首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Enterovirus 71 (EV71) infections may be associated with neurological complications, including brainstem encephalitis (BE). Severe EV71 BE may be complicated with autonomic nervous system (ANS) dysregulation and/or pulmonary edema (PE). ANS dysregulation is related to the overactivation of the sympathetic nervous system, which results from catecholamine release.

Objective

The aims of this study were to explore the effects of catecholamines on severe EV71 infection and to investigate the changes in the percentages of EV71-infected cells, virus titer, and cytokine production on the involvement of catecholamines.

Study Design

Plasma levels of norepinephrine (NE) and epinephrine (EP) in EV71-infected patients were measured using an enzyme-linked immunoassay. The expression of adrenergic receptors (ADRs) on RD, A549, SK-N-SH, THP-1, Jurkat and human peripheral blood mononuclear cells (hPBMCs) were detected using flow cytometry. The percentages of EV71-infected cells, virus titer, and cytokine production were investigated after treatment with NE and EP.

Results

The plasma levels of NE and EP were significantly higher in EV71-infected patients with ANS dysregulation and PE than in controls. Both α1A- and β2-ADRs were expressed on A549, RD, SK-N-SH, HL-60, THP-1, Jurkat cells and hPBMCs. NE treatment elevated the percentages of EV71-infected cells to 62.9% and 22.7% in THP-1 and Jurkat cells, respectively. Via treatment with EP, the percentages of EV71-infected cells were increased to 64.6% and 26.9% in THP-1 and Jurkat cells. The percentage of EV71-infected cells increased upon NE or EP treatment while the α- and β-blockers reduced the percentages of EV71-infected cells with NE or EP treatment. At least two-fold increase in virus titer was observed in EV71-infected A549, SK-N-SH and hPBMCs after treatment with NE or EP. IL-6 production was enhanced in EV71-infected hPBMCs at a concentration of 102 pg/mL NE.

Conclusion

The plasma levels of NE and EP elevated in EV71-infected patients with ANS dysregulation and PE. Both NE and EP enhanced the percentages of infected cells and virus titers in EV71 infection in vitro. NE and EP may play a role in the pathogenesis of EV71 BE complicated with ANS dysregulation and PE.  相似文献   

2.

Background

We previously reported that Enterovirus 71 (EV71) infection activates autophagy, which promotes viral replication both in vitro and in vivo. In the present study we further investigated whether EV71 infection of neuronal SK-N-SH cells induces an autophagic flux. Furthermore, the effects of autophagy on EV71-related pathogenesis and viral load were evaluated after intracranial inoculation of mouse-adapted EV71 (MP4 strain) into 6-day-old ICR suckling mice.

Results

We demonstrated that in EV71-infected SK-N-SH cells, EV71 structural protein VP1 and nonstructural protein 2C co-localized with LC3 and mannose-6-phosphate receptor (MPR, endosome marker) proteins by immunofluorescence staining, indicating amphisome formation. Together with amphisome formation, EV71 induced an autophagic flux, which could be blocked by NH4Cl (inhibitor of acidification) and vinblastine (inhibitor of fusion), as demonstrated by Western blotting. Suckling mice intracranially inoculated with EV71 showed EV71 VP1 protein expression (representing EV71 infection) in the cerebellum, medulla, and pons by immunohistochemical staining. Accompanied with these infected brain tissues, increased expression of LC3-II protein as well as formation of LC3 aggregates, autophagosomes and amphisomes were detected. Amphisome formation, which was confirmed by colocalization of EV71-VP1 protein or LC3 puncta and the endosome marker protein MPR. Thus, EV71-infected suckling mice (similar to EV71-infected SK-N-SH cells) also show an autophagic flux. The physiopathological parameters of EV71-MP4 infected mice, including body weight loss, disease symptoms, and mortality were increased compared to those of the uninfected mice. We further blocked EV71-induced autophagy with the inhibitor 3-methyladenine (3-MA), which attenuated the disease symptoms and decreased the viral load in the brain tissues of the infected mice.

Conclusions

In this study, we reveal that EV71 infection of suckling mice induces an amphisome formation accompanied with the autophagic flux in the brain tissues. Autophagy induced by EV71 promotes viral replication and EV71-related pathogenesis.  相似文献   

3.

