首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
In addition to binding Ca(2+), the S100 protein S100B binds Zn(2+) with relatively high affinity as confirmed using isothermal titration calorimetry (ITC; K(d) = 94 +/- 17 nM). The Zn(2+)-binding site on Ca(2+)-bound S100B was examined further using NMR spectroscopy and site-directed mutagenesis. Specifically, ITC measurements of S100B mutants (helix 1, H15A and H25A; helix 4, C84A, H85A, and H90A) were found to bind Zn(2+) with lower affinity than wild-type S100B (from 2- to >25-fold). Thus, His-15, His-25, Cys-84, His-85, and perhaps His-90 of S100B are involved in coordinating Zn(2+), which was confirmed by NMR spectroscopy. Previous studies indicate that the binding of Zn(2+) enhances calcium and target protein-binding affinities, which may contribute to its biological function. Thus, chemical shift perturbations observed here for residues in both EF-hand domains of S100B during Zn(2+) titrations could be detecting structural changes in the Ca(2+)-binding domains of S100B that are pertinent to its increase in Ca(2+)-binding affinity in the presence of Zn(2+). Furthermore, Zn(2+) binding causes helix 4 to extend by one full turn when compared to Ca(2+)-bound S100B. This change in secondary structure likely contributes to the increased binding affinity that S100B has for target peptides (i.e., TRTK peptide) in the presence of Zn(2+).  相似文献   

2.
S100A1, a member of the S100 protein family, is an EF-hand containing Ca(2+)-binding protein (93 residues per subunit) with noncovalent interactions at its dimer interface. Each subunit of S100A1 has four alpha-helices and a small antiparallel beta-sheet consistent with two helix-loop-helix calcium-binding domains [Baldiserri et al. (1999) J. Biomol. NMR 14, 87-88]. In this study, the three-dimensional structure of reduced apo-S100A1 was determined by NMR spectroscopy using a total of 2220 NOE distance constraints, 258 dihedral angle constraints, and 168 backbone hydrogen bond constraints derived from a series of 2D, 3D, and 4D NMR experiments. The final structure was found to be globular and compact with the four helices in each subunit aligning to form a unicornate-type four-helix bundle. Intermolecular NOE correlations were observed between residues in helices 1 and 4 from one subunit to residues in helices 1' and 4' of the other subunit, respectively, consistent with the antiparallel alignment of the two subunits to form a symmetric X-type four-helix bundle as found for other members of the S100 protein family. Because of the similarity of the S100A1 dimer interface to that found for S100B, it was possible to calculate a model of the S100A1/B heterodimer. This model is consistent with a number of NMR chemical shift changes observed when S100A1 is titrated into a sample of (15)N-labeled S100B. Helix 3 (and 3') of S100A1 was found to have an interhelical angle of -150 degrees with helix 4 (and 4') in the apo state. This crossing angle is quite different (>50 degrees ) from that typically found in other EF-hand containing proteins such as apocalmodulin and apotroponin C but more similar to apo-S100B, which has an interhelical angle of -166 degrees. As with S100B, it is likely that the second EF-hand of apo-S100A1 reorients dramatically upon the addition of Ca(2+), which can explain the Ca(2+) dependence that S100A1 has for binding several of its biological targets.  相似文献   

3.
S100A1 is an EF-hand-containing Ca(2+)-binding protein that undergoes a conformational change upon binding calcium as is necessary to interact with protein targets and initiate a biological response. To better understand how calcium influences the structure and function of S100A1, the three-dimensional structure of calcium-bound S100A1 was determined by multidimensional NMR spectroscopy and compared to the previously determined structure of apo. In total, 3354 nuclear Overhauser effect-derived distance constraints, 240 dihedral constraints, 160 hydrogen bond constraints, and 362 residual dipolar coupling restraints derived from a series of two-dimensional, three-dimensional, and four-dimensional NMR experiments were used in its structure determination (>21 constraints per residue). As with other dimeric S100 proteins, S100A1 is a symmetric homodimer with helices 1, 1', 4, and 4' associating into an X-type four-helix bundle at the dimer interface. Within each subunit there are four alpha-helices and a short antiparallel beta-sheet typical of two helix-loop-helix EF-hand calcium-binding domains. The addition of calcium did not change the interhelical angle of helices 1 and 2 in the pseudo EF-hand significantly; however, there was a large reorientation of helix 3 in the typical EF-hand. The large conformational change exposes a hydrophobic cleft, defined by residues in the hinge region, the C terminus, and regions of helix 3, which are important for the interaction between S100A1 and a peptide (TRTK-12) derived from the actin-capping protein CapZ.  相似文献   

