首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 313 毫秒
1.
Uniform and monodispersed silica nanoparticles were synthesized with a mean diameter of 100 ± 20 nm as analyzed by Transmission Electron Microscopy (TEM). Glutaraldehyde was used as a coupling agent for efficient binding of the lipase onto the silica nanoparticles. For the hydrolysis of pNPP at pH 7.2, the activation energy within 25–40 °C for free and immobilized lipase was 7.8 and 1.25 KJ/mol, respectively. The Vmax and Km of immobilized lipase at 25 °C for pNPP hydrolysis were found to be 212 μmol/min/mg and 0.3 mM, whereas those for free lipase were 26.17 μmol/min and 1.427 mM, respectively. The lower activation energy of immobilized lipase in comparison to free lipase suggests a change in conformation of the enzyme leading to a requirement for lower energy on the surface of the nanoparticles. A better yield (7 fold higher) of ethyl isovalerate was observed using lipase immobilized onto silica nanoparticles in comparison to free lipase.  相似文献   

2.
Lipase production (8.02 ± 0.24 U/ml) by the yeast Aureobasidium pullulans HN2.3 isolated from sea saltern was carried by using time-dependent induction strategy. The lipase in the supernatant of the yeast cell culture was purified to homogeneity with a 3.4-fold increase in specific lipase activity as compared to that in the supernatant by ammonium sulfate fractionation, gel filtration chromatography and anion-exchange chromatography. According to the data on SDS polyacrylamide gel electrophoresis, the molecular mass of the purified enzyme was estimated to be 63.5 kDa. The optimal pH and temperature of the purified enzyme were 8.5 and 35 °C, respectively. The enzyme was greatly inhibited by Hg2+, Fe2+ and Zn2+. The enzyme was strongly inhibited by phenylmethanesulphonyl fluoride, not inhibited by ethylene diamine tetraacetic acid (EDTA), but weakly inhibited by iodoacetic acid. It was found that the purified lipase had the highest hydrolytic activity towards peanut oil.  相似文献   

3.
Mesoporous activated carbon (MAC) derived from rice husk is used for the immobilization of acidic lipase (ALIP) produced from Pseudomonas gessardii. The purified acidic lipase had the specific activity and molecular weight of 1473 U/mg and 94 kDa respectively. To determine the optimum conditions for the immobilization of lipase onto MAC, the experiments were carried out by varying the time (10–180 min), pH (2–8), temperature (10–50 °C) and the initial lipase activity (49 × 103, 98 × 103, 147 × 103 and 196 × 103 U/l in acetate buffer). The optimum conditions for immobilization of acidic lipase were found to be: time—120 min; pH 3.5; temperature—30 °C, which resulted in achieving a maximum immobilization of 1834 U/g. The thermal stability of the immobilized lipase was comparatively higher than that in its free form. The free and immobilized enzyme kinetic parameters (Km and Vmax) were found using Michaelis–Menten enzyme kinetics. The Km values for free enzyme and immobilized one were 0.655 and 0.243 mM respectively. The immobilization of acidic lipase onto MAC was confirmed using Fourier Transform-Infrared Spectroscopy, X-ray diffraction analysis and scanning electron microscopy.  相似文献   

4.
A psychrophilic bacterium producing cold-active lipase upon growth at low temperature was isolated from the soil samples of Gangotri glacier and identified as Microbacterium luteolum. The bacterial strain produced maximum lipase at 15 °C, at a pH of 8.0. Beef extract served as the best organic nitrogen source and ammonium nitrate as inorganic for maximum lipase production. Castor oil served as an inducer and glucose served as an additional carbon source for production of cold-active lipase. Ferric chloride as additional mineral salt in the medium, highly influenced the lipase production with an activity of 8.01 U ml?1. The cold-active lipase was purified to 35.64-fold by DEAE-cellulose column chromatography. It showed maximum activity at 5 °C and thermostability up to 35 °C. The purified lipase was stable between pH 5 and 9 and the optimal pH for enzymatic hydrolysis was 8.0. Lipase activity was stimulated in presence of all the solvents (5%) tested except with acetonitrile. Lipase activity was inhibited in presence of Mn2+, Cu2+, and Hg2+; whereas Fe+, Na+ did not have any inhibitory effect on the enzyme activity. The purified lipase was stable in the presence of SDS; however, EDTA and dithiothreitol inhibited enzyme activity. Presence of Ca2+ along with inhibitors stabilized lipase activity. The cold active lipase thus exhibiting activity and stability at a low temperature and alkaline pH appears to be practically useful in industrial applications especially in detergent formulations.  相似文献   

