首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Astrocytes play a key role by catabolizing glutamate from extracellular space into glutamine and tricarboxylic acid components. We previously produced an astrocytic cell line that constitutively expressed glutamic acid decarboxylase (GAD67), which converts glutamate into GABA to increase the capacity of astrocytes to metabolize glutamate. In this study, GAD-expressing astrocytes in the presence of glutamate were shown to have increased energy metabolism, as determined by a moderate increase of 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction, by an increased ATP level, and by enhanced lactate release. These changes were due to GAD transgene expression because transient expression of a GAD antisense plasmid resulted in partial suppression of the ATP level increase. These astrocytes had an increased survival in response to glucose deprivation in the presence of glutamate compared with the parental astrocytes, and they were also able to enhance survival of a neuronal-like cell line (PC12) under glucose deprivation. This protection may be partially due to the increased lactate release by GAD-expressing astrocytes because PC12 cell survival was enhanced by lactate and pyruvate under glucose deprivation. These results suggest that the establishment of GAD expression in astrocytes enhancing glutamate catabolism could be an interesting strategy to increase neuronal survival under hypoglycemia conditions.  相似文献   

2.
1. Retina-cell aggregate cultures expressed glutamate decarboxylase activity (L-glutamate 1-carboxylase; EC 4.1.1.15) as a function of culture differentiation. 2. Glutamic acid decarboxylase (GAD) activity was low in the initial phases of culture and increased eight-fold until culture day 7, remaining high up to day 13 (last stage studied). 3. The addition of GABA to the culture medium 24 h after cell seeding almost totally prevented the expression of GAD activity. 4. In association with decreased enzyme activity, aggregates exposed to GABA did not display immunoreactivity for GAD, suggesting that GAD molecules were either lost from GABAergic neurons or significantly altered with GABA treatment. 5. Control, untreated aggregates showed intense GAD immunoreactivity in neurons. Positive cell bodies were characterized by a thin rim of labeled cytoplasm with thickest labeling at the emergence of the main neurite. 6. Heavily labeled patches were also observed throughout the aggregates, possibly reflecting regions enriched in neurites. 7. The GABA-mediated reduction of GAD immunoreactivity was a reversible phenomenon and could be prevented by picrotoxin.  相似文献   

3.
Abstract: The human glutamic acid decarboxylase (GAD) gene was transferred into rat cerebellar granule neurons. Following adenoviral-mediated gene transfer, nearly 100% of the neurons had transgene expression that persisted for the duration of their survival in culture. GABA levels were elevated both in the growth media and in lysates of GAD-modified granule neurons. In GAD-modified neurons, extracellular GABA levels steadily increased with time, whereas intracellular GABA levels peaked 10 days after gene transfer. GAD-modified neurons released both glutamate and GABA into the surrounding media before and after potassium-induced stimulation, but only the release of glutamate was sensitive to potassium stimulation. These data suggest that glutamatergic neurons, which initially contained no detectable GABA, can be genetically modified to release GABA constitutively.  相似文献   

4.
Abstract: Defective herpes simplex virus (HSV) vectors containing glutamic acid decarboxylase (GAD) cDNAs, either GAD65 or GAD67, were used to examine GAD function and GABA synthesis in rat cortical astrocytes, CNS cells that do not endogenously synthesize GABA. GAD vector infection resulted in isoform-specific expression of GAD as determined by western blotting and immunohistochemistry. Astrocytes infected with a β-galactosidase vector or uninfected expressed no GAD and contained no detectable GABA. GABA was detected in glial fibrillary acid protein-expressing cells after GAD65 vector infection. Significant amounts of GABA, as determined by HPLC, were synthesized in cultures infected with either GAD vector. The levels of GABA in GAD67 vector-infected cells were almost twofold higher than in GAD65 vector-infected cells. Vector infection did not alter levels of other intracellular amino acids. GABA was tonically released from astrocytes infected with the GAD67 vector, but no increase in release could be detected after treatment of the cells with K+, veratridine, glutamate, or bradykinin. The ability to transduce astrocytes so that they express GAD and thereby increase GABA levels provides a potential strategy for the treatment of neurologic disorders associated with hyperexcitable or diminished inhibitory activity.  相似文献   

