首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.

Background

The correlations between Phanerozoic atmospheric oxygen fluctuations and insect body size suggest that higher oxygen levels facilitate the evolution of larger size in insects.

Methods and Principal Findings

Testing this hypothesis we selected Drosophila melanogaster for large size in three oxygen atmospheric partial pressures (aPO2). Fly body sizes increased by 15% during 11 generations of size selection in 21 and 40 kPa aPO2. However, in 10 kPa aPO2, sizes were strongly reduced. Beginning at the 12th generation, flies were returned to normoxia. All flies had similar, enlarged sizes relative to the starting populations, demonstrating that selection for large size had functionally equivalent genetic effects on size that were independent of aPO2.

Significance

Hypoxia provided a physical constraint on body size even in a tiny insect strongly selected for larger mass, supporting the hypothesis that Triassic hypoxia may have contributed to a reduction in insect size.  相似文献   

2.
Insects are small relative to vertebrates, possibly owing to limitations or costs associated with their blind-ended tracheal respiratory system. The giant insects of the late Palaeozoic occurred when atmospheric PO2 (aPO2) was hyperoxic, supporting a role for oxygen in the evolution of insect body size. The paucity of the insect fossil record and the complex interactions between atmospheric oxygen level, organisms and their communities makes it impossible to definitively accept or reject the historical oxygen-size link, and multiple alternative hypotheses exist. However, a variety of recent empirical findings support a link between oxygen and insect size, including: (i) most insects develop smaller body sizes in hypoxia, and some develop and evolve larger sizes in hyperoxia; (ii) insects developmentally and evolutionarily reduce their proportional investment in the tracheal system when living in higher aPO2, suggesting that there are significant costs associated with tracheal system structure and function; and (iii) larger insects invest more of their body in the tracheal system, potentially leading to greater effects of aPO2 on larger insects. Together, these provide a wealth of plausible mechanisms by which tracheal oxygen delivery may be centrally involved in setting the relatively small size of insects and for hyperoxia-enabled Palaeozoic gigantism.  相似文献   

3.
Moults characterise insect growth trajectories, typically following a consistent pattern known as Dyar's rule; proportional size increments remain constant across inter‐instar moults. Empirical work suggests that oxygen limitation triggers moulting. The insect respiratory system, and its oxygen supply capacity, grows primarily at moults. It is hypothesized that the oxygen demand increases with increasing body mass, eventually meeting the oxygen supply capacity at an instar‐specific critical mass where moulting is triggered. Deriving from this hypothesis, we develop a novel mathematical model for moulting and growth in insect larvae. Our mechanistic model has great success in predicting moulting sizes in four butterfly species, indirectly supporting a size‐dependent mechanism underlying moulting. The results demonstrate that an oxygen‐dependent induction of moulting mechanism would be sufficient to explain moulting sizes in the study species. Model predictions deviated slightly from Dyar's rule, the deviations being typically negligible within the present data range. The developmental decisions (e.g. moulting) made by growing larvae significantly affect age and size at maturity, which has important life history implications. The successful modelling of moulting presented here provides a novel framework for the development of realistic insect growth models, which are required for a better understanding of life history evolution.  相似文献   

4.
Numerous physical parameters that influence insect physiologyvary substantially with altitude, including temperature, airdensity, and oxygen partial pressure. Here, we review existingliterature and present new empirical data to better characterizethe high-altitude environment, and then consider how this environmentaffects the physiology and evolution of insects. Using weatherballoon data from fifty-three sites across the globe, we estimatea mean altitudinal temperature lapse rate of 6.0 °C/km.We also present empirically determined lapse rates for PO2 andair density. The temperature decline with elevation may substantiallycompromise insect thermoregulation at high altitude. However,heat-transfer models predict that lower air density at elevationreduces convective heat loss of insects by to a surprisinglylarge degree. This effect combined with behavioral thermoregulationand the availability of buffered microhabitats make the netthermal consequences of high-altitude residence strongly context-specific.The decline in PO2 with elevation may compromise insect developmentand physiology, but its effects are difficult to predict withoutsimultaneously considering temperature and air density. Flyinginsects compensate for low air densities with both short-termresponses, such as increased stroke amplitude (but not wingbeatfrequency), and with long-term developmental and/or evolutionaryincreases in wing size relative to body size. Finally, in contrastto predictions based on Bergmann's Rule, a literature surveyof thirty-six insect species suggests that those living in colder,higher altitudes do not tend to have larger body sizes.  相似文献   