5.
A biocatalyst with high activity retention of lipase was fabricated by the covalent immobilization of Candida rugosa lipase on a cellulose nanofiber membrane. This nanofiber membrane was composed of nonwoven fibers with 200 nm nominal fiber diameter. It was prepared by electrospinning of cellulose acetate (CA) and then modified with alkaline hydrolysis to convert the nanofiber surface into regenerated cellulose (RC). The nanofiber membrane was further oxidized by NaIO4. Aldehyde groups were simultaneously generated on the nanofiber surface for coupling with lipase. Response surface methodology (RSM) was applied to model and optimize the modification conditions, namely NaIO4 content (2–10 mg/mL), reaction time (2–10 h), reaction temperature (25–35 °C) and reaction pH (5.5–6.5). Well-correlating models were established for the residual activity of the immobilized enzyme (R2 = 0.9228 and 0.8950). We found an enzymatic activity of 29.6 U/g of the biocatalyst was obtained with optimum operational conditions. The immobilized lipase exhibited significantly higher thermal stability and durability than equivalent free enzyme.  相似文献   

6.
To date, there have been reports mostly about research results of the peony root in comparison to the aerial parts. According to our study, the aerial parts of P.lactiflora showed superior anti-oxidative and pancreatic lipase inhibitory activities than its root. Especially, the water extract and the ethyl acetate fraction of the ethanol extract exhibited potent pancreatic lipase inhibitory activity by 53.11 ± 1.22% and 46.16 ± 1.55% at the same dose of orlistat (62.5 ± 1.27%). The ethanol extract exhibited the best anti-oxidative activity with IC50 of 17.08 ± 0.9 μg/mL, and the ethyl acetate fraction 19.75 ± 0.02 μg/mL, respectively, comparing to the positive control rutin (IC50, 22.66 ± 0.29 μg/mL). From the anti-oxidative and pancreatic lipase inhibitory active fractions three new compounds, monplacphloroside (1), monplachydroxyquinoside (2) and herbacetin-7-O-β-d-sophoroside (3) were isolated along with 19 (4-22) known ones.Compounds, PGG (14), 1-O-methyl-2,3,4,6-tetra-O-galloyl-β-d-glucopyranose (17) and ethylgallate (9) were found to be the strongest antioxidants and pancreatic lipase inhibitors. Monoterpenes, albiflorin R2 (19) and albiflorin (20) were determined for the first time as strong pancreatic lipase inhibitors. The presence of the esterified galloyl moiety, with its increasing numbers or the β-lactone cycle within the molecular structure plays an essential role for the enhancement of the pancreatic lipase enzyme inhibitory activity.  相似文献   

7.
《Process Biochemistry》2004,39(11):1495-1502
The culture medium including nitrogen source, carbon source and metal ions, for lipase from Penicillium camembertii Thom PG-3 was optimized and the optimal medium consisted of soybean meal (fat free) 4%, Jojoba oil 0.5%, (NH4)2HPO4, 0.1% Tween 60, initial pH 6.4 and the inoculation was at 28 °C for 96 h. The lipase activity produced was enhanced 3.9-fold and reached 500 U/ml. The lipase was purified 19.8-fold by pH precipitation, ethanol precipitation and ammonium sulphate precipitation as well as DEAE-cellulose chromatography. The purified lipase showed one polypeptide band in SDS-polyacrylamide gel electrophoreses (SDS-PAGE) with molecular weight 28.18 kDa. The optimal pH and temperature for activity of lipase were 6.4 and 48 °C, respectively, which are higher than those lipases from other penicillium sources. The P. camembertii Thom lipase is 1,3-positional specificity for hydrolysis of triglyceride and hydrolyses plant oil preferentially to animal oil. The lipase can be used in short chain ester synthesis with an esterification degree of 95%.  相似文献   