5.
Cerebral cortical neurons were co-cultured for up to 7 days with astrocytes after plating on top of a confluent layer of astrocytes cultured from either cerebral cortex or cerebellum (sandwich co-cultures). Neurons co-cultured with either cortical or cerebellar astrocytes showed a high stimulus coupled release of gamma-aminobutyric acid (GABA), which is the neurotransmitter of these neurons. When the astrocyte selective GABA uptake inhibitor 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol was added during the release experiments, an increase in the stimulus coupled GABA release was seen, indicating that the astrocytes take up a large fraction of GABA released from the neurons. The activity of the GABA synthesizing enzyme glutamate decarboxylase, which is a specific marker of GABAergic neurons, was markedly increased in sandwich co-cultures of cortical neurons and cerebellar astrocytes compared to neurons cultured in the absence of astrocytes whereas in co-cultures with cortical astrocytes this increase was less pronounced. Pure astrocyte cultures did not show any detectable glutamate decarboxylase activity. The astrocyte specific marker enzyme glutamine synthetase (GS) was present at high activity in a glucocorticoid-inducible form in pure astrocytes as well as in co-cultures regardless of the regional origin of the astrocytes. When neurons were cultured on top of the astrocytes, the specific activity of GS was lower compared to astrocytes cultured alone, a result compatible with the notion that neurons are devoid of this enzyme. The results show that cortical neurons develop and differentiate when seeded on top of both homotypic and heterotypic astrocytes. Moreover, it could be demonstrated that the two cell types in the culture system communicate with each other with regard to GABA homeostasis during transmitter release.  相似文献   

6.
Immunohistochemical methods were used to label singly and/or in combination glutamic acid decarboxylase (GAD, the sole synthesizing enzyme for the inhibitory neurotransmitter γ-aminobutyric acid) and phosphate-activated glutaminase (GLN, a synthesizing enzyme for glutamate) in neurons of lateral reticular nucleus (LRN) of thalamus of adult cats. (1) GAD- and GLN-immunoreactivity (IR) exhibited matching regional patterns of organization within LRN. (2) GAD- and GLN-IR co-localized within most if not all LRN neuronal cell bodies as shown by light microscopy. (3) GAD- and GLN-IR had distinct subcellular localizations in LRN neurons as shown by correlative light/electron microscopy. LRN neurons are important conceptual models where strongly inhibitory cells receive predominant excitatory glutamatergic afferents (from neocortex). Consistent with known actions of intermediary astrocytes, LRN neurons demonstrate GLN enrichment synergistically coupled with glutamatergic innervation to supplement the glutamate pool for GABA synthesis (via GAD) and for metabolic utilization (via the GABA shunt/tricarboxylic acid cycle) but not, apparently, for excitatory neurotransmission. Special issue dedicated to John P. Blass.  相似文献   

7.
Glutamine (Gln), glutamate (Glu) and gamma-amino butyric acid (GABA) are essential amino acids for brain metabolism and function. Astrocytic-derived glutamine is the precursor of the two most important neurotransmitters: glutamate, an excitatory neurotransmitter, and GABA, an inhibitory neurotransmitter. In addition to their roles in neurotransmission these neurotransmitters act as alternative metabolic substrates that enable metabolic coupling between astrocytes and neurons. The relationships between Gln, Glu and GABA were studied under lead (Pb) toxicity conditions using synaptosomal fractions obtained from adult rat brains to investigate the cause of Pb neurotoxicity-induced seizures. We have found that diminished transport of [(14)C]GABA occurs after Pb treatment. Both uptake and depolarization-evoked release decrease by 40% and 30%, respectively, relative to controls. Lower expression of glutamate decarboxylase (GAD), the GABA synthesizing enzyme, is also observed. In contrast to impaired synaptosomal GABA function, the GABA transporter GAT-1 protein is overexpressed (possibly as a compensative mechanism). Furthermore, similar decreases in synaptosomal uptake of radioactive glutamine and glutamate are observed. However, the K(+)-evoked release of Glu increases by 20% over control values and the quantity of neuronal EAAC1 transporter for glutamate reaches remarkably higher levels after Pb treatment. In addition, Pb induces decreased activity of phosphate-activated glutaminase (PAG), which plays a role in glutamate metabolism. Most noteworthy is that the overexpression and reversed action of the EAAC1 transporter may be the cause of the elevated extracellular glutamate levels. In addition to the impairment of synaptosomal processes of glutamatergic and GABAergic transport, the results indicate perturbed relationships between Gln, Glu and GABA that may be the cause of altered neuronal-astrocytic interactions under conditions of Pb neurotoxicity.  相似文献   

