首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Oxygen is recognized as a structuring factor of metazoan communities in marine sediments. The importance of oxygen as a controlling factor on meiofauna (32 µm-1 mm in size) respiration rates is however less clear. Typically, respiration rates are measured under oxic conditions, after which these rates are used in food web studies to quantify the role of meiofauna in sediment carbon turnover. Sediment oxygen concentration ([O2]) is generally far from saturated, implying that (1) current estimates of the role of meiofauna in carbon cycling may be biased and (2) meiofaunal organisms need strategies to survive in oxygen-stressed environments. Two main survival strategies are often hypothesized: 1) frequent migration to oxic layers and 2) morphological adaptation. To evaluate these hypotheses, we (1) used a model of oxygen turnover in the meiofauna body as a function of ambient [O2], and (2) performed respiration measurements at a range of [O2] conditions. The oxygen turnover model predicts a tight coupling between ambient [O2] and meiofauna body [O2] with oxygen within the body being consumed in seconds. This fast turnover favors long and slender organisms in sediments with low ambient [O2] but even then frequent migration between suboxic and oxic layers is for most organisms not a viable strategy to alleviate oxygen limitation. Respiration rates of all measured meiofauna organisms slowed down in response to decreasing ambient [O2], with Nematoda displaying the highest metabolic sensitivity for declining [O2] followed by Foraminifera and juvenile Gastropoda. Ostracoda showed a behavioral stress response when ambient [O2] reached a critical level. Reduced respiration at low ambient [O2] implies that meiofauna in natural, i.e. suboxic, sediments must have a lower metabolism than inferred from earlier respiration rates conducted under oxic conditions. The implications of these findings are discussed for the contribution of meiofauna to carbon cycling in marine sediments.  相似文献   

2.
1. Lobelia dortmanna is a common representative of the small isoetid plants dominating the vegetation in nutrient‐poor lakes in Europe and North America. Because of large permeable root surfaces and continuous air lacunae Lobelia exchanges the majority of O2 and CO2 during photosynthesis across the roots. This leads to profound diel pulses of O2 and CO2 in sandy sediments with low microbial O2 consumption rates. The ready radial root loss of O2 may, however, make Lobelia very susceptible to more reducing sediments. Therefore, we grew Lobelia for 6 months on natural and organically enriched sandy sediments to test how: (i) root oxygenation influenced degradation of organic matter and depth profiles of N and C; (ii) Lobelia and microbial O2 consumption rates influenced pool size and depth penetration of O2 in the sediments; and (iii) sediment enrichment influenced growth and mineral nutrition of Lobelia. 2. Naturally low‐organic sediments (0.32% DW) accumulated organic C and N during the experiment as a result of growth of Lobelia and surface micro‐algae. In contrast, surface layers of enriched sediments (0.58, 0.87 and 2.46% DW) lost organic C and N because of enhanced mineralisation rates because of oxygen availability. In deeper layers of enriched sediments no significant differences in organic C and N pools were found between plant‐covered and plant‐free sediments probably because faster organic degradation because of root oxygenation was balanced by release of organic matter from the plants and because short roots with dense Fe‐Mn coatings in the most enriched sediments constrained O2 release. 3. Depth‐integrated O2 pools were much higher in light than darkness, higher in plant‐covered than plant‐free sediments and higher in sandy than in organically enriched sediments. All sediments had a primary O2 maximum 1–2 mm below the sediment surface in light because of photosynthesis of micro‐algae. Plant‐covered sediments of low organic content (0.32 and 0.58% DW) also had a secondary deep maximum (2–4 cm) because of higher O2 release from Lobelia roots than microbial O2 consumption. Nitrification occurred here resulting in depletion of NH and accumulation of NO. In low organic sediments, oxygen pools increased with higher plant biomass both in light and darkness. The deep O2 and NO3 maxima disappeared in high organic sediments of greater O2 consumption rates and smaller O2 release rates. 4. Lobelia was stressed by increasing O2 consumption rate of the sediments. Plant weight and leaf number declined twofold and maximum root length declined fourfold suggesting severe problems maintaining sufficient axial O2 transport to the root tips because of rapid radial O2 loss. Despite markedly higher nutrient concentrations in the enriched sediments, leaf‐N declined twofold and leaf‐P declined fourfold to growth‐limiting levels. These responses can be explained by constrains on mycorrhisal activity, root metabolism and vascular transport because of O2 depletion. Management efforts to stop the decline and ensure the recovery of the isoetid vegetation should therefore focus on improving water quality as well as sediment suitability for growth.  相似文献   