Background

Brainstem encephalitis (BE) and pulmonary edema (PE) are notable complications of enterovirus 71 (EV71) infection.

Objective

This study investigated the immunoregulatory characterizations of EV71 neurological complications by disease severity and milrinone treatment.

Study Design

Patients <18 years with virologically confirmed EV71 infections were enrolled and divided into 2 groups: the hand, foot, and mouth disease (HFMD) or BE group, and the autonomic nervous system (ANS) dysregulation or PE group. Cytokine and cyclic adenosine monophosphate (cAMP) levels, and the regulatory T cell (Tregs) profiles of the patients were determined.

Results

Patients with ANS dysregulation or PE exhibited significantly low frequency of CD4+CD25+Foxp3+ and CD4+Foxp3+ T cells compared with patients with HFMD or BE. The expression frequency of CD4CD8 was also significantly decreased in patients with ANS dysregulation or PE. Among patients with ANS dysregulation or PE, the expression frequency of CD4+Foxp3+ increased markedly after milrinone treatment, and was associated with reduction of plasma levels IL-6, IL-8 and IL-10. Plasma concentrations of cAMP were significantly decreased in patients with ANS dysregulation or PE compared with patients with HFMD or BE; however, cAMP levels increased after milrinone treatment.

Conclusions

These findings suggested decreased different regulatory T populations and cAMP expression correlate with increased EV71 disease severity. Improved outcome after milrinone treatment may associate with increased regulatory T populations, cAMP expression and modulation of cytokines levels.  相似文献   

4.

Background

Enterovirus 71 (EV71) infection can lead to a rapidly progressing, life-threatening, and severe neurological disease in young children, including the development of human hand, foot, and mouth disease (HFMD). This study aims to further characterize the specific immunological features in EV71–mediated HFMD patients presenting with differing degrees of disease severity.

Methodology

Comprehensive cytokine and chemokine expression were broadly evaluated by cytokine antibody array in EV71–infected patients hospitalized for HFMD compared to Coxsackievirus A16-infected patients and age-matched healthy controls. More detailed analysis using Luminex-based cytokine bead array was performed in EV71–infected patients stratified into diverse clinic outcomes. Additionally, immune cell frequencies in peripheral blood and EV71–specific antibodies in plasma were also examined.

Principal Findings

Expression of several cytokines and chemokines were significantly increased in plasma from EV71–infected patients compared to healthy controls, which further indicated that: (1) GM-CSF, MIP-1β, IL-2, IL-33, and IL-23 secretion was elevated in patients who rapidly developed disease and presented with uncomplicated neurological damage; (2) G-CSF and MCP-1 were distinguishably secreted in EV71 infected very severe patients presenting with acute respiratory failure; (3) IP-10, MCP-1, IL-6, IL-8, and G-CSF levels were much higher in cerebrospinal fluid than in plasma from patients with neurological damage; (4) FACS analysis revealed that the frequency of CD19+HLADR+ mature B cells dynamically changed over time during the course of hospitalization and was accompanied by dramatically increased EV71–specific antibodies. Our data provide a panoramic view of specific immune mediator and cellular immune responses of HFMD and may provide useful immunological profiles for monitoring the progress of EV71–induced fatal neurological symptoms with acute respiratory failure.  相似文献   

5.

Background

CpG oligodeoxynucleotides (CpG-ODN) are capable of inducing high amounts of type I IFNs with many immunomodulatory properties. Furthermore, type-I IFNs have been proposed to play a key role in mediating effects of CpG-ODN. The precise role of IFN-β in the immunomodulatory effects of CpG-ODN is not known.

Objective

Here, we aimed to elucidate the role of IFN-β in the anti-allergic effect of CpG motifs.

Methods

We assessed the immune response in OVA-primed/OVA-challenged IFN-β knockout (-/-) mice compared to wild type (WT) control, after intranasal and systemic treatment with synthetic CpG motifs.