8.
A Metarhizium anisopliae spore surface lipase (MASSL) strongly bound to the fungal spore surface has been purified by ion exchange chromatography on DEAE sepharose followed by ultrafiltration and hydrophobic interaction chromatography on phenyl sepharose. Electrophoretic analyses showed that the molecular weight of this lipase is ~66 kDa and pI is 5.6. Protein sequencing revealed that identified peptides in MASSL shared identity with several lipases or lipase-related sequences. The enzyme was able to hydrolyze triolein, the animal lipid cholesteryl stearate and all ρNP ester substrates tested with some preference for esters with a short acyl chain. The values of Km and Vmax for the substrates ρNP palmitate and ρNP laurate were respectively 0.474 mM and 1.093 mMol min?1 mg?1 and 0.712 mM and 5.696 mMol min?1 mg?1. The optimum temperature of the purified lipase was 30 °C and the enzyme was most stable within the most acid pH range (pH 3–6). Triton X-100 increased and SDS reduced enzyme lipolytic activity. MASSL activity was stimulated by Ca2+, Mg2+ and Co2+ and inhibited by Mn2+. The inhibitory effect on activity exerted by EDTA and EGTA was limited, while the lipase inhibitor Ebelactone B completely inhibited MASSL activity as well as PMSF. Methanol 0.5% apparently did not affect MASSL activity while β-mercaptoethanol activated the enzyme.  相似文献   

9.
An extracellular lipase gene ln1 from thermophilic fungus Thermomyces lanuginosus HSAUP0380006 was cloned through RT-PCR and RACE amplification. Its coding sequence predicted a 292 residues protein with a 17 amino acids signal peptide. The deduced amino acids showed 78.4% similarity to another lipase lgy from T. lanuginosus while shared low similarity with other fungi lipases. Higher frequencies hydrophobic amino acids related to lipase thermal stability, such as Ala, Val, Leu and Gly were observed in this lipase (named LN). The sequence, -Gly-His-Ser-Leu-Gly-, known as a lipase-specific consensus sequence of mould, was also found in LN. High level expression for recombinant lipase was achieved in Pichia pastoris GS115 under the control of strong AOX1 promoter. It was purified to homogeneity through only one step DEAE-Sepharose anion exchange chromatography and got activity of 1328 U/ml. The molecular mass of one single band of this lipase was estimated to be 33 kDa by SDS-PAGE. The enzyme was stable at 60 °C and kept 65% enzyme activity after 30 min incubation at 70 °C. It kept half-activity after incubated for 40 min at 80 °C. The optimum pH for enzyme activity was 9.0 and the lipase was stable from pH 8.0 to 12.0. Lipase activity was enhanced by Ca2+ and inhibited by Fe2+, Zn2+, K+, and Ag+. The cell-free enzyme hydrolyzed and synthesized esters efficiently, and the synthetic efficiency even reached 81.5%. The physicochemical and catalytic properties of the lipase are extensively investigated for its potential industrial applications.  相似文献   

10.
Enzyme stabilization via immobilization is one of the preferred processes as it provides the advantages of recovery and reusability. In this study, Thermomyces lanuginosus lipase has been immobilized through crosslinking using 2% glutaraldehyde and hen egg white, as an approach towards CLEA preparation. The immobilization efficiency and the properties of the immobilized enzyme in terms of stability to pH, temperature, and denaturants was studied and compared with the free enzyme. Immobilization efficiency of 56% was achieved with hen egg white. The immobilized enzyme displayed a shift in optimum pH towards the acidic side with an optimum at pH 4.0 whereas the pH optimum for free enzyme was at pH 6.0. The immobilized enzyme was stable at higher temperature retaining about 83% of its maximum activity as compared to the free enzyme retaining only 41% activity at 70 °C. The denaturation of lipase in free form was rapid with a half-life of 2 h at 60 °C and 58 min at 70 °C as compared to 12 h at 60 °C and 2 h at 70 °C for the immobilized enzyme. The effect of denaturants, urea and guanidine hydrochloride on the free and immobilized enzyme was studied and the immobilized enzyme was found to be more stable towards denaturants retaining 74% activity in 8 M urea and 98% in 6 M GndHCl as compared to 42% and 33% respectively in the case of free enzyme. The apparent Km (2.08 mM) and apparent Vmax (0.95 μmol/min) of immobilized enzyme was lower as compared to free enzyme; Km (8.0 mM) and Vmax (2.857 μmol/min). The immobilized enzyme was reused several times for the hydrolysis of olive oil.  相似文献   