5.
The respiratory proteins of insects   总被引:1,自引:0,他引:1  
For a long time, respiratory proteins have been considered unnecessary in most insects because the tracheal system was thought to be sufficient for oxygen supply. Only a few species that survive under hypoxic conditions were known exceptions. However, recently it has become evident that (1) intracellular hemoglobins belong to the standard repertoire of insects and (2) that hemocyanin is present in many "lower" insects. Intracellular hemoglobins have been identified in Drosophila, Anopheles, Apis and many other insects. In all investigated species, hemoglobin is mainly expressed in the fat body and the tracheal system. The major Drosophila hemoglobin binds oxygen with high affinity. This hemoglobin type possibly functions as a buffer system for oxygen supply at low partial pressures and/or for the protection from an excess of oxygen. Similar hemoglobins, present in much higher concentrations, store oxygen in specialized tracheal organs of the botfly and some backswimmers. The extracellular hemoglobins in the hemolymph of chironomid midges are evolutionary derivatives of the intracellular insect hemoglobins, which emerged in response to the hypoxic environment of the larvae. In addition, several hemoglobin variants of unknown functions have been discovered in insect genomes. Hemocyanins transport oxygen in the hemolymph of stoneflies, but also in the Entognatha and most hemimetabolan taxa. Apparently, hemocyanin has been lost in Holometabola. At present, no physiological or morphological character is known that could explain the presence or loss of hemocyanins in distinct taxa. Nevertheless, the occurrence of respiratory proteins in insects adds further complexity to our view on insect respiration.  相似文献   

6.
Verberk WC  Bilton DT 《PloS one》2011,6(7):e22610

Background

Thermal limits may arise through a mismatch between oxygen supply and demand in a range of animal taxa. Whilst this oxygen limitation hypothesis is supported by data from a range of marine fish and invertebrates, its generality remains contentious. In particular, it is unclear whether oxygen limitation determines thermal extremes in tracheated arthropods, where oxygen limitation may be unlikely due to the efficiency and plasticity of tracheal systems in supplying oxygen directly to metabolically active tissues. Although terrestrial taxa with open tracheal systems may not be prone to oxygen limitation, species may be affected during other life-history stages, particularly if these rely on diffusion into closed tracheal systems. Furthermore, a central role for oxygen limitation in insects is envisaged within a parallel line of research focussing on insect gigantism in the late Palaeozoic.

Methodology/Principal Findings

Here we examine thermal maxima in the aquatic life stages of an insect at normoxia, hypoxia (14 kPa) and hyperoxia (36 kPa). We demonstrate that upper thermal limits do indeed respond to external oxygen supply in the aquatic life stages of the stonefly Dinocras cephalotes, suggesting that the critical thermal limits of such aquatic larvae are set by oxygen limitation. This could result from impeded oxygen delivery, or limited oxygen regulatory capacity, both of which have implications for our understanding of the limits to insect body size and how these are influenced by atmospheric oxygen levels.

Conclusions/Significance

These findings extend the generality of the hypothesis of oxygen limitation of thermal tolerance, suggest that oxygen constraints on body size may be stronger in aquatic environments, and that oxygen toxicity may have actively selected for gigantism in the aquatic stages of Carboniferous arthropods.  相似文献   