Results

Vaccination with CpG-ODN reduced the number of cells in airways of OVA-sensitized WT but not IFN-β-/- mice. Although airway eosinophilia was reduced in both treated groups, they were significantly higher in IFN-β-/- mice. Other inflammatory cells, such as lymphocytes and macrophages were enhanced in airways by CpG treatment in IFN-β-/- mice. The ratio of IFN-γ/IL-4 cytokines in airways was significantly skewed to a Th1 response in WT compared to IFN-β-/- group. In contrast, IL-4 and IgE were reduced with no differences between groups. Ag-specific T-cell proliferation, Th1-cytokines such as IFN-γ, IL-2 and also IL-12 were significantly lower in IFN-β-/- mice. Surprisingly, we discovered that intranasal treatment of mice with CpG-ODN results in mild synovitis particularly in IFN-β-/- mice.

Conclusion

Our results indicate that induction of Th1 response by therapy with CpG-ODN is only slightly and partially dependent on IFN-β, while IFN-β is not an absolute requirement for suppression of airway eosinophilia and IgE. Furthermore, our finding of mild synovitis is a warning for possible negative effects of CpG-ODN vaccination.  相似文献   

6.

Background

An IFN-γ response to M. tuberculosis-specific antigens is an effective biomarker for M. tuberculosis infection but it cannot discriminate between latent TB infection and active TB disease. Combining a number of cytokine/chemokine responses to M. tuberculosis antigens may enable differentiation of latent TB from active disease.

Methods

Asymptomatic recently-exposed individuals (spouses of TB patients) were recruited and tuberculin skin tested, bled and followed-up for two years. Culture supernatants, from a six-day culture of diluted whole blood samples stimulated with M. tuberculosis-derived PPD or ESAT-6, were measured for IFN-γ, IL-10, IL-13, IL-17, TNF-α and CXCL10 using cytokine ELISAs. In addition, 15 patients with sputum smear-positive pulmonary TB were recruited and tested.

Results

Spouses with positive IFN-γ responses to M. tuberculosis ESAT-6 (>62.5 pg/mL) and TB patients showed high production of IL-17, CXCL10 and TNF-α. Higher production of IL-10 and IL-17 in response to ESAT-6 was observed in the spouses compared with TB patients while the ratios of IFN-γ/IL-10 and IFN-γ/IL-17 in response to M. tuberculosis-derived PPD were significantly higher in TB patients compared with the spouses. Tuberculin skin test results did not correlate with cytokine responses.

Conclusions

CXCL10 and TNF-α may be used as adjunct markers alongside an IFN-γ release assay to diagnose M. tuberculosis infection, and IL-17 and IL-10 production may differentiate individuals with LTBI from active TB.  相似文献   

7.

Background

Severe respiratory syncytial virus infection (RSV) during infancy has been shown to be a major risk factor for the development of subsequent wheeze. However, the reasons for this link remain unclear. The objective of this research was to determine the consequences of early exposure to RSV and allergen in the development of subsequent airway hyperreactivity (AHR) using a developmental time point in the mouse that parallels that of the human neonate.

Methods

Weanling mice were sensitized and challenged with ovalbumin (Ova) and/or infected with RSV. Eight days after the last allergen challenge, various pathophysiological endpoints were examined.

Results

AHR in response to methacholine was enhanced only in weanling mice exposed to Ova and subsequently infected with RSV. The increase in AHR appeared to be unrelated to pulmonary RSV titer. Total bronchoalveolar lavage cellularity in these mice increased approximately two-fold relative to Ova alone and was attributable to increases in eosinophil and lymphocyte numbers. Enhanced pulmonary pathologies including persistent mucus production and subepithelial fibrosis were observed. Interestingly, these data correlated with transient increases in TNF-α, IFN-γ, IL-5, and IL-2.

Conclusion

The observed changes in pulmonary structure may provide an explanation for epidemiological data suggesting that early exposure to allergens and RSV have long-term physiological consequences. Furthermore, the data presented here highlight the importance of preventative strategies against RSV infection of atopic individuals during neonatal development.  相似文献   

8.
Excessive inflammation contributes to the severity of post influenza pneumonia caused by methicillin resistant S.aureus (MRSA). Linezolid, vancomycin, and clindamycin are antibiotics used for MRSA infections. Linezolid has immunomodulatory properties. We report on the effects of the three antibiotics on microbial clearance, pulmonary cytokines and clinical course in a murine model of influenza and MRSA coinfection.

