首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genome of the cyanobacterium Synechocystis sp. strain PCC6803 has nine kinds of insertion sequence (IS) elements, of which ISY100 in 22 copies is the most abundant. A typical ISY100 member is 947 bp long and has imperfect terminal inverted repeat sequences. It has an open reading frame encoding a 282-amino-acid protein that appears to have partial homology with the transposase encoded by a bacterial IS, IS630, indicating that ISY100 belongs to the IS630 family. To determine whether ISY100 has transposition ability, we constructed a plasmid carrying the IPTG (isopropyl-beta-D-thiogalactopyranoside)-inducible transposase gene at one site and mini-ISY100 with the chloramphenicol resistance gene, substituted for the transposase gene of ISY100, at another site and introduced the plasmid into an Escherichia coli strain already harboring a target plasmid. Mini-ISY100 transposed to the target plasmid in the presence of IPTG at a very high frequency. Mini-ISY100 was inserted into the TA sequence and duplicated it upon transposition, as do IS630 family elements. Moreover, the mini-ISY100-carrying plasmid produced linear molecules of mini-ISY100 with the exact 3' ends of ISY100 and 5' ends lacking two nucleotides of the ISY100 sequence. No bacterial insertion elements have been shown to generate such molecules, whereas the eukaryotic Tc1/mariner family elements, Tc1 and Tc3, which transpose to the TA sequence, have. These findings suggest that ISY100 transposes to a new site through the formation of linear molecules, such as Tc1 and Tc3, by excision. Some Tc1/mariner family elements leave a footprint with an extra sequence at the site of excision. No footprints, however, were detected in the case of ISY100, suggesting that eukaryotes have a system that repairs a double strand break at the site of excision by an end-joining reaction, in which the gap is filled with a sequence of several base pairs, whereas prokaryotes do not have such a system. ISY100 transposes in E. coli, indicating that it transposes without any host factor other than the transposase encoded by itself. Therefore, it may be able to transpose in other biological systems.  相似文献   

2.
Site-specific transposition of insertion sequence IS630.   总被引:9,自引:4,他引:5       下载免费PDF全文
  相似文献   

3.
The Escherichia coli insertion sequence, IS 2 , is a member of the IS 3 family of bacterial transposable elements. Its transposase is a fusion protein, OrfAB, made by a programmed −1 translational frameshift near to the end of orfA and just after the start of orfB . We have characterized two major products of IS 2 intramolecular transposition, which accumulate in cells that express the IS 2 OrfAB fusion protein at elevated levels. The more abundant product is a minicircle composed of the complete IS 2 with just a single basepair (occasionally 2 bp) separating the two IS ends. In all cases, this basepair is derived from the vector sequence immediately adjacent to the left IS 2 end (IRL). The second product is a figure-eight molecule that contains all the IS 2 and vector sequences present in the parental plasmid. One DNA strand contains the parental sequences unrearranged. The other contains a single-stranded version of the minicircle junction — the precise 3' end of IRR has been cleaved and joined to a target just outside the 5' end of IRL; the remaining vector sequences have a free 5' end, derived from cleavage at the 3' end of IRR, and a free 3' end, released upon cleavage of the target site adjacent to IRL. We propose that figure-eight molecules are the precursor to IS 2 minicircles and that the formation of these two products is the initial step in IS 2 intermolecular transposition. This proposed transposition pathway provides a means for a transposase that can cleave only one strand at each IS end to produce simple insertions and avoid forming co-integrates.  相似文献   

4.
Transposons have contributed protein coding sequences to a unexpectedly large number of human genes. Except for the V(D)J recombinase and telomerase, all remain of unknown function. Here we investigate the activity of the human SETMAR protein, a highly expressed fusion between a histone H3 methylase and a mariner family transposase. Although SETMAR has demonstrated methylase activity and a DNA repair phenotype, its mode of action and the role of the transposase domain remain obscure. As a starting point to address this problem, we have dissected the activity of the transposase domain in the context of the full-length protein and the isolated transposase domain. Complete transposition of an engineered Hsmar1 transposon by the transposase domain was detected, although the extent of the reaction was limited by a severe defect for cleavage at the 3' ends of the element. Despite this problem, SETMAR retains robust activity for the other stages of the Hsmar1 transposition reaction, namely, site-specific DNA binding to the transposon ends, assembly of a paired-ends complex, cleavage of the 5' end of the element in Mn(2+), and integration at a TA dinucleotide target site. SETMAR is unlikely to catalyze transposition in the human genome, although the nicking activity may have a role in the DNA repair phenotype. The key activity for the mariner domain is therefore the robust DNA-binding and looping activity which has a high potential for targeting the histone methylase domain to the many thousands of specific binding sites in the human genome provided by copies of the Hsmar1 transposon.  相似文献   

