise of cellular debris. Moreover this validation study showed that about 50% of cells in the atherosclerotic plaques are inflammatory mononuclear cells (T lymphocytes and monocytes/macrophages). CONCLUSIONS: Reproducible quantitative methods for cell population characterization may increase the understanding of pathophysiological mechanisms responsible for plaque progression. The methodology herein described gave us the possibility of quickly calculating the relative amount of each cell population and studying both surface and intracellular markers to analyze the functional stage of the cells. The clinical correlation was not assessed in the present study, because we used a small patient group to validate the method, but should be the subject of further analyses in a larger patient population.  相似文献   

14.
Atherosclerosis is a major cause of morbidity and mortality in the United States. Persistently elevated circulating low-density lipoprotein, or hypercholesterolemia, and deposition of low-density lipoprotein in the vascular wall are the main inducers of atherosclerosis, which manifests itself as arterial lesions or plaques. Some plaques become thrombosis-prone and rupture, causing acute myocardial infarction or stroke. Lowering plasma cholesterol through the use of statins is the primary intervention against atherosclerosis. Treatment with statins slows progression of atherosclerosis but can only support limited plaque regression. Partially regressed plaques continue to pose a serious threat due to their remaining potential to rupture. Thus, new interventions inducing complete reversal of atherosclerosis are being sought. Implementation of new therapies will require clear understanding of the mechanisms driving plaque resolution. In this Commentary, we highlight the role of bone marrow endothelial progenitors in atherosclerotic plaque regression and discuss how regenerative cell-based interventions could be used in combination with plasma lipid-lowering to induce plaque reversal in order to prevent and/or reduce adverse cardiovascular events.  相似文献   

15.
An imbalance in the matrix metalloproteinases/tissue inhibitors of metalloproteinases (MMPs/TIMPs) contributes to atherosclerotic plaque destabilization and rupture. Here we determined whether oxysterols accumulating in advanced atherosclerotic lesions play a role in plaque destabilization. In human promonocytic U937 cells, we investigated the effects of an oxysterol mixture of composition similar to that in advanced human carotid plaques on the expression and synthesis of MMP-9 and its endogenous inhibitors TIMP-1 and TIMP-2. A marked increment of MMP-9 gene expression, but not of its inhibitors, was observed by real-time RT-PCR; MMP-9 gelatinolytic activity was also found increased by gel zymography. Consistently, a net increment of MMP-9 protein level was also observed by immunoblotting. Using antioxidants or specific inhibitors or siRNAs, we demonstrated that the oxysterol mixture induces MMP-9 expression through: (i) overproduction of reactive oxygen species, probably by NADPH-oxidase and mitochondria; (ii) up-regulation of mitogen-activated protein kinase signaling pathways via protein kinase C; and (iii) up-regulation of activator protein-1- and nuclear factor-κB-DNA binding. These results suggest, for the first time, that oxysterols accumulating in advanced atherosclerotic lesions significantly contribute to plaque vulnerability by promoting MMP-9/TIMP-1/2 imbalance in phagocytic cells.  相似文献   

16.
It is well accepted that atherosclerosis initiation and progression correlate positively with low and oscillating flow wall shear stresses (FSS). However, this mechanism cannot explain why advanced plaques continue to grow under elevated FSS conditions. In vivo magnetic resonance imaging (MRI)-based 2D/3D multi-component models with fluid-structure interactions (FSI, 3D only) for human carotid atherosclerotic plaques were introduced to quantify correlations between plaque progression measured by wall thickness increase (WTI) and plaque wall (structure) stress (PWS) conditions. A histologically validated multi-contrast MRI protocol was used to acquire multi-year in vivo MRI images. Our results using 2D models (200-700 data points/patient) indicated that 18 out of 21 patients studied showed significant negative correlation between WTI and PWS at time 2 (T2). The 95% confidence interval for the Pearson correlation coefficient is (-0.443,-0.246), p<0.0001. Our 3D FSI model supported the 2D correlation results and further indicated that combining both plaque structure stress and flow shear stress gave better approximation results (PWS, T2: R(2)=0.279; FSS, T1: R(2)=0.276; combining both: R(2)=0.637). These pilot studies suggest that both lower PWS and lower FSS may contribute to continued plaque progression and should be taken into consideration in future investigations of diseases related to atherosclerosis.  相似文献   