Methods

B6 mice were infected with influenza A virus and 3 days later with MRSA, both intranasally. Treatment with placebo, linezolid, vancomycin or clindamycin started immediately after MRSA infection and continued for 72 hours. Bacterial and viral titers as well as cytokine concentrations in the lungs were assessed 4 and 24 hours after MRSA coinfection. Mice were weighted daily for 13 days.

Results

Coinfected mice had increased pulmonary IL-1β, TNF-α and mKC at 4 and 24 hours, IL-6, IL-10 and IL-12 at 4 hours and IFN-γ at 24 hours after MRSA coinfection (all P<0.05). Compared to placebo, coinfected mice treated with linezolid, vancomycin or clindamycin had decreased pulmonary IL-6 and mKC at 4 hours and IFN-γ at 24 hours after MRSA coinfection (all P<0.05). IL-1β, TNF-α and IL-12 were similar in antibiotic-treated and placebo groups. All antibiotics similarly reduced MRSA without effect on influenza titers. Linezolid-treated mice had less weight loss on days 4–6 after influenza infection compared to placebo (all P<0.05). On all other days weight change was similar among all groups.

Conclusions

This is the first report comparing the effects of antibiotics on cytokines and clinical outcome in a murine model of influenza and MRSA coinfection. Compared to placebo, antibiotic treatment reduced maximum concentration of IL-6, mKC and IFN-γ in the lungs without any difference among antibiotics. During treatment, only linezolid delayed weight loss compared to placebo.  相似文献   

9.

Background

Systemic effects of chronic obstructive pulmonary disease (COPD) significantly contribute to severity and mortality of the disease. We aimed to develop a COPD/emphysema model exhibiting systemic manifestations of the disease.

Methods

Female NMRI mice were treated 5 times intratracheally with porcine pancreatic elastase (emphysema) or phosphate-buffered saline (control). Emphysema severity was quantified histologically by mean linear intercept, exercise tolerance by treadmill running distance, diaphragm dysfunction using isolated muscle strips, pulmonary hypertension by measuring right ventricular pressure, and neurohumoral activation by determining urinary norepinephrine concentration.

Results

Mean linear intercept was higher in emphysema (260.7 ± 26.8 μm) than in control lungs (24.7 ± 1.7 μm). Emphysema mice lost body weight, controls gained weight. Running distance was shorter in emphysema than in controls. Diaphragm muscle length was shorter in controls compared to emphysema. Fatigue tests of muscle strips revealed impaired relaxation in emphysema diaphragms. Maximum right ventricular pressure and norepinephrine were elevated in emphysema compared to controls. Linear correlations were observed between running distance changes and intercept, right ventricular weight, norepinephrine, and diaphragm length.

Conclusion

The elastase mouse model exhibited severe emphysema with consecutive exercise limitation, and neurohumoral activation. The model may deepen our understanding of systemic aspects of COPD.  相似文献   

10.

Background

West Nile virus (WNV) can persist long term in the brain and kidney tissues of humans, non-human primates, and hamsters. In this study, mice were infected with WNV strain H8912, previously cultured from the urine of a persistently infected hamster, to determine its pathogenesis in a murine host.

Methodology/Principal Findings

We found that WNV H8912 was highly attenuated for neuroinvasiveness in mice. Following a systemic infection, viral RNA could be detected quickly in blood and spleen and much later in kidneys. WNV H8912 induced constitutive IL-10 production, upregulation of IFN-β and IL-1β expression, and a specific IgM response on day 10 post-infection. WNV H8912 persisted preferentially in kidneys with mild renal inflammation, and less frequently in spleen for up to 2.5 months post infection. This was concurrent with detectable serum WNV-specific IgM and IgG production. There were also significantly fewer WNV- specific T cells and lower inflammatory responses in kidneys than in spleen. Previous studies have shown that systemic wild-type WNV NY99 infection induced virus persistence preferentially in spleen than in mouse kidneys. Here, we noted that splenocytes of WNV H8912-infected mice produced significantly less IL-10 than those of WNV NY99-infected mice. Finally, WNV H8912 was also attenuated in neurovirulence. Following intracranial inoculation, WNV persisted in the brain at a low frequency, concurrent with neither inflammatory responses nor neuronal damage in the brain.

Conclusions

WNV H8912 is highly attenuated in both neuroinvasiveness and neurovirulence in mice. It induces a low and delayed anti-viral response in mice and preferentially persists in the kidneys.  相似文献   

11.