7.
1. Body size is positively correlated with fecundity in various animals, but the factors that counterbalance the resulting selection pressure towards large size are difficult to establish. Positively size-dependent predation risk has been proposed as a selective factor potentially capable of balancing the fecundity advantage of large size.
2. To construct optimality models of insect body size, realistic estimates of size-dependent predation rates are necessary. Moreover, prey traits such as colouration should be considered, as they may substantially alter the relationship between body size and mortality risk.
3. To quantify mortality patterns, we conducted field experiments in which we exposed cryptic and conspicuous artificial larvae of different sizes to bird predators, and recorded the incidence of bird attacks.
4. The average daily mortality rate was estimated to vary between 4% and 10%. In both cryptic and conspicuous larvae, predation risk increased with prey size, but the increase tended to be steeper in the conspicuous group. No main effect of colour type was found. All the quantitative relationships were reasonably consistent across replicates.
5. Our results suggest that the size dependence of mortality risk in insect prey is primarily determined by the probability of being detected by a predator rather than by a size-dependent warning effect associated with conspicuous colouration. Our results therefore imply that warningly coloured insects do not necessarily benefit more than the cryptic species from large body size, as has been previously suggested.  相似文献   

8.
How does body size affect the structure and gas exchange capacities of insect tracheae? Do insects become more oxygen-limited as they grow? We addressed these questions by measuring the dimensions of two transverse tracheae within the abdomen of American locusts of different ages, and evaluating the potential for diffusion or convection to provide adequate gas exchange. The grasshopper abdomen has longitudinal tracheae that run along the midgut, heart, nerve cord, and lateral body wall. Transverse tracheae run from each spiracle to the longitudinal tracheae. Dorsal air sacs attach near each spiracle. In both transverse tracheae studied, diffusive capacities increased more slowly than metabolic rates with age, and calculated oxygen gradients necessary to supply oxygen by diffusion increased exponentially with age. However, surgical studies demonstrated that transport of gas through these transverse tracheae occurred by convection, at least in adults. Convective capacities paralleled metabolic rates with age, and the calculated pressure gradients required to sustain oxygen consumption rates by convection were independent of age. Thus, in growing grasshoppers, tracheal capacities matched tissue oxygen needs. Our morphological and physiological data together suggest that use of convection allows older grasshoppers to overcome potential limitations on size imposed by diffusion through tracheal systems.  相似文献   

9.
We examine several aerodynamic and thermoregulatory hypotheses about possible adaptive factors in the evolution of wings from small winglets in insects. Using physical models of Paleozoic insects in a wind tunnel, we explore the potential effects of wings for increasing gliding distance, increasing dispersal distance during parachuting, improving attitude control or stability, and elevating body temperatures during thermoregulation. The effects of body size and shape, wing length, number, and venation, and meteorological conditions are considered. Hypotheses consistent with both fixed and moveable wing articulations are examined. Short wings have no significant effects on any of the aerodynamic characteristics, relative to wingless models, while large wings do have significant effects. In contrast, short wings have large thermoregulatory effects relative to wingless models, but further increases in wing length do not significantly affect thermoregulatory performance. At any body size, there is a wing length below which there are significant thermoregulatory effects of increasing wing length, and above which there are significant aerodynamic effects of increasing wing length. The relative wing length at which this transition occurs decreases with increasing body size. These results suggest that there could be no effective selection for increasing wing length in wingless or short-winged insects in relation to increased aerodynamic capacity. Our results are consistent with the hypothesis that insect wings initially served a thermoregulatory function and were used for aerodynamic functions only at larger wing lengths and/or body sizes. Thus, we propose that thermoregulation was the primary adaptive factor in the early evolution of wings that preadapted them for the subsequent evolution of flight. Our results illustrate an evolutionary mechanism in which a purely isometric change in body size may produce a qualitative change in the function of a given structure. We propose a hypothesis in which the transition from thermoregulatory to aerodynamic function for wings involved only isometric changes in body size and argue that changes in body form were not a prerequisite for this major evolutionary change in function.  相似文献   

10.
It has been widely assumed that the stepwise increase in the exoskeleton size of larval insects approximately follows a geometric progression from instar to instar, known as Dyar's Rule. However, it is not clear whether the per-instar increase in body size follows this rule. In insects, Dyar's Rule has been identified either by regressing the log-scaled size on the instar number (log-linear regression analysis) or by comparing the postmolt/premolt size ratio between instars (growth rate analysis). A previous study on the body mass of caterpillars showed the methodological pitfall that Dyar's Rule was statistically supported by log-linear regression analysis, but not at all by growth rates analysis. I considered this concern here by examining the per-stage growth rates of head and body sizes for larvae of the beetle Trypoxylus dichotomus using both methods and compared the resulting growth rates for body size within and between taxonomic orders. Dyar's Rule was statistically supported by the log-linear regression analysis but not by growth rate analysis for both the head and body sizes in T. dichotomus. The body size growth rate in T. dichotomus decreased as the instar progressed. This developmental pattern was also found in reported data for the other six scarabs, but not in data for Lepidoptera or Hymenoptera. These findings confirm that the per-stage growth rate of body size does not follow Dyar's Rule in a wide range of insects, and suggest that developmental change in the body size growth rate varies among insect groups.  相似文献   