5.
Transposon mutagenesis of the mouse germline   总被引:11,自引:0,他引:11  
  相似文献   

6.
7.
Sleeping Beauty (SB) is the most active Tc1/mariner-type transposable element in vertebrates, and is therefore a valuable vector for transposon mutagenesis in vertebrate models and for human gene therapy. We have analyzed factors affecting target site selection of SB in mammalian cells, by generating transposition events from extrachromosomal plasmids to chromosomes. In contrast to the local hopping observed when transposition is induced from a chromosomal context, mapping of 138 unique SB insertions on human chromosomes showed a fairly random genomic distribution, and a 35% occurrence of transposition into genes. Inspection of the DNA flanking the sites of element integration revealed significant differences from random DNA in both primary sequence and physical properties. The consensus sequence of SB target sites was found to be a palindromic AT-repeat, ATATATAT, in which the central TA is the canonical target site. We found however, that target site selection is determined primarily on the level of DNA structure, and not by specific base-pair interactions. Computational analyses revealed that insertion sites tend to have a bendable structure and a palindromic pattern of potential hydrogen-bonding sites in the major groove of the DNA. These features appear conserved in the Tc1/mariner family of transposons and in other, distantly related elements that share a common catalytic domain of the transposase, and integrate fairly randomly. No similar target site preference was found for non-randomly integrating elements. Our results suggest common factors influencing target site selection of a wide range of transposable elements.  相似文献   

8.
Using a combined in vivo and in vitro approach, we demonstrated that the transposition products generated by IS911 from a dimeric donor plasmid are different from those generated from a plasmid monomer. When carried by a monomeric plasmid donor, free IS911 transposon circles are generated by intra-IS recombination in which one IS end undergoes attack by the other. These represent transposition intermediates that undergo integration using the abutted left (IRL) and right (IRR) ends of the element, the active IRR-IRL junction, to generate simple insertions. In contrast, the two IS911 copies carried by a dimeric donor plasmid not only underwent intra-IS recombination to generate transposon circles but additionally participated in inter-IS recombination. This also creates an active IRR-IRL junction by generating a head-to-tail IS tandem dimer ([IS]2) in which one of the original plasmid backbone copies is eliminated in the formation of the junction. Both transposon circles and IS tandem dimers are generated from an intermediate in which two transposon ends are retained by a single strand joint to generate a figure 8 molecule. Inter-IS figure 8 molecules generated in vitro could be resolved into the [IS]2 form following introduction into a host strain by transformation. Resolution did not require IS911 transposase. The [IS]2 structure was stable in the absence of transposase but was highly unstable in its presence both in vivo and in vitro. Previous studies had demonstrated that the IRR-IRL junction promotes efficient intermolecular integration and intramolecular deletions both in vivo and in vitro. Integration of the [IS]2 derivative would result in a product that resembles a co-integrate structure. It is also shown here that the IRR-IRL junction of the [IS]2 form and derivative structures can specifically target one of the other ends in an intramolecular transposition reaction to generate transposon circles in vitro. These results not only demonstrate that IS911 (and presumably other members of the IS3 family) is capable of generating a range of transposition products, it also provides a mechanistic framework which explains the formation and activity of such structures previously observed for several other unrelated IS elements. This behaviour is probably characteristic of a large number of IS elements.  相似文献   

9.
The role played by insertion sequence IS911 proteins, OrfA and OrfAB, in the choice of a target for insertion was studied. IS911 transposition occurs in several steps: synapsis of the two transposon ends (IRR and IRL); formation of a figure-of-eight intermediate where both ends are joined by a single-strand bridge; resolution into a circular form carrying an IRR-IRL junction; and insertion into a DNA target. In vivo, with OrfAB alone, an IS911-based transposon integrated with high probability next to an IS911 end located on the target plasmid. OrfA greatly reduced the proportion of these events. This was confirmed in vitro using a transposon with a preformed IRR-IRL junction to examine the final insertion step. Addition of OrfA resulted in a large increase in insertion frequency and greatly increased the proportion of non-targeted insertions. The intermolecular reaction leading to targeted insertion may resemble the intramolecular reaction involving figure-of-eight molecules, which leads to the formation of circles. OrfA could, therefore, be considered as a molecular switch modulating the site-specific recombination activity of OrfAB and facilitating dispersion of the insertion sequence (IS) to 'non-homologous' target sites.  相似文献   

