首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The effect of fruit maturity on UV-B-induced post-harvest anthocyanin accumulation in red Chinese sand pear (Pyrus pyrifolia Nakai) cultivar ‘Mantianhong’ was evaluated. During the irradiation, compared with the fruit harvested at 20 days before harvest (DBH) and 10 DBH, the mature fruit (harvested at commercial harvest date) had higher soluble solids content, soluble sugars concentration but lower firmness and starch content. In addition, higher content of anthocyanin has been detected in mature fruits than in immature fruits due to the significant increase in the expression of genes related to anthocyanin biosynthesis, especially PpCHS, PpF3H, PpANS, PpUFGT, PyMYB10 and PpbHLH in red Chinese sand pears. Hierarchical clustering analysis suggested that most genes related to anthocyanin biosynthesis showed a coordinate expression pattern. These findings are helpful in understanding the molecular mechanism of anthocyanin biosynthesis and regulation, which could lead to the development of new technologies for improving fruit color in Chinese sand pears and other fruits.  相似文献   

4.
Cherry plum is a popular ornamental tree worldwide and most cultivars are selected for purple foliage. Here, we report the investigation of molecular mechanism underlying red pigmentation in purple-leaf plum ‘Ziyeli’ (Prunus cerasifera Ehrhar f. atropurpurea (Jacq.) Rehd.), which shows red color pigmentation in fruit (flesh and skin) and foliage. Six anthocyanin-activating MYB genes, designated PcMYB10.1 to PcMYB10.6, were isolated based on RNA-Seq data from leaves of cv. Ziyeli. Of these PcMYB10 genes, five (PcMYB10.1 through PcMYB10.5) show distinct spatial and temporal expression patterns, while the PcMYB10.6 gene is highly expressed in all the purple-coloured organs of cv. Ziyeli. Constitutive activation of PcMYB10.6 is closely related to red pigmentation in the leaf, fruit (flesh and skin), and sepal. However, the PcMYB10.6 activation cannot induce red pigmentation in the petal of cv. Ziyeli during late stages of flower development due to due to a lack of expression of PcUFGT. The inhibition of red pigmentation in the petal of cherry plum could be attributed to the high-level expression of PcANR that directs anthocyanidin flux to proanthocyanidin biosynthesis. In addition, PcMYB10.2 is highly expressed in fruit and sepal, but its expression cannot induce red pigmentation. This suggests the PcMYB10 gene family in cherry plum may have diverged in function and PcMYB10.2 plays little role in the regulation of red pigmentation. Our study provides for the first time an example of constitutive activation of an anthocyanin-activating MYB gene in Prunus although its underlying mechanism remains unclear.  相似文献   

5.
6.
‘Granny Smith’ apples growing under normal sunlight develop green skin, whereas the peel turns red due to anthocyanin accumulation after the removal of a bagging treatment. Two anthocyanins, Cyanidin 3-O-galactoside (cy3-gal) and Cyanidin 3-O-arabinoside (cy3-ara), were detected in the red ‘Granny Smith’ apple peels, and cy3-gal was determined to be chiefly responsible for the red color. The content of cy3-gal was more than 98% of the total anthocyanin in the red ‘Granny Smith’ peels. To better understand the molecular basis of anthocyanin biosynthesis in ‘Granny Smith’ apples, we performed a quantitative real-time PCR (qRT-PCR) analysis of anthocyanin biosynthetic genes (MdCHS, MdF3H, MdDFR, MdANS, MdUFGT, and MdMYB1). Our results indicate that the expression of these genes (except MdCHS) was associated with increased anthocyanin accumulation in the skin of ‘Granny Smith’ apples. Four selected genes obtained from the ‘Granny Smith’ skin cDNA library, phytoene synthase (PSY), WD40 repeat protein, polygalacturonase (PG), and galactosidase (GAL), were also confirmed by qRT-PCR. We found that these genes were differently expressed during ‘Granny Smith’ apple skin coloration, suggesting that they are directly or indirectly involved in pigment accumulation. In conclusion, anthocyanin biosynthesis in ‘Granny Smith’ apples is the result of interactions between multiple enzymes in the anthocyanin biosynthesis pathway, and the coloring mechanism of ‘Granny Smith’ apples may be similar to that of red-skinned cultivars.  相似文献   

