首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 669 毫秒
1.
The preparation and chemical poperties of the cell walls of Leptospira biflexa Urawa and Treponema pallidum Reiter are described. Both cell walls are composed mainly of polysaccharides and peptidoglycans. The data of chemical analysis indicate that the cell wall of L. biflexa Urawa contains rhamnose, arabinose, xylose, mannose, galactose, glucose and unidentified sugars as neutral sugars, and alanine, glutamic acid, α,ε-diaminopimelic acid, glucosamine and muramic acid as major amino acids and amino sugars. As major chemical constituents of the cell wall of T. pallidum Reiter, rhamnose, arabinose, xylose, mannose, galactose, glucose, alanine, glutamic acid, ornithine, glycine, glucosamine and muramic acid have been detected. The chemical properties of protein and polysaccharide fractions prepared from the cells of T. pallidum Reiter were also partially examined.  相似文献   

2.
The bag shaped peptidoglycan layer of Rhizobium cell wall was isolated from intact cells after treatment with sodium dodecylsulfate and trypsin, chymotrypsin or pepsin digestion. Results of chemical analysis of acid hydrolyzed peptidoglycan revealed beside two amino sugars: glucosamine and muramic acid, three major amino acids; alanine, glutamic acid and 2,6-diaminopimelic acid and also significant amount of glucose. Evidence were provided that the polyglucose found in peptidoglycan preparations of three strains of Rhizobium trifolii, one of Rhizobium leguminosarum and one of Rhizobium meliloti consist of cellulose microfibrils. The content of cellulose present in Rhizobium peptidoglycans ranged from 60 to 80%. Methods of peptidoglycan purification from the cellulose microfibrils are described.  相似文献   

3.
Chemical analysis of cell walls obtained from Hyphomicrobium B-522 and from a morphologically and nutritionally distinct organism, Hyphomicrobium neptunium (ATCC 15444), showed that the organisms have a similar cell wall composition, which is typical of gram-negative bacteria. The walls of both strains contained many amino acids, including the characteristic mucopeptide components diaminopimelic acid and muramic acid. Isolation of the mucopeptide by use of sodium dodecyl sulfate was successful only with cell walls of H. neptunium, thus revealing a difference between the walls of the two strains. The mucopeptide preparation contained glucosamine, muramic acid, alanine, glutamic acid, diaminopimelic acid, and glycine in molar ratios of 1.05:1.21:1.84:1.0:1.04:0.31, respectively. The concentration of glycine was sufficiently high to suggest that it is a mucopeptide component rather than an impurity.  相似文献   

4.
Cell walls were isolated by sonic disruption of log-phase cells of Clostridium botulinum type A strain 190L and purified by treatment with sodium dodecyl sulfate (SDS) followed by digestion with proteases. Electron microscopy revealed that the cell walls thus obtained were free of both cytoplasmic membrane and cytoplasmic fragments. The purified cell wall contained 8.7% total nitrogen, 15.0% total hexosamines, 22.4% reducing groups, 8.3% carbohydrate, and 3.1% glucose. The content of total phosphorus was very low (0.02%), and therefore it was expected that teichoic acid might be absent in the cell wall. The wall peptidoglycan contained glutamic acid, alanine, diaminopimelic acid, glucosamine and muramic acid in the molar ratios of 1.00:1.85:0:85:1.06:0.67. A low amount of galactosamine was also present, but no other amino acids were found in significant quantities. The SDS-treated cell walls were not attacked by lysozyme, but after extraction with hot formamide they were completely dissolved by the enzyme and released reducing groups. The lysozyme digest was separated into two constituents, the saccharide moiety and the peptide moiety on Sephadex G-50.  相似文献   