3.
Valdovinos  Claudio  Figueroa  Ricardo 《Hydrobiologia》2000,429(1-3):151-156
Oxygen uptake rates of undisturbed sediment columns have been used as an integrative measure of the metabolic activities of benthic communities. Since the intensity of metabolic processes of profundal lake is dependent on the production of organic matter in the pelagic zone, oxygen uptake rates reflect the trophic condition of the whole lake. Four small lakes of central Chile, differing strongly in trophic conditions, provided a possibility to compare benthic oxygen uptake rates, under different oxygen conditions (Quiñenco, Grande, Chica and Lleulleu). Our objective was to establish the relationship between the oxygen uptake rates and bottom characteristics of lakes with different trophic conditions. At 8 mg O2 l-1 in the overlying water of the cores studied, the oxygen uptake rates of the sediment were: Quiñenco 51.2–56.0 mg O2 m2 h-1 (eutrophic), Grande 41.2–46.4 mg O2 m2 h-1 (mesotrophic), Chica 23.2–18.1 mg O2 m2 h-1 (mesotrophic) and Lleulleu 11.7–16.0 mg O2 m2 h-1 (oligotrophic). By exposing the sediments to different oxygen levels in the laboratory, it was found that benthic community metabolism decreased with oxygen concentrations. The slope of regression lines, relating oxygen uptake rates to oxygen concentrations, differed for the different sites investigated, closely related with the trophic conditions of the lakes. It was positively correlated with the organic matter content of the sediment of the cores (r 2= 0.78, p<0,05) and the nutrients of the bottom waters (total-P: r 2= 0.73, p<0,05; total-N: r 2= 0.73, p<0,05), and negatively with the redox potential of the sediments (r 2= 0.88, p<0,05).  相似文献   

4.
We used transparent planar oxygen optodes and a luminescence lifetime imaging system to map (at a pixel resolution of <200 μm) the two‐dimensional distribution of O2 within the skeleton of a Porites lobata colony. The O2 distribution was closely correlated to the distribution of the predominant endolithic microalga, Ostreobium quekettii Bornet et Flahault that formed a distinct green band inside the skeleton. Oxygen production followed the outline of the Ostreobium band, and photosynthetic O2 production was detected at only 0.2 μmol photons m?2 · s?1, while saturation occurred at ~37 μmol photons m?2 · s?1. Oxygen levels varied from ~60% to 0% air saturation in the illuminated section of the coral skeleton in comparison to the darkened section. The O2 production within the Ostreobium band was lower in the region below the upward facing surface of the coral and elevated on the sides. Oxygen consumption in darkness was also greatest within the Ostreobium zone, as well as in the white skeleton zone immediately below the corallites. The rate of O2 depletion was not constant within zones and between zones, showing pronounced heterogeneity in endolithic respiration. When the coral was placed in darkness after a period of illumination, O2 levels declined by 50% within 20 min and approached steady‐state after 40–50 min in darkness. Our study demonstrates the use of an important new tool in endolith photobiology and presents the first data of spatially resolved O2 concentration and its correlation to the physical structures and specific zones responsible for O2 production and consumption within the coral skeleton.  相似文献   