11.
How does body size affect the structure and gas exchange capacities of insect tracheae? Do insects become more oxygen-limited as they grow? We addressed these questions by measuring the dimensions of two transverse tracheae within the abdomen of American locusts of different ages, and evaluating the potential for diffusion or convection to provide adequate gas exchange. The grasshopper abdomen has longitudinal tracheae that run along the midgut, heart, nerve cord, and lateral body wall. Transverse tracheae run from each spiracle to the longitudinal tracheae. Dorsal air sacs attach near each spiracle. In both transverse tracheae studied, diffusive capacities increased more slowly than metabolic rates with age, and calculated oxygen gradients necessary to supply oxygen by diffusion increased exponentially with age. However, surgical studies demonstrated that transport of gas through these transverse tracheae occurred by convection, at least in adults. Convective capacities paralleled metabolic rates with age, and the calculated pressure gradients required to sustain oxygen consumption rates by convection were independent of age. Thus, in growing grasshoppers, tracheal capacities matched tissue oxygen needs. Our morphological and physiological data together suggest that use of convection allows older grasshoppers to overcome potential limitations on size imposed by diffusion through tracheal systems.  相似文献   

12.
Explanations for the hypoallometric scaling of metabolic rate through ontogeny generally fall into two categories: supply-side constraints on delivery of oxygen, or decreased mass-specific intrinsic demand for oxygen. In many animals, supply and demand increase together as the body grows, thus making it impossible to tease apart the relative contributions of changing supply and demand to the observed scaling of metabolic rate. In larval insects, the large components of the tracheal system are set in size at each molt, but then remain constant in size until the next molt. Larvae of Manduca sexta increase up to ten-fold in mass between molts, leading to increased oxygen need without a concomitant increase in supply. At the molt, the tracheal system is shed and replaced with a new, larger one. Due to this discontinuous growth of the tracheal system, insect larvae present an ideal system in which to examine the relative contributions of supply and demand of oxygen to the ontogenetic scaling of metabolic rate. We observed that the metabolic rate at the beginning of successive instars scales hypoallometrically. This decrease in specific intrinsic demand could be due to a decrease in the proportion of highly metabolically active tissues (the midgut) or to a decrease in mitochondrial activity in individual cells. We found that decreased intrinsic demand, mediated by a decrease in the proportion of highly metabolically active tissues in the fifth instar, along with a decrease in the specific mitochondrial activity, contribute to the hypoallometric scaling of metabolic rate.  相似文献   

13.
On the basis of a comparison of Nearctic and Neotropical ants, social insects have been proposed to show a latitudinal gradient in colony size. Further, the "fasting endurance hypothesis," which predicts larger colonies in areas with extended periods of low food availability, was proposed as the mechanism driving the gradient. To test the generality of the pattern and its mechanism, we examined the relationships between termite colony size and both latitude and annual evapotranspiration, a measure of plant productivity. We found no evidence that colony size increases with increasing latitude or decreasing plant productivity. We conclude that the pattern identified for ants cannot be generalized to include social insects as a whole. As is the case for ecogeographic gradients in insect body sizes, a pattern that is reported for one taxon may not be consistent for other taxa at the global level.  相似文献   