Background

Asthma leads to structural changes in the airways, including the modification of extracellular matrix proteins such as tenascin-C. The role of tenascin-C is unclear, but it might act as an early initiator of airway wall remodelling, as its expression is increased in the mouse and human airways during allergic inflammation. In this study, we examined whether Th1 or Th2 cells are important regulators of tenascin-C in experimental allergic asthma utilizing mice with impaired Th1 (STAT4-/-) or Th2 (STAT6-/-) immunity.

Methods

Balb/c wildtype (WT), STAT4-/- and STAT6-/- mice were sensitized with intraperitoneally injected ovalbumin (OVA) followed by OVA or PBS airway challenge. Airway hyperreactivity (AHR) was measured and samples were collected. Real time PCR and immunohistochemistry were used to study cytokines and differences in the expression of tenascin-C. Tenascin-C expression was measured in human fibroblasts after treatment with TNF-α and IFN-γ in vitro.

Results

OVA-challenged WT mice showed allergic inflammation and AHR in the airways along with increased expression of TNF-α, IFN-γ, IL-4 and tenascin-C in the lungs. OVA-challenged STAT4-/- mice exhibited elevated AHR and pulmonary eosinophilia. The mRNA expression of TNF-α and IFN-γ was low, but the expression of IL-4 was significantly elevated in these mice. OVA-challenged STAT6-/- mice had neither AHR nor pulmonary eosinophilia, but had increased expression of mRNA for TNF-α, IFN-γ and IL-4. The expression of tenascin-C in the lungs of OVA-challenged STAT4-/- mice was weaker than in those of OVA-challenged WT and STAT6-/- mice suggesting that TNF-α and IFN-γ may regulate tenascin-C expression in vivo. The stimulation of human fibroblasts with TNF-α and IFN-γ induced the expression of tenascin-C confirming our in vivo findings.

Conclusions

Expression of tenascin-C is significantly attenuated in the airways of STAT4-/- mice, which may be due to the impaired secretion of TNF-α and IFN-γ in these mice.  相似文献   

12.

Background & Aims

Hepatitis C virus (HCV) is difficult to eradicate and type III interferons (IFN-λ, composed of IL-28A, IL-28B and IL-29) are novel therapeutic candidates. We hypothesized that IFN-λ have immunomodulatory effects in HCV- infected individuals.

Materials and Methods

We analyzed the expression of IFN-λ and its receptor (composed of IL-10R2 and IFN-λR subunits) in the blood and livers of patients with chronic (c)HCV infection compared to controls (those who cleared HCV by sustained virological response, SVR, and those with liver inflammation of non-viral origin, non-alcoholic steatohepatitis, NASH). We also compared the proliferative capacity of dendritic cells (DCs) obtained from healthy individuals and those with chronic HCV using a mixed leukocyte reaction combined with 3H-Td incorporation. In addition, the composition of the IFN-λ receptor (IFN-λR) on myeloid DCs, plasmacytoid DCs, PBMCs, and T cells was determined by FACS analysis.

Results

We report that the expression of IFN-λ protein in serum and mRNA in liver is increased in cHCV patients, but not in those with HCV SVR or NASH, compared to controls. Liver level of IFN-λR mirrored the expression of serum IFN-λ and was higher in cHCV, compared to controls and HCV-SVR patients, suggesting that elevation of IFN-λ and IFN-λR are HCV-dependent. We further identified that innate immune cell populations expressed complete IFN-λ receptor. In vitro, recombinant IFN-λ promoted differentiation of monocyte-derived dendritic cells (DCs) into a phenotype with low T cell stimulatory capacity and high PD-L1 expression, which further promoted expansion of existing regulatory T cells. IFN-λ-DCs failed to induce de novo generation of regulatory T cells. The inhibitory capacity of IFN-λ-DCs was counteracted by recombinant IL-12 and by neutralization of the PD-1/PD-L1 system.

Conclusions

Our novel findings of the immunomodulatory effect of IFN-λ contribute to the understanding of the anti-inflammatory and/or anti-viral potential of IFN-λ in cHCV.  相似文献   

13.
14.

Purpose

It has been shown that IL-9 plays a proinflammatory role in the pathogenesis of certain autoimmune diseases. This study was designed to investigate the possible role of IL-9 in the development of experimental autoimmune uveoretinitis (EAU) and the effect of IFN-β on its expression.