5.
Myriophyllum spicatum and Potamogeton crispus are common species of shallow eutrophic lakes in north-eastern Germany, where a slow recovery of the submersed aquatic vegetation was observed. Thus, the characterisation of the root oxygen release (ROL) as well as its implication for geochemical processes in the sediment are of particular interest. A combination of microelectrode measurements, methylene blue agar and a titanium(III) redox buffer was used to investigate the influence of the oxygen content in the water column on ROL, diel ROL dynamics as well as the impact of sediment milieu. Oxygen gradients around the roots revealed a maximum oxygen diffusion zone of up to 250 μm. During a sequence with a light/dark cycle as well as alternating aeration of the water column, maximum ROL with up to 35% oxygen saturation at the root surface occurred under light/O2-saturated conditions. A decrease to about 30% was observed under dark/O2-saturated conditions, no ROL was detected at dark/O2-depleted conditions and only a weak ROL with 5–10% oxygen saturation at the root surface was measured under light but O2-depleted water column. These results indicate, that during darkness, ROL is supplied by oxygen from the water column and even during illumination and active photosynthesis production, ROL is modified by the oxygen content in the water column. Visualisation of ROL patterns revealed an enhanced ROL for plants which were grown in sulfidic littoral sediment in comparison to plants grown in pure quartz sand. For both plant species grown in sulfidic littoral sediment, a ROL rate of 3–4 μmol O2 h−1 plant−1 was determined with the Ti(III) redox buffer. For plants grown in pure quartz sand, the ROL rate decreased to 1–2 μmol O2 h−1 plant−1. Hence, aside from the oxygen content in the water column, the redox conditions and microbial oxygen demand in the sediment has to be considered as a further major determinant of ROL.  相似文献   

6.
Microbial sulfur cycling in marine sediments often occurs in environments characterized by transient chemical gradients that affect both the availability of nutrients and the activity of microbes. High turnover rates of intermediate valence sulfur compounds and the intermittent availability of oxygen in these systems greatly impact the activity of sulfur‐oxidizing micro‐organisms in particular. In this study, the thiosulfate‐oxidizing hydrothermal vent bacterium Thiomicrospira thermophila strain EPR85 was grown in continuous culture at a range of dissolved oxygen concentrations (0.04–1.9 mM) and high pressure (5–10 MPa) in medium buffered at pH 8. Thiosulfate oxidation under these conditions produced tetrathionate, sulfate, and elemental sulfur, in contrast to previous closed‐system experiments at ambient pressure during which thiosulfate was quantitatively oxidized to sulfate. The maximum observed specific growth rate at 5 MPa pressure under unlimited O2 was 0.25 hr?1. This is comparable to the μmax (0.28 hr?1) observed at low pH (<6) at ambient pressure when T. thermophila produces the same mix of sulfur species. The half‐saturation constant for O2 () estimated from this study was 0.2 mM (at a cell density of 105 cells/ml) and was robust at all pressures tested (0.4–10 MPa), consistent with piezotolerant behavior of this strain. The cell‐specific was determined to be 1.5 pmol O2/cell. The concentrations of products formed were correlated with oxygen availability, with tetrathionate production in excess of sulfate production at all pressure conditions tested. This study provides evidence for transient sulfur storage during times when substrate concentration exceeds cell‐specific and subsequent consumption when oxygen dropped below that threshold. These results may be common among sulfur oxidizers in a variety of environments (e.g., deep marine sediments to photosynthetic microbial mats).  相似文献   

7.
Summary Seasonal changes in the activity of phytoplankton and benthic algae in relation to diurnal oxygen pulses were investigated in a 120 cm deep, brackish hypertrophic ditch. A vertical chloride gradient was built up by saline seepage and drain-water effluent. The stable chloride gradient could lead to oxygen stratification near the sediment, and to oxygen gradients towards the water surface. The oxygen gradients were rather unstable, depending on the chloride gradient and the wind velocity.Light was limiting photosynthesis both in summer and in winter. Surface oxygen maxima increased with solar radiation during summer.In summer the diatomCyclotella caused surface oxygen maxima at light saturation in the late afternoon. Simultaneously, the dominant flagellatesPeridinium andChlamydomonas produced oxygen in dim light, probably choosing their favourite light energy level by vertical migration. Oxygen fluctuations ranged from 0 to 34 mg O2.l–1 in a 100 cm vertical profile above a 20 cm anoxic layer. The amplitude of the diurnal oxygen maxima varied from 10 to 34 mg O2.l–1.In winter the water became very clear. The oxygen gradient was inverted during the day showing a characteristic oxygen maximum above the bottom, produced by benthicAchnanthes colonies.Communication no. 193.  相似文献   