17.
The accumulation of lipids, including cholesterol, in the arterial wall plays a key role in the pathogenesis of atherosclerosis. Although several advances have been made in the detection and imaging of these lipid structures in plaque lesions, their morphology and composition have yet to be fully elucidated, particularly in different animal models of disease. To address this issue, we analyzed lipid morphology and composition in the atherosclerotic plaques of two animal models of disease, the low density lipoprotein receptor-deficient (LDLR(-/-)) mouse and the ApoE lipoprotein-deficient (ApoE(-/-)) mouse, utilizing hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy in combination with principal component analysis (PCA). Hyperspectral CARS imaging revealed lipid-rich macrophage cells and condensed needle-shaped and plate-shaped lipid crystal structures in both mice. Spectral analysis with PCA and comparison to spectra of pure cholesterol and cholesteryl ester derivatives further revealed these lipid structures to be pure cholesterol crystals, which were predominantly observed in the ApoE(-/-) mouse model. These results illustrate the ability of hyperspectral CARS imaging in combination with multivariate analysis to characterize atherosclerotic lipid morphology and composition with chemical specificity, and consequently, provide new insight into the formation of cholesterol crystal structures in atherosclerotic plaque lesions.  相似文献   

18.
Identification of high-risk atherosclerotic lesions prone to rupture and thrombosis may greatly decrease the morbidity and mortality associated with atherosclerosis. High-resolution magnetic resonance imaging (MRI) has recently emerged as one of the most promising techniques for the non-invasive study of atherothrombotic disease, as it can characterize plaque composition and monitor its progression. The development of MRI contrast agents that specifically target components of the atherosclerotic plaque may enable non-invasive detection of high-risk lesions. This review discusses the use of high-resolution MRI for plaque detection and characterization and the potentials of "Molecular Imaging" using a variety of molecules present in atherosclerotic plaques that may serve as targets for specific contrast agents to allow the identification of high-risk atherosclerotic lesions in-vivo. Ultimately, such agents may enable treatment of "high-risk" patients prior to lesion progression and occurrence of complications.  相似文献   

19.
Complement factor C5a and its receptor C5aR are expressed in vulnerable atherosclerotic plaques; however, a causal relation between C5a and plaque rupture has not been established yet. Accelerated atherosclerosis was induced by placing vein grafts in male apoE?/? mice. After 24 days, when advanced plaques had developed, C5a or PBS was applied locally at the lesion site in a pluronic gel. Three days later mice were killed to examine the acute effect of C5a on late stage atherosclerosis. A significant increase in C5aR in the plaque was detectable in mice treated with C5a. Lesion size and plaque morphology did not differ between treatment groups, but interestingly, local treatment with C5a resulted in a striking increase in the amount of plaque disruptions with concomitant intraplaque haemorrhage. To identify the potential underlying mechanisms, smooth muscle cells and endothelial cells were treated in vitro with C5a. Both cell types revealed a marked increase in apoptosis after stimulation with C5a, which may contribute to lesion instability in vivo. Indeed, apoptosis within the plaque was seen to be significantly increased after C5a treatment. We here demonstrate a causal role for C5a in atherosclerotic plaque disruptions, probably by inducing apoptosis. Therefore, intervention in complement factor C5a signalling may be a promising target in the prevention of acute atherosclerotic complications.  相似文献   

20.
Atherosclerosis is the main pathophysiological process underlying coronary artery disease (CAD). Acute complications of atherosclerosis, such as myocardial infarction, are caused by the rupture of vulnerable atherosclerotic plaques, which are characterized by thin, highly inflamed, and collagen-poor fibrous caps. Several lines of evidence mechanistically link the heme peroxidase myeloperoxidase (MPO), inflammation as well as acute and chronic manifestations of atherosclerosis. MPO and MPO-derived oxidants have been shown to contribute to the formation of foam cells, endothelial dysfunction and apoptosis, the activation of latent matrix metalloproteinases, and the expression of tissue factor that can promote the development of vulnerable plaque. As such, detection, quantification and imaging of MPO mass and activity have become useful in cardiac risk stratification, both for disease assessment and in the identification of patients at risk of plaque rupture. This review summarizes the current knowledge about the role of MPO in CAD with a focus on its possible roles in plaque rupture and recent advances to quantify and image MPO in plasma and atherosclerotic plaques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号