8.
Phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase (GAD) were assayed in homogenates and synaptosomes obtained from starved (48 hr or 120 hr) and diabetic (streptozotocin) rat brain cortex. Glutamine synthetase (GS) was assayed in homogenates, microsomal and soluble fractions, from brain cortex of similarly treated rats.l-Glutamate uptake and exit rates were determined in cortex slices and synaptosomes under the same conditions. The specific activity (s.a.) of PAG, a glutamate producing enzyme, decreased (50%) in the homogenate after 120-hr starvation. In synaptosomes it decreased (25%) only after 48-hr starvation. The s.a of GAD and GS, which are glutamate-consuming enzymes, were progressively increased with time of starvation, reaching 39% and 55% respectively after 120 hr. GS in the microsomes or the soluble fraction and GAD in the synaptosomes showed no change in s.a. under these conditions. Diabetes increased (40%) microsomal GS s.a. and decreased GAD s.a. (18%) in the homogenate. Thel-glutamate uptake rate was decreased (48%) by diabetes in slices but not in synaptosomes. It is suggested that a) enzymes of the glutamate system respond differently in different subcellular fractions towards diabetes or deprivation of food and b) diabetes may affect the uptake system in glial cells but not in neurons.Abbreviations used AET 2-aminoethylisourethonium bromide - GAD glutamic acid decarboxylase - GS glutamine synthetase - GSH glutathione - PAG phosphate-activated glutaminase - PLP pyridoxal phosphate - r.c.f. relative centrifugal force - s.a. specific activity  相似文献   

9.
Intrastriatal injections of kainic acid are known to destroy striatal neurons including many containing choline acetyltransferase (CAT) and glutamic acid decarboxylase (GAD). Using these enzymes as indices of neuronal loss, the neurotoxicity of small doses of kainic acid was found to be influenced by injection time and volume. It was partly blocked by coninjection of some but not all glutamate antagonists or by prior lesioning of the corticostriatal tract. Other adjuvants, drugs, or lesions tested had little modifying effect, except that changes in the dopaminergic system seemed to increase the toxicity towards cholinergic but not GABAnergic systems. High-affinity glutamate accumulation by neostriatal synaptosomes was significantly increased 1–7 days following kainic acid injections. MAO and acetylcholinesterase activities were depressed in kainic acid-lesioned striata but not nearly as much as were CAT and GAD. An indirect mechanism involving glutamate release and inhibition of reuptake is suggested for kainic acid neurotoxicity.  相似文献   