7.
Brown spot is one of the most serious fungal diseases that can affect pear fruits and leaves in the Po valley (Italy). Stemphylium vesicarium is the causal agent of this disease, and several antifungal treatments, repeated throughout the period between bloom and harvest, are needed to control its spread. Many of the most important pear cultivars (such as ‘Abbé Fétel’) are very susceptible to this fungus, while others (such as ‘Bartlett’ and its mutated sports) are known to be resistant. Our research aimed to develop molecular markers linked to this trait. To this end, 92 seedlings derived from an ‘Abbé Fétel’?×?‘Max Red Bartlett’ cross were evaluated for resistance to S. vesicarium for two consecutive years by artificial inoculation with conidia on detached leaves and fruits under controlled conditions in greenhouse. The extent of the lesions was recorded at different time points. A major QTL for susceptibility was located at the lower end of linkage group 15 of ‘Abbé Fétel’. This region was saturated with three SSR markers, and the putative position of a susceptibility gene was also estimated by the single gene mapping approach. This putative gene was located at 2 cM far from the lower end of the linkage group. Molecular markers tightly associated to this locus represent a first step towards the development of MAS (marker-assisted selection) to support the selection of new pear genotypes more resistant to brown spot.  相似文献   

8.
‘红巴梨’果皮UFGT基因的克隆及表达分析   总被引:3,自引:0,他引:3  
以‘巴梨’红色芽变品种‘红巴梨’果皮为材料,采用同源克隆技术和RACE结合的方法,克隆了UFGT(UDP-葡萄糖:类黄酮3-O-葡萄糖基转移酶)蛋白的部分cDNA,命名为Pc UFGT。结果表明:该cDNA片段长为1 089 bp,与苹果UFGT基因序列一致性达89%,氨基酸序列同源性为85%,含有糖基转移酶的UDPGT、COG1819和MGT等保守域。荧光实时定量PCR分析表明,该基因在‘红巴梨’幼果期表达强度约为‘巴梨’的2倍,而果实成熟期表达强度略低于‘巴梨’;该基因在‘红巴梨’果肉中不表达。  相似文献   

9.
10.
11.
12.
13.
以西洋梨早红考密斯及其绿色芽变果实为材料,研究了果实发育期间果皮色泽、花青苷含量及其相关酶活性变化.结果显示:(1)早红考密斯果皮色泽从成熟前的暗红色逐渐变为成熟时的浅红色,并在色泽分布不均匀的地方显出黄色底色,色泽指数(a*)值从花后45 d的16.4降低到成熟时的7.4,降低54.9%;花青苷含量从成熟前的258.4μg?g-1降到成熟时的118.3μg?g-1;早红考密斯果皮色泽和果皮花青苷含量具有密切的相关性.(2)早红考密斯的绿色芽变在果实发育的前期检测不到花青苷,发育后期果实向阳部出现浅红晕,但花青苷含量极低,与亲本差异极显著.(3)果实发育期间,两品种间苯丙氨酸解氨酶(PAL)变化趋势相似,总体呈下降趋势,且早红考密斯的活性总体低于其绿色芽变;两品种查耳酮异构酶(CHI)活性总体变化趋势基本一致,均呈现缓慢上升的趋势,在前期绿色芽变的CHI活性高于其亲本,后期低于亲本;类黄酮3-O-葡(萄)糖基转移酶(UFGT)活性在两品种间的差异较大,在整个果实发育期间早红考密斯的UFGT活性远高于其绿色芽变.研究表明,早红考密斯果皮色泽变化主要由花青苷的含量不同引起;PAL和CHI不是绿色芽变的直接原因;UFGT与花青苷合成密切相关,绿色芽变果皮中UFGT活性显著降低.  相似文献   

14.
PCR detection of MLOs in quick decline-affected pear trees in Italy   总被引:1,自引:0,他引:1  
Polymerase chain reaction (PCR) amplification, using primers derived from the 16S rRNA gene, followed by restriction fragment length polymorphism (RFLP) analysis with Alu I restriction endonuclease was used to detect myc-oplasma-like organisms (MLOs) associated with pear decline. MLOs were consistently detected in pear trees that suddenly wilted and died within a few days during summer, as well as in pears of the same orchards with symptoms similar to the slow form of pear decline. In both cases the same RFLP pattern was obtained. Declining pear trees were 5 to 8-yr-old cvs Williams, Kaiser and Max Red Bartlett grafted on to Pyrus communis seedling rootstocks. All the orchards affected by quick decline had severe attacks of pear psyllid (Cacopsylla pyri) during the year this study was performed and during the previous year. The results showed the suitability of DNA amplification by the polymerase chain reaction for the detection of pear decline MLOs and established that MLOs can be detected in infected tissues of dead trees.  相似文献   