11.
A solvent-tolerant bacterium Burkholderia ambifaria YCJ01 was newly isolated by DMSO enrichment of the medium. The lipase from the strain YCJ01 was purified to homogeneity with apparent molecular mass of 34 kDa determined by SDS-PAGE. The purified lipase exhibited maximal activity at a temperature of 60 °C and a pH of 7.5. The lipase was very stable below 55 °C for 7 days (remaining 80.3% initial activity) or at 30 °C for 60 days. PMSF significantly inhibited the lipase activity, while EDTA had no effect on the activity. Strikingly, the lipase showed distinct super-stability to the most tested hydrophilic and hydrophobic solvents (25%, v/v) for 60 days, and different optimal pH in contrast with the alkaline lipase from B. cepacia S31. The lipase demonstrated excellent enantioselective transesterification toward the S-isomer of mandelic acid with a theoretical conversion yield of 50%, eep of 99.9% and ees of 99.9%, which made it an exploitable biocatalyst for organic synthesis and pharmaceutical industries.  相似文献   

12.
The lipase secreted by Burkholderia cepacia ATCC 25416 was particularly attractive in detergent and leather industry due to its specific characteristics of high alkaline and thermal stability. The lipase gene (lipA), lipase chaperone gene (lipB), and native promoter upstream of lipA were cloned. The lipA was composed of 1095 bp, corresponding to 364 amino acid residues. The lipB located immediately downstream of lipA was composed of 1035 bp, corresponding to 344 amino acid residues. The lipase operon was inserted into broad host vector pBBRMCS1 and electroporated into original strain. The homologous expression of recombinant strain showed a significant increase in the lipase activity. LipA was purified by three-step procedure of ammonium sulfate precipitation, phenyl-sepharose FF and DEAE-sepharose FF. SDS-PAGE showed the molecular mass of the lipase was 33 kDa. The enzyme optimal temperature and pH were 60 °C and 11.0, respectively. The enzyme was stable at 30–70 °C. After incubated in 70 °C for 1 h, enzyme remained 72% of its maximal activity. The enzyme exhibited a good stability at pH 9.0–11.5. The lipase preferentially hydrolyzed medium-chain fatty acid esters. The enzyme was strongly activated by Mg2+, Ca2+, Cu2+, Zn2+, Co2+, and apparently inhibited by PMSF, EDTA and also DTT with SDS. The enzyme was compatible with various ionic and non-ionic surfactants as well as oxidant H2O2. The enzyme had good stability in the low- and non-polar solvents.  相似文献   

13.
Acetohydroxyacid synthase (AHAS) is the key enzyme in branched chain amino acid biosynthesis pathway. The enzyme activity and properties of a highly thermostable AHAS from the hyperthermophilic bacterium Thermotoga maritima is being reported. The catalytic and regulatory subunits of AHAS from T. maritima were over-expressed in Escherichia coli. The recombinant subunits were purified using a simplified procedure including a heat-treatment step followed by chromatography. A discontinuous colorimetric assay method was optimized and used to determine the kinetic parameters. AHAS activity was determined to be present in several Thermotogales including T. maritima. The catalytic subunit of T. maritima AHAS was purified approximately 30-fold, with an AHAS activity of approximately 160±27 U/mg and native molecular mass of 156±6 kDa. The regulatory subunit was purified to homogeneity and showed no catalytic activity as expected. The optimum pH and temperature for AHAS activity were 7.0 and 85 °C, respectively. The apparent Km and Vmax for pyruvate were 16.4±2 mM and 246±7 U/mg, respectively. Reconstitution of the catalytic and regulatory subunits led to increased AHAS activity. This is the first report on characterization of an isoleucine, leucine, and valine operon (ilv operon) enzyme from a hyperthermophilic microorganism and may contribute to our understanding of the physiological pathways in Thermotogales. The enzyme represents the most active and thermostable AHAS reported so far.  相似文献   