10.
Tn5 is an excellent model system for understanding the molecular basis of DNA-mediated transposition. Mechanistic information has come from genetic and biochemical investigations of the transposase and its interactions with the recognition DNA sequences at the ends of the transposon. More recently, molecular structure analyses of catalytically active transposase; transposon DNA complexes have provided us with unprecedented insights into this transposition system. Transposase initiates transposition by forming a dimeric transposase, transposon DNA complex. In the context of this complex, the transposase then catalyses four phosphoryl transfer reactions (DNA nicking, DNA hairpin formation, hairpin resolution and strand transfer into target DNA) resulting in the integration of the transposon into its new DNA site. The studies that elucidated these steps also provided important insights into the integration of retroviral genomes into host DNA and the immune system V(D)J joining process. This review will describe the structures and steps involved in Tn5 transposition and point out a biologically important although surprising characteristic of the wild-type Tn5 transposase. Transposase is a very inactive protein. An inactive transposase protein ensures the survival of the host and thus the survival of Tn5.  相似文献   

11.
IS630/Tc1/mariner elements are diverse and widespread within insects. The African malaria mosquito, Anopheles gambiae, contains over 30 families of IS630/Tc1/mariner elements although few have been studied in any detail. To examine the history of Topi elements in An. gambiae populations, Topi elements (n=73) were sampled from five distinct populations of An. gambiae from eastern and western Africa and evaluated with respect to copy number, nucleotide diversity and insertion site-occupancy frequency. Topi 1 and 2 elements were abundant (10-34 per diploid genome) and highly diverse (pi=0.051). Elements from mosquitoes collected in Nigeria were Topi 2 elements and those from mosquitoes collected in Mozambique were Topi 1 elements. Of the 49 Topi transposase open reading frames sequenced none were found to be identical. Intact elements with complete transposase open reading frames were common, although based on insertion site-occupancy frequency data it appeared that genetic drift was the major force acting on these IS630/Tc1/mariner-type elements. Topi 3 elements were not recovered from any of the populations sampled in this study and appear to be rare elements in An. gambiae, possibly due to a recent introduction.  相似文献   

12.
High levels of expression of the transposase OrfAB of bacterial insertion sequence IS911 leads to the formation of excised transposon circles, in which the two abutted ends are separated by 3 bp. Initially, OrfAB catalyses only single-strand cleavage at one 3' transposon end and strand transfer of that end to the other. It is believed that this molecule, in which both transposon ends are held together in a single-strand bridge, is then converted to the circular form by the action of host factors. The transposon circles can be integrated efficiently into an appropriate target in vivo and in vitro in the presence of OrfAB and a second IS911 protein OrfA. In the results reported here, we have identified linear transposon forms in vivo from a transposon present in a plasmid, raising the possibility that IS911 can also transpose using a cut-and-paste mechanism. However, the linear species appeared not to be derived directly from the plasmid-based copy by direct double-strand cleavages at both ends, but from preformed excised transposon circles. This was confirmed further by the observation that OrfAB can cleave a cloned circle junction both in vivo and in vitro by two single-strand cleavages at the 3' transposon ends to generate a linear transposon form with a 3'-OH and a three-nucleotide 5' overhang at the ends. Moreover, while significantly less efficient than the transposon circle, a precleaved linear transposon underwent detectable levels of integration in vitro. The possible role of such molecules in the IS911 transposition pathway is discussed.  相似文献   