15.
16.
Red flesh colour is a relatively new target for apple breeding programmes and understanding genetic relationships between this trait and other fruit characters, including polyphenol compounds, is important for both breeders and marketers of new red flesh cultivars. In this study, fruit peel and flesh colours and concentrations of up to 20 individual fruit polyphenols within each tissue were examined in fruit harvested from a 14-family apple seedling population segregating for red and green leaf. Red leaf seedlings always produced red flesh fruit that varied from pale red to complete dark red cortical tissue (type 1 red flesh). Some (20 %) of green leaf seedlings also produced fruit with red flesh, albeit at low intensity (type 2 red flesh). Cyanidin 3-O-galactoside was the dominant anthocyanin in both fruit tissues, with concentrations being 1,900 times higher in the flesh and 2.5 times higher in the peel of fruit from red than from green leaf seedlings. Red leaf seedlings also had 59 % more flesh epicatechin and 17 % less total peel flavonols, but other polyphenols were not associated with leaf colour. Heritability estimates for red flesh colour, flesh cyanidin 3-O-galactoside, flesh and peel catechins were high in red leaf and low in green leaf seedlings. Conversely, estimates for red peel coverage and two peel anthocyanins were higher in green compared to those from red leaf seedlings. Other than these, heritability estimates were high only for dihydrochalcones and hydroxycinnamic acids from each tissue for both leaf colours but low for all other flesh and peel flavan-3-ols, procyanidins and most peel flavonols irrespective of leaf colour. Genetic correlations between polyphenol compounds varied considerably, but were broadly similar for red and green leaf seedlings. Genetic correlations were mostly moderate to high between compounds of the same metabolic group, but low between compounds from different groups. These results are discussed in relation to the genetic control of flesh colour and polyphenol accumulation in apple, as well as to implications for breeding red flesh apples with altered polyphenol composition.  相似文献   

17.
18.
In the paper, the soluble sugar composition and activities of enzymes metabolizing sucrose: invertase (β-fructosidase, EC 3.2.1.26), sucrose synthase (SS; EC 2.4.1.13) and sucrose-phosphate synthase (SPS; EC 2.4.1.14) were investigated during fruit development of two pear species: Pyrus bretschneideri Rehd. cv. ‘Yali’ and P. pyrifolia Nakai cv. ‘Aikansui’, characterized as low and high sucrose types, respectively. It was found that, at the end of fruit development of ‘Aikansui’, the level of sucrose was five times higher than in ‘Yali’ in the same period. It was coincident with the significantly higher activities of SS (synthesis) and SPS and lower activities of invertase (vacuolar and cell wall-bound acid invertase and neutral invertase). The high correlation was found between sucrose level and SS (synthesis) and SPS activities in ‘Aikansui’ pears.  相似文献   

19.
20.
During two consecutive years (2010 and 2011) we evaluated the impact of Progerbalin LG® (mixture of gibberellins (GA4+7) and N 6-benzyladenine) on fruit weight, fruit dimensions, elongation, geometric mean diameter or fruit size, aspect ratio, surface area and fruit volume of five apple cultivars belonging to ‘Red Delicious’ group (‘Hapke’ grafted on M.9 and M.26, ‘Hi Red’, ‘Starking’ and ‘Top Red’ on M.9, and ‘Red Chief Camspur’ on MM.106 rootstock). Trees were sprayed twice with 30, 50 or 100 ml L?1 i.e. between 80 % of open flowers and the following petal fall (first treatment), and 10 days after first application (second treatment); control trees were not sprayed. Results showed that the lowest dose increased fruit weight in all cultivars, except ‘Top Red’ and ‘Red Chief Camspur’; this dose promoted fruit dimensions, fruit size and elongation in ‘Hapke’ on both rootstocks, and also fruit dimensions, surface area and fruit volume in ‘Hi Red’. Regarding ‘Starking’, different doses of Progerbalin LG® did not affect other properties evaluated, but season played an important role in these cases. In contrast, the highest dose of this hormone improved all physical attributes in ‘Top Red’ and ‘Red Chief Camspur’, except elongation and/or aspect ratio. In some cases, good values were found in control treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号