5.
CELL WALL AND PEPTIDOGLYCAN FROM Lactobacillus fermenti   总被引:6,自引:4,他引:2       下载免费PDF全文
Cell walls from Lactobacillus fermenti were prepared by differential centrifugation of disrupted cells, with and without trypsin treatment. Approximately 16% of the dry weight of walls was found in a crude trichloroacetic acid extract of the walls; half of this amount remained upon further purification. The purufied extract lacked alanine, but contained substantial amounts of glucosamine. The walls constituted 23 to 33% of the dry weight of the cell. The chemical composition of the various types of wall preparations and of the peptidoglycan from them was studied. The peptidoglycan contained equimolar proportions of glucosamine, muramic acid, l-alanine, d-glutamic acid, and lysine, with somewhat lower proportions of d-aspartic acid and d-alanine. The chemical composition of the peptidoglycan is similar to that reported for three other lactobacilli. In addition to the major constituents of walls and peptidoglycan, there were several minor amino acids. The protein and the amounts of the minor amino acids decreased, and among these threonine and arginine were completely absent from preparations obtained with trypsin. Such preparations contained higher proportions of the d-isomers of alanine, glutamic acid, and aspartic acid as compared to walls and peptidoglycan prepared without trypsin. In addition, walls isolated with the use of trypsin were susceptible to lysozyme, whereas those prepared without trypsin were not. However, the trypsin treatment did not result in any change of the ultrastructure as revealed by electron microscope studies.  相似文献   

6.
Chemical Composition of the Cell Walls of Bacillus stearothermophilus   总被引:4,自引:1,他引:3  
Cell walls were isolated by mechanical disruption of mid-log phase cells of Bacillus stearothermophilus NCA 1503-4R grown in Trypticase-yeast extract-fructose medium at 55 C. The cell walls were purified by treatment with sodium dodecyl sulfate (SDS) and incubation with deoxyribonuclease and trypsin. The cell wall peptidoglycan contained glucosamine, muramic acid, alpha, epsilon-diaminopimelic acid, and glutamic acid. Low amounts of glycine, galactosamine, serine, aspartic acid, lysine, and valine were also present. The relative mole ratios of glutamic acid-alpha, epsilon-diaminopimelic acid-glycine-alanine were 1.00:1.26:0.08:1.55. The cell walls were free from ribonucleic acid and deoxyribonucleic acid and contained less than 0.2% chloroform-methanol extractable lipid and 0.09 mumole of phosphorus per mg of cell wall. Teichoic acid was not detected in the cell walls of this organism. Cell walls isolated without treatment with SDS contained 7.5% chloroform-methanol extractable lipid, 0.24 mumole of phosphorus per mg of cell wall, and relatively high concentrations of all amino acids. These results suggest that the extracted lipid is not a cell wall component per se, but a contaminant from the lipoprotein cell membrane.  相似文献   

7.
Bahn, Arthur N. (Northwestern University, Chicago, Ill.), Patrick C. Y. Kung, and James A. Hayashi. Chemical composition and serological analysis of the cell wall of Peptostreptococcus. J. Bacteriol. 91:1672-1676. 1966.-Chemical and serological analyses were made of the cell wall of Peptostreptococcus to characterize taxonomically this genus of anaerobic streptococci. Cell wall hydrolysates of P. putridus strains 06 and 85, P. intermedius strains 11 and 87, and P. elsdenii strain B-159 were prepared, and the cell wall sugars were measured quantitatively by paper chromatography. Strain 85 contained only glucose, whereas strain 06 contained 93% glucose and 7% mannose. Strain 87 contained only rhamnose, and strain 11 contained approximately equal amounts of glucose and rhamnose. Strain B-159 differed from all the other strains in having a low (3.1%) content of total carbohydrate, consisting of rhamnose, galactose, and glucose. Quantitative amino acid analyses showed that the major amino compounds present in the cell wall were glutamic and aspartic acids, alanine, lysine, muramic acid, glucosamine, and galactosamine. Strains 06 and 85 possessed this complement of amino compounds, but strains 11 and 87 had relatively little aspartic acid. Strain B-159 was markedly different in having a high content of glycine and diaminopimelic acid, with only traces of lysine; it was the only strain in which teichoic acid was found. Serological analyses were made with the use of cell wall extracts as antigenic material and with homologous antisera, as well as streptococcal group antisera for groups A through S. The only strong agglutination was obtained between strain 87 antigen and group C antisera; weak agglutination was obtained with 87 against N, O, and K, and between strain 11 and groups E and F. All other antisera gave negative reactions. It is concluded that strain B-159 does not belong to the genus Peptostreptococcus, that strains 06 and 85 are members of P. putridus, and that strains 11 and 87 may be members of two different genera.  相似文献   