Methods

EAU was induced in B10RIII mice by immunization with interphotoreceptor retinoid-binding protein peptide 161–180 (IRBP161–180). IFN-β was administered subcutaneously to IRBP161–180 immunized mice every other day from day one before immunization to the end of the study. Splenocytes and draining lymph node (DLN) cells from EAU mice or control mice or EAU mice treated with IFN-β or PBS were stimulated with anti-CD3/CD28 or IRBP161–180 for 3 days. Naïve T cells cultured under Th1 or Th17 polarizing conditions were incubated in the presence or absence of IFN-β for 4 days. Effector/memory T cells were activated by anti-CD3/CD28 in the presence or absence of IFN-β for 3 days. IFN-β-treated monocytes were cocultured with naïve T cells or effector/memory T cells for 3 days. Culture supernatants were collected and IL-9 was detected by ELISA.

Results

IL-9 expression in splenocytes and DLN cells was increased in EAU mice during the inflammatory phase and returned back to lower levels during the recovery phase. IFN-β in vivo treatment significantly inhibited EAU activity in association with a down-regulated expression of IL-9. In vitro polarized Th1 and Th17 cells both secreted IL-9 and the addition of IFN-β suppressed production of IL-9 by both Th subsets. Beside its effect on polarized Th cells, IFN-β also suppressed the secretion of IL-9 by effector/memory T cells. However, IFN-β-treated monocytes had no effect on the production of IL-9 when cocultured with naïve or effector/memory T cells.

Conclusion

IL-9 expression is increased during EAU which could be suppressed by IFN-β.  相似文献   

15.

Background

Respiratory syncytial virus (RSV) is one of the most frequently observed pathogens during infancy and childhood. However, the corresponding pathogenesis has not been determined to date. We previously demonstrated that IFN-γ plays an important role in RSV pathogenesis, and SARM-TRIF-signaling pathway could regulate the production of IFN-γ. This study is to investigate whether T cells or innate immune cells are the predominant producers of IFN-γ, and further to explore other culprits in addition to IFN-γ in the condition of RSV infection.

Methods

Normal BALB/c mice and nude mice deficient in T cells were infected intranasally with RSV. Leukocytes in bronchoalveolar lavage fluid were counted, lung histopathology was examined, and airway hyperresponsiveness (AHR) was measured by whole-body plethysmography. IFN-γ and MMP-12 were detected by ELISA. MMP408, a selective MMP-12 inhibitor, was given intragastrically. Resveratrol, IFN-γ neutralizing antibody and recombinant murine IFN-γ were administered intraperitoneally. SARM and TRIF protein were semi-quantified by Western blot. siRNA was used to knock-down SARM expression.

Results

RSV induced significant airway inflammation and AHR in both mice; IFN-γ was significantly increased in BALB/c mice but not in nude mice. MMP-12 was dramatically increased in both mice but earlier in nude mice. When MMP-12 was inhibited by MMP408, RSV-induced respiratory symptoms were alleviated. SARM was significantly suppressed while TRIF was significantly enhanced in both mice strains. Following resveratrol administration in nude mice, 1) SARM inhibition was prevented, 2) TRIF and MMP-12 were correspondingly down-regulated and 3) airway disorders were subsequently alleviated. Moreover, when SARM was efficiently knocked down using siRNA, TRIF and MMP-12 were markedly enhanced, and the anti-RSV effects of resveratrol were remarkably abrogated. MMP-12 was significantly increased in the IFN-γ neutralizing antibody-treated BALB/c mice but reduced in the recombinant murine IFN-γ-treated nude mice.

Conclusions

MMP-12 can result in at least part of the airway inflammation and AHR independent of IFN-γ. And SARM-TRIF- signaling pathway is involved in regulating the overproduction of MMP-12. To the best of our knowledge, this study is the first that has examined the effects of SARM on MMP-12 and further highlights the potential to target SARM-TRIF-MMP-12 cascades to treat RSV infection.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0176-8) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
18.

Rationale

Low-grade inflammation and emphysema have been shown to be associated with an increased risk of lung cancer. However, the systemic inflammatory response in patients with emphysema is still unknown.