10.
Cerebral hyperammonemia is a hallmark of hepatic encephalopathy, a debilitating condition arising secondary to liver disease. Pyruvate oxidation including tricarboxylic acid (TCA) cycle metabolism has been suggested to be inhibited by hyperammonemia at the pyruvate and -ketoglutarate dehydrogenase steps. Catabolism of the branched-chain amino acid isoleucine provides both acetyl-CoA and succinyl-CoA, thus by-passing both the pyruvate dehydrogenase and the -ketoglutarate dehydrogenase steps. Potentially, this will enable the TCA cycle to work in the face of ammonium-induced inhibition. In addition, this will provide the -ketoglutarate carbon skeleton for glutamate and glutamine synthesis by glutamate dehydrogenase and glutamine synthetase (astrocytes only), respectively, both reactions fixing ammonium. Cultured cerebellar neurons (primarily glutamatergic) or astrocytes were incubated in the presence of either [U-13C]glucose (2.5 mM) and isoleucine (1 mM) or [U-13C]isoleucine and glucose. Cell cultures were treated with an acute ammonium chloride load of 2 (astrocytes) or 5 mM (neurons and astrocytes) and incorporation of 13C-label into glutamate, aspartate, glutamine and alanine was determined employing mass spectrometry. Labeling from [U-13C]glucose in glutamate and aspartate increased as a result of ammonium-treatment in both neurons and astrocytes, suggesting that the TCA cycle was not inhibited. Labeling in alanine increased in neurons but not in astrocytes, indicating elevated glycolysis in neurons. For both neurons and astrocytes, labeling from [U-13C]isoleucine entered glutamate and aspartate albeit to a lower extent than from [U-13C]glucose. Labeling in glutamate and aspartate from [U-13C]isoleucine was decreased by ammonium treatment in neurons but not in astrocytes, the former probably reflecting increased metabolism of unlabeled glucose. In astrocytes, ammonia treatment resulted in glutamine production and release to the medium, partially supported by catabolism of [U-13C]isoleucine. In conclusion, i) neuronal and astrocytic TCA cycle metabolism was not inhibited by ammonium and ii) isoleucine may provide the carbon skeleton for synthesis of glutamate/glutamine in the detoxification of ammonium.  相似文献   

11.
The nucleotide sequences of cDNAs encoding two isoforms of Arabidopsis glutamate decarboxylase, designated GAD1 (57.1 kDa) and GAD2 (56.1 kDa) and sharing 82% identical amino acid sequences, were determined. The recombinant proteins bound [35S] calmodulin (CaM) in the presence of calcium, and a region of 30–32 amino acids from the C-terminal of each isoform was sufficient for CaM binding when fused to glutathione S-transferase. Full-length GAD1 and GAD2 were expressed in Sf9 insect cells infected with recombinant baculovirus vectors. Recombinant proteins were partially purified by CaM affinity chromatography and were found to exhibit glutamate decarboxylase activity, which was dependent on the presence of Ca2+/CaM at pH 7.3. Southern hybridizations with GAD gene-specific probes suggest that Arabidopsis possesses one gene related to GAD1 and one to GAD2. Northern hybridization and western blot analysis revealed that GAD1 was expressed only in roots and GAD2 in roots, leaves, inflorescence stems and flowers. Our study provides the first evidence for the occurrence of multiple functional Ca2+/CaM-regulated GAD gene products in a single plant, suggesting that regulation of Arabidopsis GAD activity involves modulation of isoform-specific gene expression and stimulation of the catalytic activity of GAD by calcium signalling via CaM.  相似文献   

12.
Prion protein (PrP) plays crucial roles in regulating antioxidant systems to improve cell defenses against cellular stress. Here, we show that the interactions of PrP with the excitatory amino acid transporter 3 (EAAT3), γ‐glutamyl transpeptidase (γ‐GT), and multi‐drug resistance protein 1 (MRP1) in astrocytes and the interaction between PrP and EAAT3 in neurons regulate the astroglial and neuronal metabolism of the antioxidant glutathione. Ablation of PrP in astrocytes and cerebellar neurons leads to dysregulation of EAAT3‐mediated uptake of glutamate and cysteine, which are precursors for the synthesis of glutathione. In PrP‐deficient astrocytes, levels of intracellular glutathione are increased, and under oxidative stress, levels of extracellular glutathione are increased, due to (i) increased glutathione release via MRP1 and (ii) reduced activity of the glutathione‐degrading enzyme γ‐GT. In PrP‐deficient cerebellar neurons, cell death is enhanced under oxidative stress and glutamate excitotoxicity, when compared to wild‐type cerebellar neurons. These results indicate a functional interplay of PrP with EAAT3, MRP1 and γ‐GT in astrocytes and of PrP and EAAT3 in neurons, suggesting that these interactions play an important role in the metabolic cross‐talk between astrocytes and neurons and in protection of neurons by astrocytes from oxidative and glutamate‐induced cytotoxicity.