8.
Actively growing strains of Vibrio fetus venerealis and V. fetus intestinalis, none of which produced penicillinase, were treated with inhibitory levels of penicillin or glycine, primarily to gain insight into the differential sensitivities of the two varieties to both of these compounds. Treatments induced the accumulation of uridine nucleotide glycopeptide precursors which contained amino sugars and amino acids in various molar ratios. Penicillin-induced nucleotides all contained muramic acid and sometimes glucosamine; they generally contained alanine, glutamic acid, diaminopimelic acid, and glycine. Approximately equimolar ratios of these components were observed in some compounds, but ratios varied considerably in others. Glycine-induced nucleotides contained muramic acid and, in some instances, glucosamine. Amino acids were detected only infrequently and usually in low molar ratios. The data suggest that penicillinase production, differences in the chemical composition of glycopeptide, and variations in modes of action of penicillin and glycine cannot individually account for the differential sensitivities of venereal and intestinal strains of V. fetus to these substances.  相似文献   

9.
Mycobacterium smegmatis, its orange-red--pigmented (OR) variants, and back mutant strains were examined by electron microscopy using ultrathin sectioning, negative or positive staining, and freeze-fracture-etching methods. The parental and back mutant strains showed almost identical ultrastructures. Specifically, thick ramified fibers measuring about 15 nm in diameter were always visible in the positively stained cell wall, although they were not readily visualized with negative staining or freeze-fracture-etching. In contrast, the cell walls of OR variants contained fibrous networks measuring about 11 nm in diameter, which could be observed by positive and negative staining as well as freeze-fracture-etching. Although cytoplasmic structures appeared similar among the four strains examined, mesosomes were significantly more abundant in the OR variants. The basal layer of the cell wall obtained as a phenol residue consisted of a dense membranous matrix containing scattered fibrous structures in the parental and back mutant strains, and fibrous networks in the OR variants. Chemical analyses showed that the basal layers of all four strains contained the same neutral sugars, amino sugars, and amino acids, i.e., arabinose, galactose, muramic acid, glucosamine, alanine, glutamic acid, and diaminopimelic acid. The alpha-branched, beta-hydroxylated fatty acids contained in the basal layers differ among the four strains, however, with nocardomycolic acids being present in the OR variants and mycolic acids in the parental and back mutant strains. Our previous conclusion that OR variants of M. smegmatis have characteristics similar to those of nocardia is supported by the present study.  相似文献   

10.
The action of Clostridium phage HM 7-induced lytic enzyme on the cell wall peptidoglycan of Clostridium saccharoperbutylacetonicum was investigated. The cell wall peptidoglycan of this strain contained glutamic acid, alanine, diaminopimelic acid, glucosamine and muramic acid in the molar ratios of 1.00: 2.08: 0.97; 0.92: 0.68. It was strongly digested when incubated with the lytic enzyme. This digestion was accompanied by the release of NH2-terminal l-alanine without a concomitant release of COOH-terminal amino acids and reducing groups. Chromatography of the lytic enzyme digest resulted in only two fractions, each of which was chromatographically homogeneous. One was a polysaccharide consisting of glucosamine and muramic acid in molar ratios 1.00: 0.78, and other was a peptide composed of glutamic acid, alanine and diaminopimelic acid in molar ratios of 1.00: 2.09: 1.05. These results indicate that phage HM 7-induced lytic enzyme is N-acetylmuramyl-l-alanine amidase, which cleaves the linkage between N-acetylmuramic acid and l-alanine.