4.
Calcyclin is a homodimeric protein belonging to the S100 subfamily of EF-hand Ca(2+)-binding proteins, which function in Ca(2+) signal transduction processes. A refined high-resolution solution structure of Ca(2+)-bound rabbit calcyclin has been determined by heteronuclear solution NMR. In order to understand the Ca(2+)-induced structural changes in S100 proteins, in-depth comparative structural analyses were used to compare the apo and Ca(2+)-bound states of calcyclin, the closely related S100B, and the prototypical Ca(2+)-sensor protein calmodulin. Upon Ca(2+) binding, the position and orientation of helix III in the second EF-hand is altered, whereas the rest of the protein, including the dimer interface, remains virtually unchanged. This Ca(2+)-induced structural change is much less drastic than the "opening" of the globular EF-hand domains that occurs in classical Ca(2+) sensors, such as calmodulin. Using homology models of calcyclin based on S100B, a binding site in calcyclin has been proposed for the N-terminal domain of annexin XI and the C-terminal domain of the neuronal calcyclin-binding protein. The structural basis for the specificity of S100 proteins is discussed in terms of the variation in sequence of critical contact residues in the common S100 target-binding site.  相似文献   

5.
The ionized calcium-binding adaptor molecule 1 (Iba1) with 147 amino acid residues has been identified as a calcium-binding protein, expressed specifically in microglia/macrophages, and is expected to be a key factor in membrane ruffling, which is a typical feature of activated microglia. We have determined the crystal structure of human Iba1 in a Ca(2+)-free form and mouse Iba1 in a Ca(2+)-bound form, to a resolution of 1.9 A and 2.1 A, respectively. X-ray structures of Iba1 revealed a compact, single-domain protein with two EF-hand motifs, showing similarity in overall topology to partial structures of the classical EF-hand proteins troponin C and calmodulin. In mouse Iba1, the second EF-hand contains a bound Ca(2+), but the first EF-hand does not, which is often the case in S100 proteins, suggesting that Iba1 has S100 protein-like EF-hands. The molecular conformational change induced by Ca(2+)-binding of Iba1 is different from that found in the classical EF-hand proteins and/or S100 proteins, which demonstrates that Iba1 has an unique molecular switching mechanism dependent on Ca(2+)-binding, to interact with target molecules.  相似文献   

6.
S100B is a dimeric Ca(2+)-binding protein that undergoes a 90 +/- 3 degrees rotation of helix 3 in the typical EF-hand domain (EF2) upon the addition of calcium. The large reorientation of this helix is a prerequisite for the interaction between each subunit of S100B and target proteins such as the tumor suppressor protein, p53. In this study, Tb(3+) was used as a probe to examine how binding of a 22-residue peptide derived from the C-terminal regulatory domain of p53 affects the rate of Ca(2+) ion dissociation. In competition studies with Tb(3+), the dissociation rates of Ca(2+) (k(off)) from the EF2 domains of S100B in the absence and presence of the p53 peptide was determined to be 60 and 7 s(-)(1), respectively. These data are consistent with a previously reported result, which showed that that target peptide binding to S100B enhances its calcium-binding affinity [Rustandi et al. (1998) Biochemistry 37, 1951-1960]. The corresponding Ca(2+) association rate constants for S100B, k(on), for the EF2 domains in the absence and presence of the p53 peptide are 1.1 x 10(6) and 3.5 x 10(5) M(-)(1) s(-)(1), respectively. These two association rate constants are significantly below the diffusion control ( approximately 10(9) M(-)(1) s(-)(1)) and likely involve both Ca(2+) ion association and a Ca(2+)-dependent structural rearrangement, which is slightly different when the target peptide is present. EF-hand calcium-binding mutants of S100B were engineered at the -Z position (EF-hand 1, E31A; EF-hand 2, E72A; both EF-hands, E31A + E72A) and examined to further understand how specific residues contribute to calcium binding in S100B in the absence and presence of the p53 peptide.  相似文献   