8.
Benthic community oxygen uptake of Lake Attersee sediments was measured between 1976 and 1979, along two profiles at 25, 50 and 100 m depth. Profile I was situated in the bay of Unterach into which the main tributary, Mondsee-Ache, discharges a high load of organic matter. Profile II was chosen at Weyregg to avoid the eutrophying effect of Mondsee-Ache. Oxygen uptake rates of Unterach sediments at 25 and 50 m depth were found to be higher when compared to the other sites (mean rates: Unterach 25 m = 15.56, 50 m = 11.05 mg O2 · m−2 · h−1; Weyregg 25 m = 6.43, 50 m = 5.14 mg O2 · m−2 · h−1). Organic content of the uppermost sediment layer was also higher in the bay of Unterach than at Weyregg. Oxygen uptake rates of undisturbed sediment cores vary considerably throughout the year, but no simple correlation existed with variations in organic content of the sediments. Peaks of organic matter were found to concur with following peaks of oxygen uptake rates, which implies that a certain time span is necessary for transforming freshly sedimented organic matter into a state digestable for the benthic community. The retardation between increasing organic matter of the sediment and the corresponding increase of benthic oxygen uptake was different at Unterach and Weyregg respectively, which is explained by the different quality of sedimenting material.  相似文献   

9.
Annual and diel oxygen regime in two polder ditches   总被引:1,自引:0,他引:1  
The oxygen regime of two polder ditches and two enclosures within these ditches was studied. Continous oxygen temperature and light measurements were performed for 24-hour periods each month during two and a half year in the ditches and one year in the enclosures. Oxygen concentrations between 0 and 23 ppm were found, with diurnal ranges as large as 18 ppm. Steep gradients between bottom and surface could develop, but mostly disappeared during nightly turnover. The 10-percentile of the surface water measured between 9 and 17 hours was above 3 ppm, fullfilling the Dutch standards for this type of ecosystems. The oxygen concentrations near the bottom, however, could drop to zero and during the night surface concentrations below 1 ppm were measured. Based on average oxygen saturation values it is concluded that in the open water of the ditches oxygen consumption prevailed while in the enclosures oxygen production was most important. Based on the mass balance equation gross primary production and respiration were calculated. Annual average respiration varied between 2.5 and 6.6 g O2.m–2.d–1 and average gross primary production between 3.2 and 4.8 g O2.m–2.d–1. Maximum daily production and respiration were 15.9 and 22.3 g O2.m–2.d–1. These figures classify the polder ditches as highly productive aquatic ecosystems.  相似文献   

10.
There is a growing need to measure arterial oxygen saturation with a non-invasive method during heavy exercise under severe hypoxic conditions. Although the accuracy of pulse oximetry has been challenged by several authors, it has not been done under extreme conditions. The purpose of this study was to evaluate the accuracy of a pulse oximeter (Satlite, Datex, Finland) during exercise under hypoxic conditions where arterial oxygen saturation was below 75%, simulating exercise at extreme altitude. Ten healthy non-smoking men performed two exercise studies of 30 min under normoxia and under hypoxia on two consecutive days. The exercise intensity was 80% of maximal O2 consumption of O2max. Arterial oxygen saturation measured by pulse oximetry was corrected (S pO2[corr]) according to previously published equations and was compared to arterial oxygen saturation (S aO2) in blood samples taken simultaneously from the radial artery. Reference arterial saturation values ranged from 57.2 to 97.6% for the whole data set. This data set was split according to low (S aO2 ≤ 75%) and high (S aO2 > 75%) S aO2 values. The error of pulse oximetry (S pO2[corr] S aO2) was 2.05 (0.87)% [mean (SD)] and 1.80 (1.81)% for high and low S aO2 values, respectively. S pO2[corr] and S aO2 were highly correlated (r = 0.93, SEE = 1.8) for low values. During high-intensity constant workload under severe hypoxic conditions, once corrected, pulse oximetry provides an estimate of S aO2 with a mean error of 2%. Thus, the correction previously described for S pO2 values above 75% saturation applies also to S pO2 values in the range of 57–75% during exercise under hypoxic conditions. Accepted: 27 February 1997  相似文献   