14.
A functional urea cycle with both cytosolic (ARG I) and mitochondrial (ARG II) arginase activity is present in the liver of an ureogenic air-breathing teleost, Heteropneustes fossilis. Antibodies against mammalian ARG II showed no cross-reactivity with the H. fossilis ARG II. ARG II was purified to homogeneity from H. fossilis liver. Purified ARG II showed a native molecular mass of 96 kDa. SDS–PAGE showed a major band at 48 kDa. The native enzyme, therefore, appears to be a homodimer. The pI value of the enzyme was 7.5. The purified enzyme showed maximum activity at pH 10.5 and 55 °C. The Km of purified ARG II for l-arginine was 5.25 ± 1.12 mM. l-Ornithine and Nω-hydroxy-l-arginine showed mixed inhibition with Ki values 2.16 ± 0.08 and 0.02 ± 0.004 mM respectively. Mn+ 2 and Co+ 2 were effective activators of arginase activity. Antibody raised against purified H. fossilis ARG II did not cross-react with fish ARG I, and mammalian ARG I and ARG II. Western blot with the antibodies against purified H. fossilis hepatic ARG II showed cross reactivity with a 96 kDa band on native PAGE and a 48 kDa band on SDS–PAGE. The molecular, immunological and kinetic properties suggest uniqueness of the hepatic mitochondrial ARG II in H. fossilis.  相似文献   

15.
《Process Biochemistry》2014,49(9):1457-1463
The aim of this study was to investigate the effect of black chokeberry (Aronia melanocarpa L.) extract on the activity of porcine pancreatic α-amylase and lipase. An in vitro study demonstrated that three kinds of chokeberry extracts: methanolic, water and acetic caused inhibition of α-amylase and lipase. The methanolic and acetic extracts exhibited the highest inhibitory activities against α-amylase with the IC50 values of 10.31 ± 0.04 mg/ml and pancreatic lipase 83.45 ± 0.50 mg/ml, respectively. In order to identify the compounds which may be the potential inhibitors of α-amylase and lipase, chokeberry extract was analyzed by preparative reverse phase chromatography and high performance liquid chromatography–mass spectrometry (HPLC–MS). These studies have shown that both anthocyanins and phenolic acids are compounds which inhibit the ability of the reaction catalyzed by α-amylase and lipase. The most effective inhibitor of pancreatic α-amylase was chlorogenic acid (IC50 = 0.57 ± 0.16 mg/ml). In the group of anthocyanins the most potent inhibitor of α-amylase was cyanidin-3-glucoside (IC50 = 1.74 ± 0.04 mg/ml), which also showed an ability to inhibit the reaction catalyzed by pancreatic lipase (IC50 = 1.17 ± 0.05 mg/ml). These findings seem to indicate the use of chokeberry as a functional food component, contributing to its anti-obesity activities.  相似文献   

16.
A thermo-alkaliphilic lipase from Bacillus subtilis DR8806 was functionally expressed as an N-terminal 6xHis-tagged recombinant enzyme in Escherichia coli BL21 using pET-28a(+) expression vector. Sequence analysis revealed an open reading frame of 639 bp encoding a 212-amino acid protein containing the well-conserved Ala-His-Ser-Met-Gly motif. One-step purification of the His-tagged recombinant lipase was achieved using Ni-NTA affinity chromatography with a specific activity of 1364 U/mg. The purified enzyme with an apparent molecular mass of 26.8 kDa demonstrated the maximum activity at 70 °C and pH 8.0 for hydrolysis of p-nitrophenylbutyrate as substrate. The enzyme activity was strongly inhibited by divalent ions of heavy metals such as Hg2+ and Cu2+, while retained over 90% of the original activity in the presence of several reagents including DTNB (5,5′-dithiobis-(2-nitrobenzoic acid)), SDS (sodium dodecyl sulfate), urea, DMF (dimethylformamide), DTT (dithiothreitol), glycerol and Triton X-100. While being considerably stable in organic solvents, imidazolium-based ionic liquids (ILs) had stimulatory effects on the activity of purified lipase. Remarkable stabilization of enzyme at alkaline pH and in ionic liquids as well as its thermostability/thermoactivity are among the most fundamental characteristics which offer great potential for various biotechnological applications including detergent formulation, bioremediation processes and biotransformation in non-aqueous media.  相似文献   