7.
S100 family proteins are characterized by short individual N and C termini and a conserved central part, harboring two Ca(2+)-binding EF-hands, one of them highly conserved among EF-hand family proteins and the other characteristic for S100 proteins. In addition to Ca(2+), several members of the S100 protein family, including S100A2, bind Zn(2+). Two regions in the amino acid sequences of S100 proteins, namely the helices of the N-terminal EF-hand motif and the very C-terminal loop are believed to be involved in Zn(2+)-binding due to the presence of histidine and/or cysteine residues. Human S100A2 contains four cysteine residues, each of them located at positions that may be important for Zn(2+) binding. We have now constructed and purified 10 cysteine-deficient mutants of human S100A2 by site-directed mutagenesis and investigated the contribution of the individual cysteine residues to Zn(2+) binding. Here we show that Cys(1(3)) (the number in parentheses indicating the position in the sequence of S100A2) is the crucial determinant for Zn(2+) binding in association with conformational changes as determined by internal tyrosine fluorescence. Solid phase Zn(2+) binding assays also revealed that the C-terminal residues Cys(3(87)) and Cys(4(94)) mediated a second type of Zn(2+) binding, not associated with detectable conformational changes in the molecule. Cys(2(22)), by contrast, which is located within the first EF hand motif affected neither Ca(2+) nor Zn(2+) binding, and a Cys "null" mutant was entirely incapable of ligating Zn(2+). These results provide new information about the mechanism and the site(s) of zinc binding in S100A2.  相似文献   

8.
Mts1 is a member of the S100 family of Ca2+-binding proteins and is implicated in promoting tumor progression and metastasis. To better understand the structure-function relationships of this protein and to begin characterizing its Ca2+-dependent interaction with protein binding targets, the three-dimensional structure of mts1 was determined in the apo state by NMR spectroscopy. As with other S100 protein family members, mts1 is a symmetric homodimer held together by noncovalent interactions between two helices from each subunit (helices 1, 4, 1', and 4') to form an X-type four-helix bundle. Each subunit of mts1 has two EF-hand Ca2+-binding domains: a pseudo-EF-hand (or S100-hand) and a typical EF-hand that are brought into proximity by a small two-stranded antiparallel beta-sheet. The S100-hand is formed by helices 1 and 2, and is similar in conformation to other members of the S100 family. In the typical EF-hand, the position of helix 3 is similar to that of another member of the S100 protein family, calcyclin (S100A6), and less like that of other S100 family members for which three-dimensional structures are available in the calcium-free state (e.g., S100B and S100A1). The differences in the position of helix 3 in the apo state of these four S100 proteins are likely due to variations in the amino acid sequence in the C-terminus of helix 4 and in loop 2 (the hinge region) and could potentially be used to subclassify the S100 protein family.  相似文献   