13.
During cut-and-paste mariner/Tc1 transposition, transposon DNA is cut precisely at its junction with flanking DNA, ensuring the transposon is neither shortened nor lengthened with each transposition event. Each transposon end is flanked by a TpA dinucleotide: the signature target site duplication of mariner/Tc1 transposition. To establish the role of this sequence in accurate DNA cleavage, we have determined the crystal structure of a pre-second strand cleavage mariner Mos1 transpososome. The structure reveals the route of an intact DNA strand through the transposase active site before second strand cleavage. The crossed architecture of this pre-second strand cleavage paired-end complex supports our proposal that second strand cleavage occurs in trans. The conserved mariner transposase WVPHEL and YSPDL motifs position the strand for accurate DNA cleavage. Base-specific recognition of the flanking DNA by conserved amino acids is revealed, defining a new role for the WVPHEL motif in mariner transposition and providing a molecular explanation for in vitro mutagenesis data. Comparison of the pre-TS cleavage and post-cleavage Mos1 transpososomes with structures of Prototype Foamy Virus intasomes suggests a binding mode for target DNA prior to Mos1 transposon integration.  相似文献   

14.
Aberrant repair products of mariner transposition occur at a frequency of approximately 1/500 per target element per generation. Among 100 such mutations in the nonautonomous element peach, most had aberrations in the 5' end of peach (40 alleles), in the 3' end of peach (11 alleles), or a deletion of peach with or without deletion of flanking genomic DNA (29 alleles). Most mariner mutations can be explained by exonuclease "nibble" and host-mediated repair of the double-stranded gap created by the transposase, in contrast to analogous mutations in the P element. In mariner, mutations in the 5' inverted repeat are smaller and more frequent than those in the 3' inverted repeat, but secondary mutations in target elements with a 5' lesion usually had 3' lesions resembling those normally found at the 5' end. We suggest that the mariner transposase distinguishes between the 5' and 3' ends of the element, and that the 5' end is relatively more protected after strand scission. We also find: (1) that homolog-dependent gap repair is a frequent accompaniment to mariner excision, estimated as 30% of all excision events; and (2) that mariner is a hotspot of recombination in Drosophila females, but only in the presence of functional transposase.  相似文献   

15.
J C Vos  R H Plasterk 《The EMBO journal》1994,13(24):6125-6132
The Tc1 transposon of Caenorhabditis elegans is a member of the Tc1/mariner family of mobile elements. These elements have inverted terminal repeats that flank a single transposase gene. Here we show that Tc1 transposase, Tc1A, has a bipartite DNA binding domain related to the paired domain of mammalian and Drosophila genes. Both the DNA binding domain of Tc1A and the DNA binding site in the inverted repeat of Tc1 can be divided into two subdomains. Methylation interference studies demonstrate adjacent minor and major groove contacts at the inner part of the binding site by the N-terminal 68 amino acids of the DNA binding domain. In addition, Tc1A amino acids 69-142 are essential for major groove contacts at the outer part of the binding site. Recombinant Tc1A is found to be able to introduce a single strand nick at the 5' end of the transposon in vitro. Furthermore, Tc1A can mediate a phosphoryl transfer reaction. A mutation in a DDE motif abolishes both endonucleolytic and phosphoryl transfer activities, suggesting that Tc1A carries a catalytic core common to retroviral integrases and IS transposases.  相似文献   

16.
We have investigated the target choice of the related transposable elements Tc1 and Tc3 of the nematode C. elegans. The exact locations of 204 independent Tc1 insertions and 166 Tc3 insertions in an 1 kbp region of the genome were determined. There was no phenotypic selection for the insertions. All insertions were into the sequence TA. Both elements have a strong preference for certain positions in the 1 kbp region. Hot sites for integration are not clustered or regularly spaced. The orientation of the integrated transposon has no effect on the distribution pattern. We tested several explanations for the target site preference. If simple structural features of the DNA (e.g. bends) would mark hot sites, we would expect the patterns of the two related transposons Tc1 and Tc3 to be similar; however we found them to be completely different. Furthermore we found that the sequence at the donor site has no effect on the choice of the new insertion site, because the insertion pattern of a transposon that jumps from a transgenic donor site is identical to the insertion pattern of transposons jumping from endogenous genomic donor sites. The most likely explanation for the target choice is therefore that the primary sequence of the target site is recognized by the transposase. However, alignment of the Tc1 and Tc3 integration sites does not reveal a strong consensus sequence for either transposon.  相似文献   