11.
This study compared parr from three strains of rainbow trout Oncorhynchus mykiss to examine intraspecific variation in metabolic traits, hypoxia tolerance and upper thermal tolerance in this species. At the strain level, variation in absolute aerobic scope (AAS), critical oxygen level (O2crit), incipient lethal oxygen saturation (ILOS) and critical thermal maximum (CTmax) generally exhibited consistent differences among the strains, suggesting the possibility of functional associations among these traits. This possibility was further supported at the individual level by a positive correlation between ILOS and O2crit and a negative correlation between O2crit and AAS. These results indicate that intraspecific differences in hypoxia tolerance among strains of O. mykiss may be primarily determined by differences in the ability to maintain oxygen uptake in hypoxia and that variation in aerobic scope in normoxia probably plays a role in determining the ability of these fish to sustain metabolism aerobically as water oxygen saturation is reduced.  相似文献   

12.
Hicks  William T.  Harmon  Mark E. 《Plant and Soil》2002,243(1):67-79
O2 is an important regulator of physiological processes involved in the decomposition of woody debris, yet O2 levels and diffusion rates within decomposing logs are largely unknown. We examined how O2 diffusion rates in decayed and sound wood varied with moisture and density, and we compared predicted with observed seasonal changes in oxygen concentration in logs in a Pacific Northwest old-growth Pseudotsuga menziesii forest. In the laboratory, the oxygen diffusion coefficient (DO2) was determined in the longitudinal and radial (or tangential) directions on wood cores of varying moisture content and density. In the field, O2 was measured in tubes inserted to three radial depths (2, 6 and 15 cm) within logs of two species (Pseudotsuga menziesii and Tsuga heterophylla) and five decay classes (where class 5 = most decayed). In both the radial and longitudinal directions, DO2 increased exponentially as the air filled pore space (AFPS) increased and as density decreased. In the field, mean O2 concentrations in logs were not significantly different between species. Mean O2 concentrations were significantly lower in the least decayed logs as compared to the most decayed logs. Mean O2 concentrations decreased with radial depth only in decay class two logs. Seasonal O2 levels did not consistently vary with log moisture, respiration, or air temperature. The comparison of the results from a model that assumes oxygen diffuses only in the radial direction to field data indicates that laboratory measurements of oxygen diffusion may underestimate field oxygen concentrations. Cracks, insect galleries and other passages in decayed logs, and longitudinal oxygen diffusion may account for this discrepancy. In the field, log oxygen concentrations were rarely as low as 2%, indicating anaerobic conditions may not be as common in logs as we previously thought. Oxygen limitations on decomposition may occur in relatively sound and/or water soaked wood, but probably not in decayed logs in a terrestrial setting.  相似文献   

13.
Diversity and activity of aquatic fungi under low oxygen conditions   总被引:1,自引:0,他引:1  
1. The objective was to test whether a decrease in oxygen concentration in streams affects the diversity and activity of aquatic hyphomycetes and consequently leaf litter decomposition. 2. Senescent leaves of Alnus glutinosa were immersed for 7 days in a reference stream, for fungal colonization, and then incubated for 18 days in microcosms at five oxygen concentrations (4%, 26%, 54%, 76% and 94% saturation). Leaf decomposition (as loss of leaf toughness), fungal diversity, reproduction (as spore production) and biomass (ergosterol content) were determined. 3. Leaf toughness decreased by 70% in leaves exposed to the highest O2 concentration, whereas the decrease was substantially less (from 25% to 45%) in treatments with lower O2. Fungal biomass decreased from 99 to 12 mg fungi g−1 ash‐free dry mass on exposure to 94% and 4% O2 respectively. Sporulation was strongly inhibited by reduction of dissolved O2 in water (3.1 × 104 versus 1.3 × 103 spores per microcosms) for 94% and 4% saturation respectively. 4. A total of 20 species of aquatic hyphomycetes were identified on leaves exposed to 94% O2, whereas only 12 species were found in the treatment with 4% O2 saturation. Multidimensional scaling revealed that fungal assemblages exposed to 4% O2 were separated from all the others. Articulospora tetracladia, Cylindrocarpon sp. and Flagellospora curta were the dominant species in microcosms with 4% O2, while Flagellospora curvula and Anguillospora filiformis were dominant at higher O2 concentrations. 5. Overall results suggest that the functional role of aquatic hyphomycetes as decomposers of leaf litter is limited when the concentration of dissolved oxygen in streams is low.  相似文献   