9.
S100A13 is a homodimeric protein that belongs to the S100 subfamily of EF-hand Ca2+-binding proteins. S100A13 exhibits unique physical and functional properties not observed in other members of the S100 family. S100A13 is crucial for the non-classical export of acidic fibroblast growth factors (FGFs-1), which lack signal peptide at their N-terminal end. In the present study, we report the three-dimensional solution structure of Ca2+-bound S100A13 using a variety of 3D NMR experiments. The structure of S100A13 is globular with four helices and an antiparallel beta-sheet in each subunit. The dimer interface is formed mainly by an antiparallel arrangement of helices H1, H1', H4, and H4'. Isothermal titration calorimetry (ITC) experiments show that S100A13 binds non-cooperatively to four calcium ions. Prominent differences exist between the three-dimensional structures of S100A13 and other S100 proteins. The hydrophobic pocket that largely contributes to protein-protein interactions in other S100 proteins is absent in S100A13. The structure of S100A13 is characterized by a large patch of negatively charged residues flanked by dense cationic clusters contributed largely by the positively charged residues located at the C-terminal end. Results of ITC experiments reveal that S100A13 lacking the C-terminal segment (residues 88-98) fails to bind FGF-1. The three-dimensional structure of S100A13 not only provides useful clues on its role in the non-classical export of signal peptide-less proteins such as FGF-1 but also paves the way for rational design of drugs against FGF-induced tumors.  相似文献   

10.
Human S100A2 is an EF-hand calcium-binding S100 protein that is localized mainly in the nucleus and functions as tumor suppressor. In addition to Ca2+ S100A2 binds Zn2+ with a high affinity. Studies have been carried out to investigate whether Zn2+ acts as a regulatory ion for S100A2, as in the case of Ca2+. Using the method of competition with the Zn2+ chelator 4-(2-pyridylazo)-resorcinol, an apparent Kd of 25 nM has been determined for Zn2+ binding to S100A2. The affinity lies close to the range of intracellular free Zn2+ concentrations, suggesting that S100A2 is able to bind Zn2+ in the nucleus. Two Zn2+-binding sites have been identified using site directed mutagenesis and several spectroscopic techniques with Cd2+ and Co2+ as probes. In site 1 Zn2+ is bound by Cys21 and most likely by His 17. The binding of Zn2+ in site 2 induces the formation of a tetramer, whereby the Zn(2+) is coordinated by Cys2 from each subunit. Remarkably, only binding of Zn2+ to site 2 substantially weakens the affinity of S100A2 for Ca2+. Analysis of the individual Ca2+-binding constants revealed that the Ca2+ affinity of one EF-hand is decreased about 3-fold, whereas the other EF-hand exhibits a 300-fold decrease in affinity. These findings imply that S100A2 is regulated by both Zn2+ and Ca2+, and suggest that Zn2+ might deactivate S100A2 by inhibiting response to intracellular Ca2+ signals.  相似文献   

11.
S100A5 is a novel member of the EF-hand superfamily of calcium-binding proteins that is poorly characterized at the protein level. Immunohistochemical analysis demonstrates that it is expressed in very restricted regions of the adult brain. Here we characterized the human recombinant S100A5, especially its interaction with Ca(2+), Zn(2+), and Cu(2+). Flow dialysis revealed that the homodimeric S100A5 binds four Ca(2+) ions with strong positive cooperativity and an affinity 20-100-fold higher than the other S100 proteins studied under identical conditions. S100A5 also binds two Zn(2+) ions and four Cu(2+) ions per dimer. Cu(2+) binding strongly impairs the binding of Ca(2+); however, none of these ions change the alpha-helical-rich secondary structure. After covalent labeling of an exposed thiol with 2-(4'-(iodoacetamide)anilino)-naphthalene-6-sulfonic acid, binding of Cu(2+), but not of Ca(2+) or Zn(2+), strongly decreased its fluorescence. In light of the three-dimensional structure of S100 proteins, our data suggest that in each subunit the single Zn(2+) site is located at the opposite side of the EF-hands. The two Cu(2+)-binding sites likely share ligands of the EF-hands. The potential role of S100A5 in copper homeostasis is discussed.  相似文献   