17.
Transposon mutagenesis in bacteria generally requires efficient delivery of a transposon suicide vector to allow the selection of relatively infrequent transposition events. We have developed an IS903-based transposon mutagenesis system for diverse gram-negative bacteria that is not limited by transfer efficiency. The transposon, IS903phikan, carries a cryptic kan gene, which can be expressed only after successful transposition. This allows the stable introduction of the transposon delivery vector into the host. Generation of insertion mutants is then limited only by the frequency of transposition. IS903phikan was placed on an IncQ plasmid vector with the transposase gene located outside the transposon and expressed from isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoters. After transposase induction, IS903phikan insertion mutants were readily selected in Escherichia coli by their resistance to kanamycin. We used IS903phikan to isolate three catalase-deficient mutants of the periodontal pathogen Actinobacillus actinomycetemcomitans from a library of random insertions. The mutants display increased sensitivity to hydrogen peroxide, and all have IS903phikan insertions within an open reading frame whose predicted product is closely related to other bacterial catalases. Nucleotide sequence analysis of the catalase gene (designated katA) and flanking intergenic regions also revealed several occurrences of an 11-bp sequence that is closely related to the core DNA uptake signal sequence for natural transformation of Haemophilus influenzae. Our results demonstrate the utility of the IS903phikan mutagenesis system for the study of A. actinomycetemcomitans. Because IS903phikan is carried on a mobilizable, broad-host-range IncQ plasmid, this system is potentially useful in a variety of bacterial species.  相似文献   

18.
The mariner family is probably the most widely distributed family of transposons in nature. Although these transposons are related to the well-studied bacterial insertion elements, there is evidence for major differences in their reaction mechanisms. We report the identification and characterization of complexes that contain the Himar1 transposase bound to a single transposon end. Titrations and mixing experiments with the native transposase and transposase fusions suggested that they contain different numbers of transposase monomers. However, the DNA protection footprints of the two most abundant single-end complexes are identical. This indicates that some transposase monomers may be bound to the transposon end solely by protein-protein interactions. This would mean that the Himar1 transposase can dimerize independently of the second transposon end and that the architecture of the synaptic complex has more in common with V(D)J recombination than with bacterial insertion elements. Like V(D)J recombination and in contrast to the case for bacterial elements, Himar1 catalysis does not appear to depend on synapsis of the transposon ends, and the single-end complexes are active for nicking and probably for cleavage. We discuss the role of this single-end activity in generating the mutations that inactivate the vast majority of mariner elements in eukaryotes.  相似文献   

19.
The movement of the bacterial insertion sequence IS50 and of composite elements containing direct terminal repeats of IS50 involves the two ends of IS50, designated O (outside) and I (inside), which are weakly matched in DNA sequence, and an IS50 encoded protein, transposase, which recognizes the O and I ends and acts preferentially in cis. Previous data had suggested that, initially, transposase interacts preferentially with the O end sequence and then, in a second step, with either an O or an I end. To better understand the cis action of transposase and how IS50 ends are selected, we generated a series of composite transposons which contain direct repeats of IS50 elements. In each transposon, one IS50 element encoded transposase (tnp+), and the other contained a null (tnp-) allele. In each of the five sets of composite transposons studied, the transposon for which the tnp+ IS50 element contained its O end was more active than a complementary transposon for which the tnp- IS50 element contained its O end. This pattern of O end use suggests models in which the cis action of transposase and its choice of ends is determined by protein tracking along DNA molecules.  相似文献   

20.
To elucidate the role of the insA reading frame in transposition of the IS1 element of the Tn9' transposon, the derivatives of plasmids pUC19::Tn9' and pUC19::IS1 have been obtained using oligonucleotide inserts of the length equal or exceeding 9 bp and equal to 10 bp. The ability of mutant variants of the Tn9' transposon and the IS1 element to form simple insertions and plasmid cointegrates was studied. To this end, experiments were performed on mobilization of the derivatives of pUC19 containing mutant variants of the IS1 element and Tn9' as well as of the plasmids pUC19::Tn9' by the conjugative plasmid pRP3.1. According to the data obtained, mutations (inserts) in the insA gene have no influence on the frequency of transposition of the IS1 element and Tn9' from the plasmid pUC19 to pRP3.1. At the same time, the frequency of transposition events of mutant variants of Tn9' from the plasmid pRP3.1 to pBR322 is more than 10 times lower in comparison with the wild type transposon. The data obtained are in accordance with the assumption that the insA gene is not essential for transposition. A hypothesis is put forward explaining the role of the insA gene product in the process of bringing together short inverted repeats of the IS1, which are the sites for the transposase to be recognized at first stages of transposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号