14.
Pelagic ecosystems can become depleted of dissolved oxygen as a result of both natural processes and anthropogenic effects. As dissolved oxygen concentration decreases, energy shifts from macrofauna to microorganisms, which persist in these hypoxic zones. Oxygen-limited regions are rapidly expanding globally; however, patterns of microbial communities associated with dissolved oxygen gradients are not yet well understood. To assess the effects of decreasing dissolved oxygen on bacteria, we examined shifts in bacterial community structure over space and time in Hood Canal, Washington, USA−a glacial fjord-like water body that experiences seasonal low dissolved oxygen levels known to be detrimental to fish and other marine organisms. We found a strong negative association between bacterial richness and dissolved oxygen. Bacterial community composition across all samples was also strongly associated with the dissolved oxygen gradient, and significant changes in bacterial community composition occurred at a dissolved oxygen concentration between 5.18 and 7.12 mg O2 L-1. This threshold value of dissolved oxygen is higher than classic definitions of hypoxia (<2.0 mg O2 L-1), suggesting that changes in bacterial communities may precede the detrimental effects on ecologically and economically important macrofauna. Furthermore, bacterial taxa responsible for driving whole community changes across the oxygen gradient are commonly detected in other oxygen-stressed ecosystems, suggesting that the patterns we uncovered in Hood Canal may be relevant in other low oxygen ecosystems.  相似文献   

15.
Oxygen Responses and Mat Formation by Beggiatoa spp   总被引:3,自引:3,他引:0       下载免费PDF全文
The behavioral response of single Beggiatoa sp. filaments moving on a gas-permeable membrane was studied by the combined use of microscopy and oxygen microelectrodes during controlled oscillations of oxygen tension. The bacteria reacted to increasing oxygen by reversing the direction of movement. The same step-up phobic response to oxygen was observed when a filament tip or loop glided into a stable microgradient of increasing oxygen. The response was sensitive to a change in oxygen tension of <5% of air saturation min−1. The response time was 20 to 50 s. Frequently, only part of the filament responded, which led to the formation of sharp bends, loops, and coils. This partial response facilitated the positioning of the long filaments within the narrow O2-H2S interface. The structure of whole Beggiatoa mats on sediment surfaces varied from loose to dense in relation to shallow or steep oxygen gradients in the 0.3- to 2-mm-thick, unstirred boundary layer. In an illuminated sediment Beggiatoa spp. lived together with photosynthetic organisms and migrated vertically in accordance with light/dark variations. The combined effect of phobic responses to light and oxygen can explain this migration.  相似文献   

16.
Oxygen consumption of luminous bacteria determined by the Thunberg micro respirometer and by the time which elapses before the luminescence of an emulsion of luminous bacteria in sea water begins to dim, when over 99 per cent of the dissolved oxygen has been consumed, agree exactly. Average values for oxygen consumption at an average temperature of 21.5°C. are 4.26 x 10–11 mg. O2 per bacterium; 2.5 x 104 mg. per kilo and 5.6 mg. O2 per sq. m. of bacterial surface. The only correct comparison of the oxygen consumption of different organisms or tissues is in terms of oxygen used per unit weight with a sufficient oxygen tension so that oxygen consumption is independent of oxygen tension. Measurement of the oxygen concentration which just allows full luminescence, compared with a calculation of the oxygen concentration at the surface of a bacterial cell just necessary to allow the observed respiration throughout all parts of the cell, indicates that oxygen must diffuse into the bacterium much more slowly than through gelatin or connective tissue but not as slowly as through chitin.  相似文献   