14.
The relationship of size of test arena, number of holes in a grain probe trap body and capture of the sawtoothed grain beetle, Oryzaephilus surinamensis (L.), was determined in simulated field tests conducted in an outdoor screen enclosure exposed to natural temperature fluctuations. Polyvinylchloride (PVC) probe bodies were attached to electronic sensor heads, and insect captures were recorded electronically using an electronic grain probe insect counter (EGPIC) system. In comparisons among PVC probe trap bodies with 60, 132, 252, and 492 holes, tested at 18 insects per kilogram in 4.5, 17, and 40 kg of soft wheat in cylindrical arenas (10.2, 20.3, and 30.5 cm in diameter, respectively), number of holes in the probe trap body had no effect on insect capture, but percentage of insects recovered was indirectly related to size of the test arena. Periodicity of insect capture was determined using the time-stamp data that were recorded by the EGPIC system. Circadian rhythm was observed in the periodicity of the capture that corresponded to foraging activity peaks documented for sawtoothed grain beetles, with activity peaks occurring early in the scotophase. There were shifts in times of peak activity among the different test arena sizes that corresponded to differences in temperature in the grain mass. Increases in both temperature and contact between insects and grain probe in the smallest arenas resulted in higher capture of sawtoothed grain beetles. This research documents additional important factors when evaluating capture of sawtoothed grain beetles in grain probe traps.  相似文献   

15.
Body size and the timing of egg production in parasitoid wasps   总被引:7,自引:0,他引:7  
Jacintha Ellers  Mark Jervis 《Oikos》2003,102(1):164-172
In insects several key fitness-related variables are positively correlated with intraspecific variation in body size, but little is known about size-related variation in the timing of egg production within species. Female insects are known to vary in the degree to which they concentrate egg production into the early part of life. This variation has been quantified as the ovigeny index, defined as the proportion of the maximum potential lifetime complement of eggs that is mature following emergence from the pupa. We tested the hypothesis that the timing of egg production depends both on body size and on host availability, by means of a dynamic programming model that predicted optimal resource allocation to reproduction and survival together with the resulting ovigeny index, in non-feeding synovigenic parasitoids of different sizes. As body size increases, the proportionate increase in resource allocation to initial egg load is less than the proportionate increase in allocation to lifetime fecundity and potential life span, leading to a deferred investment in reproduction as shown by a decrease in ovigeny index. High habitat quality and high habitat stochasticity in reproductive opportunities have a significant effect on the optimal allocation of resources to reproduction and survival, and thus select for early reproduction, i.e. an increased ovigeny index. The ovigeny concept – ovigeny index together with its life-history correlates – enables understanding of the general occurrence of size-related deferment of reproductive investment in parasitoid wasps and also helps explain a significant part of the considerable life-history variation found among such insects.  相似文献   

16.
Recent studies have shown that organisms from the detritus food web subsidize generalist predators in aboveground food webs, but its significance in space and time is largely unknown. Here we report seasonal dynamics of aerial insects from grazing and detritus food webs in both forest and grassland habitats, and show how these patterns influence the dependence of web spiders on the detritus food web. Detrital insects were more abundant in spring, decreased in summer, and then increased slightly in autumn. This pattern was most conspicuous in Nematocera. Due to different seasonal activity patterns of grazing and detrital insects, the proportion of detrital insects was greater in spring and autumn. Detrital insects were relatively more abundant in the forest than in the grassland. Prey captured by web spiders generally reflected seasonal and spatial patterns of aerial insect abundance. In particular, Leucauge spiders reversed their dependence on the two food webs seasonally. Body size of spiders was negatively correlated with the proportion of detrital prey, suggesting that the detrital subsidy is essential for relatively small predators. This size effect probably resulted from interaction of the following two factors: 1) the maximum body size of prey that can be caught increased with spider body size, 2) larger body size classes of aerial insects included a higher proportion of insects from the grazing food web.  相似文献   

17.
Female fecundity increases with body size in a variety of insects, but it is unknown if this generalization applies for kissing bugs. In this study, we evaluate whether gonad weight in the bloodsucking insect Mepraia spinolai correlates with body size, or determined by nutrition or developmental time. We found that the investment on reproductive tissue correlates positively and significantly with body size and with the amount of ingested blood by female insects along their lifespan. Total molting time did not significantly affect gonad weight. We suggest that under optimal feeding conditions M. spinolai females could express their maximum reproductive potential.  相似文献   