17.
An oxygen-insensitive intracellular enzyme that is responsible for the decolorization of azo dyes was purified from Escherichia coli CD-2. The molecular weight of the purified enzyme was estimated as 27,000 ± 500 Da. Protein identification indicated that the enzyme had high sequence homology with E. coli K12 quinone reductase, and the enzyme was proved to have both azoreductase and quinone reductase activity. With methyl red as substrate, the optimal pH value and temperature were 6.5 and 37 °C, respectively. The enzyme was stable under different physiochemical conditions. The azoreductase activity was restrained by SDS and was almost completely inhibited by Co2+ and Hg2+. Km and Vmax values were 0.18 mM and 8.12 U mg?1 of protein for NADH and 0.05 mM and 6.46 U mg?1 of protein for methyl red, respectively. The purified enzyme could efficiently decolorize methyl red with both NADH and NADPH as electron donors.  相似文献   

18.
In this study, polyphenol oxidase (PPO) was extracted from Prunus domestica and partially purified by ammonium sulfate precipitation, hydrophobic interaction chromatography, and ion exchange chromatography. The final purification step revealed a 32.81-fold purification, and the molecular mass was estimated to be 65 kDa by SDS-PAGE. The purified PPO showed enzymatic activity mainly toward five substrates, namely catechol, catechin, 4-methyl catechol, chlorogenic acid, and L-3,4-dihydroxyphenylalanine, whereas it showed no activity toward caffeic acid, ferulic acid, p-coumaric acid, p-cresol, and l-tyrosine. The optimum pH and temperature values were 6.0 and 25 °C, respectively. The enzyme showed high stability in the pH range of 5.0–7.0 and in the temperature range of 25–65 °C. The most effective inhibitors of this enzyme were found to be ascorbic acid and l-cysteine. The thermal inactivation followed a first-order kinetic model, with activation energy of Ea 150.46 ± 1.29 kJ/mol. PPO extracted from plum showed stability at high pressure, with enzyme activation at 500 MPa.  相似文献   

19.
The objective of this work was to compare the properties of free and immobilized β-galactosidase (Aspergillus oryzae), entrapped in alginate–gelatin beads and cross-linked with glutaraldehyde. The free and immobilized forms of the enzyme showed no decrease in enzyme activity when incubated in buffer solutions in pH ranges of 4.5–7.0. The kinetics of lactose hydrolysis by the free and immobilized enzymes were studied at maximum substrate concentrations of 90 g/L and 140 g/L, respectively, a temperature of 35 °C and a pH of 4.5. The Michaelis–Menten model with competitive inhibition by galactose fit the experimental results for both forms. The Km and Vm values of the free enzyme were 52.13 ± 2.8 mM and 2.56 ± 0.3 gglucose/L min mgenzyme, respectively, and were 60.30 ± 3.3 mM and 1032.07 ± 51.6 glactose/min m3catalyst, respectively, for the immobilized form. The maximum enzymatic activity of the soluble form of β-galactosidase was obtained at pH 4.5 and 55 °C. Alternatively, the immobilized form was most active at pH 5.0 at 60 °C. The free and immobilized enzymes presented activation energies of 6.90 ± 0.5 kcal/mol and 7.7 ± 0.7 kcal/mol, respectively, which suggested that the immobilized enzyme possessed a lower resistance to substrate transfer.  相似文献   

20.
Expression of recombinant proteins as inclusion bodies in bacteria is one of the most efficient ways to produce cloned proteins, as long as the inclusion bodies can be successfully refolded. In this study, the different parameters were investigated and optimized on the refolding of denatured lipase. The maximum lipase activity of 5000 U/L was obtained after incubation of denatured enzyme in a refolding buffer containing 20 mM Tris–HCl (pH 7.0), 1 mM Ca2+ at 20 °C. Then, the refolded lipase was purified to homogeneity by anion exchange chromatography. The purified refolded lipase was stable in broad ranges of temperatures and pH values, as well as in a series of water-miscible organic solvents. In addition, some water-immiscible organic solvents, such as petroleum ether and isopropyl ether, could reduce the polarity and increase the nonpolarity of the refolding system. The results of Fourier transform infrared (FT-IR) microspectroscopy were the first to confirm that lipase refolding could be further improved in the presence of organic solvents. The purified refolded lipase could enantioselectively hydrolyze trans-3-(4-methoxyphenyl) glycidic acid methyl ester [(±)-MPGM]. These features render the lipase attraction for biotechnological applications in the field of organic synthesis and pharmaceutical industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号