A possible structure for the cell wall peptidoglycan was also proposed.  相似文献   

11.
The rigid layer (peptidoglycan) of the wall of the chemolithotroph Ferrobacillus ferrooxidans was isolated after various chemical treatments. The removal of specific components was followed by noting in an electron microscope changes in the appearance of the cell surface. The final peptidoglycan was virtually free from proteins and was sensitive to the action of lysozyme. Results of chemical analyses of acidhydrolyzed peptidoglycan revealed three major amino acids and two amino sugars: glutamic acid, α,ε-diaminopimelic acid, alanine, glucosamine, and muramic acid in a ratio of 1:1:2.33:062:088.  相似文献   

12.
Cell-wall preparations were made from more than 140 strains of aerobic actinomycetes representing most of the form-genera that have been proposed. All cell-wall preparations contained as major constituents glucosamine, muramic acid, alanine, and glutamic acid. In addition, cell-wall preparations from various types of streptomycetes and strains of Microëllobosporia contained glycine and ll-α,ε-diaminopimelic acid; those from strains of most Actinoplanaceae and micromonosporae contained glycine and meso-α-ε-diaminopimelic acid; those from strains of Thermoactinomyces, Microbispora, Dermatophilus, and nocardiae of the madurae-pelletieri group contained meso-α,ε-diaminopimelic acid; and those from strains of Thermomonospora, Micropolyspora, and most nocardiae contained meso-α,ε-diaminopimelic acid, arabinose, and galactose. All the strains used were also studied morphologically.  相似文献   

13.
Components of the cell wall of Clostridium welchii (type A)   总被引:2,自引:0,他引:2  
1. The cell wall of Clostridium welchii (type A) contains alanine, 2,6-diaminopimelic acid, glutamic acid, glycine, glucosamine, muramic acid, galactosamine, mannosamine, ethanolamine, rhamnose, galactose and phosphorus. 2. Heating with formamide at 150 degrees resolved the wall into a formamide-soluble polysaccharide fraction and a formamide-insoluble mucopeptide fraction. 3. The formamide-soluble fraction contained two components: an electrophoretically neutral polysaccharide made up of galactose, rhamnose, galactosamine and phosphorus and an electrophoretically acidic polymer containing mannosamine, ethanolamine and phosphorus. 4. The formamide-insoluble residue has been digested by lysozyme to give soluble fragments of high molecular weight. 5. All fractions contain an unknown ethyl acetate-extractable substance that can be oxidized by sodium metaperiodate. 6. The amino acid compositions of the fragments produced by lysozyme are compatible with a mucopeptide structure which has cross bridges containing all of the constituent amino acids.  相似文献   

14.
To explain the competition for nitrogenous nutrients observed in mixed strain cultures of Lactococcus lactis and Leuconostoc mesenteroides, the utilization of peptides as a source of essential amino acids for growth in a chemically defined medium was compared in 12 strains of dairy origin. Both species were multiple amino acid auxotrophs and harboured a large set of intracellular peptidases. Lactococcus lactis can use a wide variety of peptides up to 13 amino acid residues whereas Leuc. mesenteroides assimilated only shorter peptides containing up to seven amino acids. Growth was limited by the transport of peptides and not by their hydrolysis. The nutritional value of peptides varied with the strains and the composition of the peptides, L. lactis being advantaged over Leuc. mesenteroides.  相似文献   

15.
Peptidoglycan (PG) from Legionella pneumophila was composed of muramic acid, glucosamine, glutamic acid, alanine, and meso-diaminopimelic acid in a molar ratio of 0.8:0.8:1.1:1.7:1. Partially purified PG contained trypsin-insensitive proteins which were extracted by 1 N NaOH hydrolysis without apparent dissolution of the PG. Lysozyme hydrolysis of purified PG or cell walls caused an increase in reducing groups which correlated with roughly 70 to 100% digestion of disaccharides. However, there was no significant decrease in turbidity during lysozyme hydrolysis of purified PG or cell wall. Additionally, 80 to 90% of the meso-diaminopimelic acid epsilon-amino groups were not susceptible to dinitrophenylation. Collectively, the PG of L. pneumophila was sensitive to lysozyme hydrolysis and insensitive to alkali dissolution, and 80 to 90% of the NH2 groups of meso-diaminopimelic acid were apparently involved in cross-linkages between peptides.  相似文献   