Objective

To compare the plasma cytokine profiles in two groups of current or former smokers without airway obstruction: a control group of individuals without computed tomography (CT) detected emphysema vs. a study group of individuals with CT detected emphysema.

Methods

Subjects underwent a chest CT, spirometry, and determination of EGF, IL-15, IL-1ra, IL-8, MCP-1, MIP-1β, TGFα, TNFα, and VEGF levels in plasma. Cytokine levels in each group were compared adjusting for confounding factors.

Results

160 current smokers and former smokers without airway obstruction participated in the study: 80 without emphysema and 80 subjects with emphysema. Adjusted group comparisons revealed significant reductions in EGF (−0.317, p = 0.01), IL-15 (−0.21, p = 0.01), IL-8 (−0.180, p = 0.02) and IL-1ra (−0.220, p = 0.03) in subjects with emphysema and normal spirometry.

Conclusions

Current or former smokers expressing a well-defined disease characteristic such as emphysema, has a specific plasma cytokine profile. This includes a decrease of cytokines mainly implicated in activation of apoptosis or decrease of immunosurveillance. This information should be taken into account when evaluated patients with tobacco respiratory diseases.  相似文献   

19.

Background & Aims

The interferon (IFN) system plays a critical role in innate antiviral response. We presume that targeted induction of IFN in human liver shows robust antiviral effects on hepatitis C virus (HCV) and hepatitis B virus (HBV).

Methods

This study used chimeric mice harboring humanized livers and infected with HCV or HBV. This mouse model permitted simultaneous analysis of immune responses by human and mouse hepatocytes in the same liver and exploration of the mechanism of antiviral effect against these viruses. Targeted expression of IFN was induced by treating the animals with a complex comprising a hepatotropic cationic liposome and a synthetic double-stranded RNA analog, pIC (LIC-pIC). Viral replication, IFN gene expression, IFN protein production, and IFN antiviral activity were analyzed (for type I, II and III IFNs) in the livers and sera of these humanized chimeric mice.

Results

Following treatment with LIC-pIC, the humanized livers of chimeric mice exhibited increased expression (at the mRNA and protein level) of human IFN-λs, resulting in strong antiviral effect on HBV and HCV. Similar increases were not seen for human IFN-α or IFN-β in these animals. Strong induction of IFN-λs by LIC-pIC occurred only in human hepatocytes, and not in mouse hepatocytes nor in human cell lines derived from other (non-hepatic) tissues. LIC-pIC-induced IFN-λ production was mediated by the immune sensor adaptor molecules mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1R domain-containing adaptor molecule-1 (TICAM-1), suggesting dual recognition of LIC-pIC by both sensor adaptor pathways.

Conclusions

These findings demonstrate that the expression and function of various IFNs differ depending on the animal species and tissues under investigation. Chimeric mice harboring humanized livers demonstrate that IFN-λs play an important role in the defense against human hepatic virus infection.  相似文献   

20.

Background

Susceptibility or resistance to infection with Cryptosporidium parvum (C.parvum) correlates with Selenium (Se) deficiency in response to infection. Both adult Se-adequate and Se-deficient mouse models of cryptosporidiosis were used to study the cell-mediated immune response during the course of C. parvum infection.

Methodology/Principal Findings

Blood samples from mouse models were used for Se status. The concentration of MDA, SOD, GPx and CAT in blood has revealed that lower Se level exist in Se-deficient mice. Mesenteric lymph node (MLN) lymphocytes from both mouse models were proliferated after ex vivo re-stimulation with C. parvum sporozoite antigen. The study of the cytokine profiles from the supernatant of proliferated MLN cells revealed that Se-adequate mice produced higher levels of Th1 (IFN-γ and IL-2) and moderate amounts of Th2 (IL-4) cytokines throughout the course of infection. Whereas, MLN cells from Se-deficient mice produced lower levels of IFN-γ, IL-2 and IL-4 cytokines. The counts of total white cell and CD3, CD4, CD8 cell in Se-adequate were higher than that in Se-deficient mice.

Significance

These results suggest that Cell immunity is affected by Se status after infection with C.parvum from kinetic changes of different white cells and cytokine. In conclusion, induced susceptibility of host is associated with an impaired antioxidant system following infection with C.parvum in C57BL/6 Selenium deficient mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号