  相似文献   


13.
In this work, we report that the recombinant glutathione S-transferase (GST)-human L-glutamic acid decarboxylase (HGAD) isoforms, 65-kDa L-glutamic acid decarboxylase (GAD) (GST-HGAD65) fusion protein or free truncated HGAD65, were activated by apocalmodulin (ApoCaM) to an extent of 60%. Both truncated forms of GAD67 (tGAD67), HGAD67(Delta1-70) and HGAD67(Delta1-90), were markedly activated by ApoCaM to an extent of 141 and 85%, respectively, while GST-HGAD67 was not significantly affected. The activation appears to be due to an increase of GAD affinity for its cofactor, pyridoxal phosphate (PLP). This conclusion is based on the following observations. Firstly, the V(max) of GAD was increased when ApoCaM was present whereas the affinity for the substrate, glutamate, was not affected. Secondly, the affinity of GAD for PLP was increased in the presence of ApoCaM. Thirdly, results from calmodulin-agarose affinity column chromatography studies indicated a direct interaction or binding between ApoCaM and GAD. Fourthly, ApoCaM was found to be copurified with GAD65/GAD67 by anti-GAD65/67 immunoaffinity column using rat brain extract. Hence, it is proposed that a conformational change is induced when ApoCaM interacts with GAD65 or tGAD67, resulting in an increase of GAD affinity for PLP and the activation of GAD. The physiological significance of the interaction between GAD and ApoCaM is discussed.  相似文献   

14.
We investigated the effect of hypoxia on glutamate metabolism and uptake in rat pheochromocytoma (PC12) cells. Various key enzymes relevant to glutamate production, metabolism and transport were coordinately regulated by hypoxia. PC12 cells express two glutamate-metabolizing enzymes, glutamine synthetase (GS) and glutamate decarboxylase (GAD), as well as the glutamate-producing enzyme, phosphate-activated glutaminase (PAG). Exposure to hypoxia (1% O(2)) for 6 h or longer increased expression of GS mRNA and protein and enhanced GS enzymatic activity. In contrast, hypoxia caused a significant decrease in expression of PAG mRNA and protein, and also decreased PAG activity. In addition, hypoxia led to an increase in GAD65 and GAD67 protein levels and GAD enzymatic activity. PC12 cells express three Na(+)-dependent glutamate transporters; EAAC1, GLT-1 and GLAST. Hypoxia increased EAAC1 and GLT-1 protein levels, but had no effect on GLAST. Chronic hypoxia significantly enhanced the Na(+)-dependent component of glutamate transport. Furthermore, chronic hypoxia decreased cellular content of glutamate, but increased that of glutamine. Taken together, the hypoxia-induced changes in enzymes related to glutamate metabolism and transport are consistent with a decrease in the extracellular concentration of glutamate. This may have a role in protecting PC12 cells from the cytotoxic effects of glutamate during chronic hypoxia.  相似文献   

15.
Glutamic acid decarboxylase (GAD) is an enzyme that catalyzes the decarboxylation of glutamate to γ‐aminobutyric acid (GABA) and CO2. It has been discovered that the GAD has a restricted tissue distribution and it is highly expressed in the cytoplasm of GABAergic neurons in the CNS where GABA is used as a neurotransmitter. We have examined the microstructure of ganglionic neurons and nerves arising from the CNS and describe here the immunocytochemical localization of GAD isoforms to reveal the ecophysiological significance of GABA for the web‐building spider's behavior. In the CNS of the cobweb spider, Achaearanea tepidariorum, immunocytochemical localization of GAD isoforms can be detected in the neurons and neuropiles of the optic lobes. In addition, GAD‐like immunoreactive cell bodies are observed at the intrinsic cell bodies near the central body and the symmetric cell clusters of the protocerebrum. However, the fibrous masses within the protocerebral ganglion are not labeled at all. Based on its interconnection with other regions of the CNS, our findings suggest that the central body in the web‐building spider may act as an association center as well as a visual center.  相似文献   