16.
The cell walls and peptidoglycans of two mutant strains, Streptomyces chrysomallus var. carotenoides and Streptomyces chrysomallus var. macrotetrolidi, were studied. The strains are organisms producing carotenes and antibiotics of the macrotetrolide group. By the qualitative composition of the peptidoglycans the mutants belong to Streptomyces and are similar. Their glycan portion consists of equimolar quantities of N-acetyl glucosamine and muramic acid. The peptide subunit is presented by glutamic acid, L, L-diaminopimelic acid, glycine and alanine. The molar ratio of alanine is 1.2-1.3. The mutant strains differ in the content of carbohydrates, total phosphorus and phosphorus belonging to teichoic acids. Teichoic acids of the cell walls of the both strains are of the ribitolhosphate nature. The cell walls of the mutants contain polysaccharides differing from teichoic acids and consisting of glucose, galactose, arabinose and fucose. The influence of the cell wall composition of the mutant strains on their morphology and metabolism and comparison of the data relative to the mutant strains with those relative to the starting strain are discussed.  相似文献   

17.
Bacteriophage alpha 2, one of the two inducible phages from Clostridium botulinum type A 190L, had a latent period of 55 min and an average burst size of 75 in C. botulinum type A Hall used as the host bacterium. The phage particles were adsorbed on the cell walls extracted with hot trichloroacetic acid (TCA-walls). The receptor substance for the phage was solubilized from the TCA-walls with Achromopeptidase and fractionated by gel filtration on Sephadex G-150. The fraction having the highest level of receptor activity for the phage contained large amounts of muramic acid and glucosamine. Both authentic muramic acid and glucosamine significantly inactivated the phage, whereas glucose, galactose, L-and D-alanine, diaminopimeric acid, or D-glutamic acid did not exhibit similar activity. There results strongly suggest that the receptor site for phage alpha 2 is closely associated with glycan moieties of the cell wall peptidoglycan.  相似文献   

18.
19.
Cell wall components were prepared from Actinopolyspora halophila (strain wt), an extremely halophilic actinomycete requiring a minimum 12% NaCl concentration for growth, and from an erythromycin-resistant strain of A. halophila (strain ER) that required only 6% NaCl for growth. Both cell wall preparations contained glutamic acid, alanine, and diaminopimelic acid in a 1:2:1 molar ratio. On the basis of muramic acid content, peptidoglycans from the wt and ER strains contained 255 and 245 disaccharide units per mg dry weight respectively. In addition, both cell wall preparations contained from 10 to 20% more glucosamine than muramic acid, and equimolar amounts of d-galactose and d-arabinose. Analysis of cell walls before and after digestion with Myxobacter AL-1 protease indicated that nearly all glycan disaccharide units were peptide-substituted and that peptide cross-bridging was facilitated by direct peptide linkages between N-diaminopimelic acid and C-terminal alanine. While the peptidoglycan of A. halophila wt was 50% peptide cross-linked, that from A. halophila ER was approximately 67% peptide cross-linked. Chemical modifications involving substitution of non-N-acetylated hexosamines of the cell walls greatly enhanced their sensitivity to lysozyme. Although differences in peptidoglycan structure between the two strains of A. halophila were observed, these probably do not account for the reduced salt requirement for growth of the erythromycin-resistant strain.Issued as NRCC 25165  相似文献   

20.
Neither muramic acid and glucosamine nor d-glutamic acid or other amino acids typical of peptidoglycan were found in cell walls of two strains of Methanosarcina barkeri. The main components are galactosamine, neutral sugars and uronic acids. Therefore, the structural component of the cell wall most likely consists of an acid heteropolysaccharide, resembling that of Halococcus morrhuae. It is, however, not sulfated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号