12.
S100A3 is a unique member of the EF-hand superfamily of Ca(2+)-binding proteins. It binds Ca(2+) with poor affinity (K(d) = 4-35 mm) but Zn(2+) with exceptionally high affinity (K(d) = 4 nm). This high affinity for Zn(2+) is attributed to the unusual high Cys content of S100A3. The protein is highly expressed in fast proliferating hair root cells and astrocytoma pointing toward a function in cell cycle control. We determined the crystal structure of the protein at 1.7 A. The high resolution structure revealed a large distortion of the C-terminal canonical EF-hand, which most likely abolishes Ca(2+) binding. The crystal structure of S100A3 allows the prediction of one putative Zn(2+) binding site in the C terminus of each subunit of S100A3 involving Cys and His residues in the coordination of the metal ion. Zn(2+) binding induces a large conformational change in S100A3 perturbing the hydrophobic interface between two S100A3 subunits, as shown by size exclusion chromatography and CD spectroscopy.  相似文献   

13.
Koch M  Fritz G 《The FEBS journal》2012,279(10):1799-1810
S100A2 is an EF-hand calcium ion (Ca(2+))-binding protein that activates the tumour suppressor p53. In order to understand the molecular mechanisms underlying the Ca(2+) -induced activation of S100A2, the structure of Ca(2+)-bound S100A2 was determined at 1.3 ? resolution by X-ray crystallography. The structure was compared with Ca(2+) -free S100A2 and with other S100 proteins. Binding of Ca(2+) to S100A2 induces small structural changes in the N-terminal EF-hand, but a large conformational change in the C-terminal EF-hand, reorienting helix III by approximately 90°. This movement is accompanied by the exposure of a hydrophobic cavity between helix III and helix IV that represents the target protein interaction site. This molecular reorganization is associated with the breaking and new formation of intramolecular hydrophobic contacts. The target binding site exhibits unique features; in particular, the hydrophobic cavity is larger than in other Ca(2+)-loaded S100 proteins. The structural data underline that the shape and size of the hydrophobic cavity are major determinants for target specificity of S100 proteins and suggest that the binding mode for S100A2 is different from that of other p53-interacting S100 proteins. Database Structural data are available in the Protein Data Bank database under the accession number 4DUQ  相似文献   

14.
CaBP1 (calcium-binding protein 1) is a 19.4-kDa protein of the EF-hand superfamily that modulates the activity of Ca(2+) channels in the brain and retina. Here we present data from NMR, microcalorimetry, and other biophysical studies that characterize Ca(2+) binding, Mg(2+) binding, and structural properties of recombinant CaBP1 purified from Escherichia coli. Mg(2+) binds constitutively to CaBP1 at EF-1 with an apparent dissociation constant (K(d)) of 300 microm. Mg(2+) binding to CaBP1 is enthalpic (DeltaH = -3.725 kcal/mol) and promotes NMR spectral changes, indicative of a concerted Mg(2+)-induced conformational change. Ca(2+) binding to CaBP1 induces NMR spectral changes assigned to residues in EF-3 and EF-4, indicating localized Ca(2+)-induced conformational changes at these sites. Ca(2+) binds cooperatively to CaBP1 at EF-3 and EF-4 with an apparent K(d) of 2.5 microM and a Hill coefficient of 1.3. Ca(2+) binds to EF-1 with low affinity (K(d) >100 microM), and no Ca(2+) binding was detected at EF-2. In the absence of Mg(2+) and Ca(2+), CaBP1 forms a flexible molten globule-like structure. Mg(2+) and Ca(2+) induce distinct conformational changes resulting in protein dimerization and markedly increased folding stability. The unfolding temperatures are 53, 74, and 76 degrees C for apo-, Mg(2+)-bound, and Ca(2+)-bound CaBP1, respectively. Together, our results suggest that CaBP1 switches between structurally distinct Mg(2+)-bound and Ca(2+)-bound states in response to Ca(2+) signaling. Both conformational states may serve to modulate the activity of Ca(2+) channel targets.  相似文献   