18.
Conspecific females and males often follow different development trajectories which leads to sex differences in age at maturity (sexual bimaturism, SBM). Whether SBM is typically selected for per se (direct selection hypothesis) or merely represents a side-effect of other sex-related adaptations (indirect selection hypothesis) is, however, still an open question. Substantial interspecific variation in the direction and degree of SBM, both in invertebrates and vertebrates, calls for multi-species studies to understand the relative importance of its evolutionary drivers. Here we use two complementary approaches to evaluate the evolutionary basis of SBM in insects. For this purpose, we assembled an extensive literature-derived data set of sex-specific development times and body sizes for a taxonomically and ecologically wide range of species. We use these data in a meta-analytic framework to evaluate support for the direct and indirect selection hypotheses. Our results confirm that protandry – males emerging as adults before females – is the prevailing form of SBM in insects. Nevertheless, protandry is not as ubiquitous as often presumed: females emerged before males (= protogyny) in about 36% of the 192 species for which we had data. Moreover, in a considerable proportion of species, the sex difference in the timing of adult emergence was negligible. In search for the evolutionary basis of SBM, we found stronger support for the hypothesis that explains SBM by indirect selection. First, across species, the direction and degree of SBM appeared to be positively associated with the direction and degree of sexual size dimorphism (SSD). This is consistent with the view that SBM is a correlative by-product of evolution towards sexually dimorphic body sizes. Second, within protandrous species, the degree of protandry typically increased with plastic increase in development time, with females prolonging their development more than males in unfavourable conditions. This pattern is in conflict with the direct selection hypothesis, which predicts the degree of protandry to be insensitive to the quality of the juvenile environment. These converging lines of evidence support the idea that, in insects, SBM is generally a by-product of SSD rather than a result of selection on the two sexes to mature at different times. It appears plausible that selective pressures on maturation time per se generally cannot compete with viability- and fecundity-mediated selection on insect body sizes. Nevertheless, exceptions certainly exist: there are undeniable cases of SBM where this trait has evolved in response to direct selection. In such cases, either the advantage of sex difference in maturation time must have been particularly large, or fitness effects of body size have been unusually weak.  相似文献   

19.
匡先钜  戈峰  薛芳森 《昆虫学报》2015,58(3):351-360
体型是昆虫基本的形态特性,它会影响到昆虫几乎所有的生理和生活史特性。同种昆虫不同地理种群在体型上常表现出明显的渐变,导致这些渐变的环境因素包括温度、湿度、光照、寄主植物、种群密度等,并且多种环境因素也会对昆虫种群内个体体型产生影响。雌雄个体的体型存在差异,称性体型二型性。性体型二型性也显示了地理差异。这些差异形成的途径已经得到详细的分析,其形成机制导致多个假说的提出,这些假说又在多种昆虫中得到验证。本文从同一种昆虫不同种群间、同一种群内、雌雄虫个体间3个水平,对种内昆虫体型变异的方式,影响昆虫种群间体型变异和种群内昆虫体型的变异的环境因素,以及昆虫性体型二型性及其地理变异的现象等方面的研究进行了综述,并对未来的相关研究提供了建议。  相似文献   

20.
Recent studies suggest that higher growth rates may be associated with reduced capacities for stress tolerance and increased accumulated damage due to reactive oxygen species. We tested the response of Manduca sexta (Sphingidae) lines selected for large or small body size and short development time to hypoxia (10 kPa) and hyperoxia (25, 33, and 40 kPa); both hypoxia and hyperoxia reduce reproduction and oxygen levels over 33 kPa have been shown to increase oxidative damage in insects. Under normoxic (21 kPa) conditions, individuals from the large‐selected (big‐fast) line were larger and had faster growth rates, slightly longer developmental times, and reduced survival rates compared to individuals from a line selected for small size (small‐fast) or an unselected control line. Individuals from the big‐fast line exhibited greater negative responses to hyperoxia with greater reductions in juvenile and adult mass, growth rate, and survival than the other two lines. Hypoxia generally negatively affected survival and growth/size, but the lines responded similarly. These results are mostly consistent with the hypothesis that simultaneous acquisition of large body sizes and short development times leads to reduced capacities for coping with stressful conditions including oxidative damage. This result is of particular importance in that natural selection tends to decrease development time and increase body size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号