16.
gamma-Aminobutyric acid (GABA) and its synthetic enzyme, glutamate decarboxylase (GAD), are not limited to the nervous system but are also found in nonneural tissues. The mammalian brain contains at least two forms of GAD (GAD67 and GAD65), which differ from each other in size, sequence, immunoreactivity, and their interaction with the cofactor pyridoxal 5'-phosphate (PLP). We used cDNAs and antibodies specific to GAD65 and GAD67 to study the molecular identity of GADs in peripheral tissues. We detected GAD and GAD mRNAs in rat oviduct and testis. In oviduct, the size of GAD, its response to PLP, its immunoreactivity, and its hybridization to specific RNA and DNA probes all indicate the specific expression of the GAD65 gene. In contrast, rat testis expresses the GAD67 gene. The GAD in these two reproductive tissues is not in neurons but in nonneural cells. The localization of brain GAD and GAD mRNAs in the mucosal epithelial cells of the oviduct and in spermatocytes and spermatids of the testis shows that GAD is not limited to neurons and that GABA may have functions other than neurotransmission.  相似文献   

17.
The recombinant forms of the two human isozymes of glutamate decarboxylase, GAD65 and GAD67, are potently and reversibly inhibited by molecular oxygen (Ki = 0.46 and 0.29 mM, respectively). Inhibition of the vesicle-associated glutamate decarboxylase (GAD65) by molecular oxygen is likely to result in incomplete filling of synaptic vesicles with gamma-aminobutyric acid (GABA) and may be a contributing factor in the genesis of oxygen-induced seizures. Under anaerobic conditions, nitric oxide inhibits both GAD65 and GAD67 with comparable potency to molecular oxygen (Ki = 0.5 mM). Two forms of porcine cysteine sulfinic acid decarboxylase (CSADI and CSADII) are also sensitive to inhibition by molecular oxygen (Ki = 0.30 and 0.22 mM, respectively) and nitric oxide (Ki = 0.3 and 0.2 mM, respectively). Similar inhibition of glutamate decarboxylase and cysteine sulfinic acid decarboxylase by two different radical-containing compounds (O2 and NO) is consistent with the notion that these reactions proceed via radical mechanisms.  相似文献   

18.
When slices prepared from rat corpus striatum were preincubated for 15 min in potassium-enriched Krebs Ringer-Phosphate medium (K+-KRP), the activity of glutamic acid decarboxylase measured upon reincubation in normal Krebs-Ringer-Phosphate (KRP) was doubled as compared to GAD activity in slices preincubated in normal KRP. Similarly, when striatal slices were preincubated in KRP containing 100 μM veratridine, GAD activity upon reincubation in normal KRP was increased 66% as compared to activity in slices preincubated in normal KRP. The observed increase in GAD activity was not a function of alterations in glutamate uptake by the slices. These results suggest that GABAergic neurons may regulate transmitter synthesis during the process of depolarization by increasing GAD activity.  相似文献   

19.
In a previous study, we demonstrated trophic effects of vitamin A and its active metabolite, retinoic acid (RA), on perinatal rat spinal cord neurons and astrocytes in vitro. We now report that RA increases the survival of cholinergic neurons without affecting that of GABAergic neurons. These results were supported by measured levels of acetylcholinesterase (AChE), choline acetyltransferase (ChAT), and glutamic acid decarboxylase (GAD) activities, key enzymes of acetylcholine and gamma-aminobutyric acid metabolism, respectively, which showed RA-induced increases in AChE and ChAT levels but no elevations of GAD activity. In contrast to these phenotype-specific effects, most neurons showed RA-induced increases in neuritic outgrowth, density, and silver impregnation. Taken together, these results demonstrate neurotransmitter-specific and generalized effects of RA on developing CNS neurons.  相似文献   

20.
The effect of treatment with the gamma-aminobutyric acid (GABA) agonist tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) on neural development was monitored in rats by following the expression of the neuron-specific proteins neural cell adhesion molecule (NCAM), D1, and D3 as well as the enzymes glutamate decarboxylase (GAD) and glutamate dehydrogenase (GLDH). As judged from the effect of the treatment on the expression of NCAM and GAD, GABA agonists have the capacity to accelerate and enhance neuronal development during the early postnatal period. However, as judged from the expression of D1- and D3-protein some adverse late effects may result from prolonged treatment with high doses of GABA agonists. The decrease in GLDH specific activity observed in THIP-treated rats during their late postnatal development possibly indicates a repression of glutamatergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号