17.
18.
Kristensen  Erik 《Hydrobiologia》2000,421(1):1-24
The present paper reviews the current knowledge on diagenetic carbon transformations at the oxic/anoxic interface in coastal marine sediments. Oxygen microelectrodes have revealed that most coastal sediments are covered only by a thin oxic surface layer. The penetration depth of oxygen into sediments is controlled by the balance between downward transport and consumption processes. Consumption of oxygen is directly or indirectly caused by respiration of benthic organisms. Aerobic organisms have the enzymatic capacity for complete oxidation of organic carbon. Anaerobic decay occurs stepwise, involving several types of bacteria. Large organic molecules are first fermented into small moieties. These are then oxidized completely by anaerobic respirers using a sequence of electron acceptors: Mn4+, NO3 -, Fe3+, SO4 2- and CO2. The quantitative role of each electron acceptor depends on the sediment type and water depth. Since most of the sediment oxygen uptake is due to reoxidation of reduced metabolites, aerobic respiration is of limited importance. It has been suggested that sediments contain three major organic fractions: (1) fresh material that is oxidized regardless of oxygen conditions; (2) oxygen sensitive material that is only degraded in the presence of oxygen; and (3) totally refractory organic matter. Processes occurring at the oxic/anoxic boundaries are controlled by a number of factors. The most important are: (1) temperature, (2) organic supply, (3) light, (4) water currents, and (5) bioturbation. The role of bioturbation is important because the infauna creates a three-dimensional mosaic of oxic/anoxic interfaces in sediments. The volume of oxic burrow walls may be several times the volume of oxic surface sediment. The infauna increases the capacity, but not the overall organic matter decay in sediments, thus decreasing the pool of reactive organic matter. The increase in decay capacity is partly caused by injection of oxygen into the sediment, and thereby enhancing the decay of old, oxygen sensitive organic matter several fold. Finally, some future research directions to improve our understanding of diagenetic processes at the oxic/anoxic interface are suggested.  相似文献   

19.
A Method to Estimate Practical Radial Oxygen Loss of Wetland Plant Roots   总被引:1,自引:0,他引:1  
The estimation of practical radial oxygen loss (ROL) of wetland plant roots was attempted in this study. We have devised a new method to measure ROL of wetland plant roots. The whole root system was bathed in an anoxic nutrient solution. Oxygen released from the root was removed immediately by introducing oxygen-free nitrogen gas (O2 < 4 nmol L−1) to mimic natural habitats where released oxygen is consumed rapidly due to chemical and biological oxidation processes. Oxygen removed from the root-bathing chamber was simultaneously detected colorimetrically by use of the highly oxygen-sensitive anthraquinone radical anion (AQ·) in a cell outside the root-bathing chamber, which decolorized by a rapid reaction with oxygen. An emergent macrophyte Typha latifolia L. was incubated, and its ROL was measured by both the new method and one of the conventional methods, the closed chamber/electrode method, by which the ROL of Typha latifolia L. had not yet been measured. The new method succeeded in detecting the ROL, whereas the conventional method was not able to detect oxygen, due to the level being below the detection limit of the oxygen electrode. The oxygen supply via the seedlings of Typha latifolia L. was ca. 10 times higher compared with control measurements without plant. Light illumination significantly enhanced the ROL of Typha latifolia L. (0.33 nmol O2 g−1 root dry weight s−1 under light and 0.18 nmol O2 g−1 root dry weight s−1 in the dark). Theses values fall between those previously reported by the closed chamber/titanium citrate method and the open chamber/electrode method.  相似文献   

20.
We tested the effects of low 20% O2) and high (70% O2) oxygen tension on the morphological and biochemical integrity of human liver slices incubated for up to 72 h in supplemented Williams' E medium in a dynamic rotating culture system. High oxygen tension was more effective than low oxygen tension for preserving morphological integrity in long-term culture 48–72 h). After 72 h of culture with 70% O2, the lobular pattern was well preserved, and the survival of hepatocytes approximately 80%) and other cell types was good. Immunohistochemical studies showed good preservation of the region-specific expression of CYP2E1 and CYP3A4 isoenzymes for up to 72 h of incubation in 70% O2. As compared to 20% O2, the oxidized glutathione content and reactive oxygen species production were slightly increased in 70% O2, suggesting that minimal oxidative stress occurred with the high oxygen tension. In conclusion, despite slight oxidative stress associated with high oxygen tension, 70% O2 appeared more appropriate than 20% O2 for preserving the morphological and biochemical integrity of human liver slices cultured in a dynamic organ culture system for up to 72 h. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号