15.
The S100 protein family is the largest group of calcium-binding protein families, which consists of at least 25 members. S100A13, which is widely expressed in a variety of tissues, is a unique member of the S100 protein family. Previous reports showed that S100A13 might be involved in the stress-induced release of some signal peptide-less proteins (such as FGF-1 and IL-1alpha) and also associated with inflammatory functions. It was also reported that S100A13 is a new angiogenesis marker. Here we report the crystal structure of the Ca(2+)-bound form of S100A13 at 2.0 A resolution. S100A13 is a homodimer with four EF-hand motifs in an asymmetric unit, displaying a folding pattern similar to other S100 members. However, S100A13 has the unique structural feature with all alpha-helices being amphiphilic, which was not found in other members of S100s. We propose that this characteristic structure of S100A13 might be related to its ability to mediate the release of FGF-1 and IL-1alpha.  相似文献   

16.
The metallo-beta-lactamases require zinc or cadmium for hydrolyzing beta-lactam antibiotics and are inhibited by mercurial compounds. To data, there are no clinically useful inhibitors of this class of enzymes. The crystal structure of the Zn(2+)-bound enzyme from Bacteroides fragilis contains a binuclear zinc center in the active site. A hydroxide, coordinated to both zinc atoms, is proposed as the moiety that mounts the nucleophilic attack on the carbonyl carbon atom of the beta-lactam ring. To study the metal coordination further, the crystal structures of a Cd(2+)-bound enzyme and of an Hg(2+)-soaked zinc-containing enzyme have been determined at 2.1 A and 2.7 A, respectively. Given the diffraction resolution, the Cd(2+)-bound enzyme exhibits the same active-site architecture as that of the Zn(2+)-bound enzyme, consistent with the fact that both forms are enzymatically active. The 10-fold reduction in activity of the Cd(2+)-bound molecule compared with the Zn(2+)-bound enzyme is attributed to fine differences in the charge distribution due to the difference in the ionic radii of the two metals. In contrast, in the Hg(2+)-bound structure, one of the zinc ions, Zn2, was ejected, and the other zinc ion, Zn1, remained in the same site as in the 2-Zn(2+)-bound structure. Instead of the ejected zinc, a mercury ion binds between Cys 104 and Cys 181, 4.8 A away from Zn1 and 3.9 A away from the site where Zn2 is located in the 2-Zn(2+)-bound molecule. The perturbed binuclear metal cluster explains the inactivation of the enzyme by mercury compounds.  相似文献   

17.
Parvalbumins (PV) are calcium-binding proteins, all sharing the common helix-loop-helix (EF-hand) motif. This motif contains a central twelve-residue Ca(2+)-binding loop with the flanking helices positioned roughly perpendicular to each other. The precise role of these coordination residues has been the subject of intense studies. In this work, we focus on the coordination position 5 in the CD Ca(2+)-binding site of silver hake parvalbumin isoform B (SHPV-B). The most common residue at site 5 of calcium-binding loop in canonical EF-hands is Asp [B.J. Marsden, G.S. Shaw, B.D. Sykes, Biochem. Cell Biol. 68 (1990) 587-601], but in the CD site of PV, this position is almost always serine (Ser). The substitution of Ser with Asp will add the 5th carboxylate residue in the CD coordination sphere. However, as predicted by the acid pair hypothesis, the Ca(2+)-binding affinity would be maximized in an EF-hand motif that has four carboxylate ligands paired along the +/-x, and +/-z-axes [R.E. Reid, R.S. Hodges, J. Theor. Biol. 84 (1980) 401-444]. Molecular dynamics simulations and free energy calculations were employed to investigate the influence of Ser to Asp mutation at position 5 on calcium-binding affinity. We found that the Asp variant exhibited remarkable stability during the entire molecular dynamics simulation, with not only the retention of the Ca(2+)-binding site, but also increased compactness in the coordination sphere. The S55D fragment also accommodated Ca(2+) well. We conclude that the reason why Asp which is the most common residue at site 5 of calcium-binding loop in canonical EF-hands has never been identified at this position experimentally for PVs might be related to its physiological functions.  相似文献   

18.
Calcium ions regulate many cellular processes and have important structural roles in living organisms. Despite the great variety of calcium-binding proteins (CaBPs), many of them contain the same Ca(2+)-binding helix-loop-helix structure, referred to as the EF-hand. In the canonical EF-hand, the loop contains three calcium-binding aspartic acid residues, which form the DxDxDG sequence motif, and is flanked by two alpha-helices. Recently, other CaBPs containing the same motif, but lacking one or both helices, have been described. Here, structural motif searches were used to analyse the full diversity of structural context in the known set of DxDxDG-containing CaBPs, including those where the structural resemblance of a given DxDxDG motif to that of EF-hands had not been noted. The results obtained indicate that the EF-hand represents but one, among many, structural context for the DxDxDG-like Ca(2+)-binding loops. While the structural similarity of the binuclear calcium-binding sites in anthrax protective antigen and human thrombospondin suggests that they are homologous, evolutionary relationships for mononuclear sites are harder to discern. The possible scenarios for the evolution of DxDxDG motif-containing calcium-binding loops in a variety of non-homologous proteins suggested loop transplant as a mechanism perhaps responsible for much of the diversity in structural contexts of present day DxDxDG-type CaBPs. Additionally, while it can be shown that existence of a DxDxDG sequence is not enough to confer a conformation suitable for calcium binding, local convergent evolution may still have a role. The analysis presented here has consequences for the prediction of calcium binding from sequence alone.  相似文献   

19.
The EF-hand proteins S100A8 and S100A9 are important calcium signalling proteins that are involved in wound healing and provide clinically relevant markers of inflammatory processes, such as rheumatoid arthritis and inflammatory bowel disease. Both can form homodimers via distinct modes of association, probably of lesser stability in the case of S100A9, whereas in the presence of calcium S100A8 and S100A9 associate to calprotectin, the physiologically active heterooligomer. Here we describe the crystal structure of the (S100A8/S100A9)(2) heterotetramer at 1.8 A resolution. Its quaternary structure illustrates how specific heteroassociation is energetically driven by a more extensive burial of solvent accessible surface areas in both proteins, most pronounced for S100A9, thus leading to a dimer of heterodimers. A major contribution to tetramer association is made by the canonical calcium binding loops in the C-terminal halves of the two proteins. The mode of heterodimerisation in calprotectin more closely resembles the subunit association previously observed in the S100A8 homodimer and provides trans stabilisation for S100A9, which manifests itself in a significantly elongated C-terminal alpha-helix in the latter. As a consequence, two different putative zinc binding sites emerge at the S100A8/S100A9 subunit interface. One of these corresponds to a high affinity arrangement of three His residues and one Asp side-chain, which is unique to the heterotetramer. This structural feature explains the well known Zn(2+) binding activity of calprotectin, whose overexpression can cause strong dysregulation of zinc homeostasis with severe clinical symptoms.  相似文献   

20.
The solution NMR structure is reported for Ca(2+)-loaded S100B bound to a 12-residue peptide, TRTK-12, from the actin capping protein CapZ (alpha1 or alpha2 subunit, residues 265-276: TRTKIDWNKILS). This peptide was discovered by Dimlich and co-workers by screening a bacteriophage random peptide display library, and it matches exactly the consensus S100B binding sequence ((K/R)(L/I)XWXXIL). As with other S100B target proteins, a calcium-dependent conformational change in S100B is required for TRTK-12 binding. The TRTK-12 peptide is an amphipathic helix (residues W7 to S12) in the S100B-TRTK complex, and helix 4 of S100B is extended by three or four residues upon peptide binding. However, helical TRTK-12 in the S100B-peptide complex is uniquely oriented when compared to the three-dimensional structures of other S100-peptide complexes. The three-dimensional structure of the S100B-TRTK peptide complex illustrates that residues in the S100B binding consensus sequence (K4, I5, W7, I10, L11) are all involved in the S100B-peptide interface, which can explain its orientation in the S100B binding pocket and its relatively high binding affinity. A comparison of the S100B-TRTK peptide structure to the structures of apo- and Ca(2+)-bound S100B illustrates that the binding site of TRTK-12 is buried in apo-S100B, but is exposed in Ca(2+)-bound S100B as necessary to bind the TRTK-12 peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号