首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The issue as to whether there is direct phosphodiesteratic cleavage of phosphatidylinositol (PI), in addition to that of phosphatidylinositol 4,5-bisphosphate (PIP2), on agonist stimulation of cells has been controversial. In an attempt to resolve this issue, we have studied the kinetics of the formation and breakdown of the cyclic inositol phosphates. This approach is fairly straightforward, since the turnover of the cyclic inositol phosphates is very slow as compared to that of the noncyclic inositol phosphates and proceeds from inositol 1:2-cyclic 4,5-trisphosphate to inositol 1:2-cyclic phosphate (I(c1:2)P) directly by dephosphorylation without any branching pathways, in contrast to the multiple branchpoints of the noncyclic inositol phosphate pathway. Mouse pancreatic minilobules were prelabeled with [3H]inositol for 30 min, followed by washing to remove free inositol. They were then stimulated with carbachol for 30 min. The inositol cyclic polyphosphates reached steady state at 10-15 min, and I(c1:2)P reached steady state at 25 min. We blocked the action of carbachol by addition of an excess of atropine at 30 min, and the rate of disappearance of the three cyclic inositol phosphates was measured. From these data, the contribution of the inositol cyclic polyphosphate pathway to I(c1:2)P was calculated, which was 40-50% of total I(c1:2)P formation. Thus, 40-50% of the I(c1:2)P formed must have been derived from direct phosphodiesteratic cleavage of PI. This approach should prove useful in measuring the relative contributions of PI hydrolysis and PI phosphorylation (phosphatidylinositol 4,5-bisphosphate hydrolysis) in the overall PI cascade.  相似文献   

2.
The addition of anti-IgM to the immature B lymphoma cell line WEHI-231 resulted in breakdown of phosphatidylinositol 4,5-bisphosphate, generating diacylglycerol and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). These reactions have recently been demonstrated in mature resting B cells stimulated with anti-IgM, as well. In addition to Ins(1,4,5)P3, inositol tetrakisphosphate (InsP4) and inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) were rapidly generated in WEHI-231 cells upon stimulation of the antigen receptor with anti-IgM. These two inositol polyphosphates are probably generated from Ins(1,4,5)P3 by phosphorylation to yield InsP4 and removal of the 5-phosphate from InsP4 to yield Ins(1,3,4)P3. It is possible that these inositol polyphosphates play a second messenger role in mediating the biologic effects of antigen-receptor signaling. It had previously been shown that anti-IgM also causes an increase in cytoplasmic free calcium. Therefore, the relationship between Ca2+ elevation and phosphoinositide breakdown was investigated. Although elevation of cytoplasmic Ca2+ with ionophores can trigger phosphoinositide breakdown, this required levels of Ca2+ well beyond those normally seen in response to anti-IgM. Thus, the Ca2+ elevation seen in response to anti-IgM cannot be the event controlling phosphoinositide breakdown. WEHI-231 cells have been shown to have a calcium storage compartment that releases Ca2+ in the presence of Ins(1,4,5)P3; therefore, it is likely that anti-IgM stimulates phosphoinositide breakdown as a primary event and this leads to the elevation of cytoplasmic Ca2+.  相似文献   

3.
Addition of the guanine nucleotide analogue guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) to [3H]inositol-labeled NRK cell homogenates resulted in rapid breakdown of cellular polyphosphoinositides. GTP gamma S stimulated phospholipase C, resulting in a more than 4-fold increase in the hydrolysis rates of phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bis(phosphate) (PIP2). No significant effect of GTP gamma S on direct phosphatidylinositol (PI) hydrolysis was detected. There was an increase in water-soluble inositols, with inositol tris(phosphate) (IP3) levels increasing at least 10 times over the decrease seen in PIP2, indicating that PIP kinase activity was also accelerated following GTP gamma S addition. Inositol 1,4,5-tris(phosphate) peaked rapidly after GTP gamma S addition (less than 2 min) while inositol 1,3,4-tris-(phosphate) was produced more slowly and leveled off after approximately 10 min. The differential equations describing conversion between intermediates in the PI turnover pathway were solved and fitted to data obtained from both [3H]inositol and [32P]phosphate fluxes by nonlinear least-squares analysis. GTP gamma S effects on the pseudo-first-order rate constants for the lipase, kinase, and phosphatase steps were determined from the analysis. From these measurements it can be estimated that, in the presence of GTP gamma S and calcium buffered to 130 nM, hydrolysis of PIP2 accounts for at least 10 times as much diacylglycerol as direct PI breakdown despite the 100-fold excess of PI over PIP2. From the kinetic model it is predicted that small changes in the activities of PI and PIP kinases can have large but different effects on the level of IP3 and diacylglycerol following GTP gamma S addition. These results argue that regulation of PI and PIP kinases may be important for determining both cellular IP3 and diacylglycerol levels.  相似文献   

4.
In Saccharomyces cerevisiae, cAMP-dependent phosphorylation plays an essential role at the start of the cell cycle. It has also recently been demonstrated that the breakdown of phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate and diacylglycerol is a requisite process for cell proliferation (Uno, I., Fukami, K., Kato, H., Takenawa, T., and Ishikawa, T. (1988) Nature 333, 188-190). To clarify the relationship between the cAMP- and inositol phospholipid-mediated signal transduction systems, alterations in the inositol phospholipid metabolism of cAMP mutants were examined. The incorporation of [32P]Pi into phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) was markedly reduced in ras2, which produces low levels of cAMP, and increased in bcy1, which produces cAMP-independent protein kinase. The incorporation of [32P]Pi into ATP and phosphatidylinositol (PI) was almost the same in wild type, ras1, ras2, and bcy1 yeast strains. The addition of exogenous cAMP to cyr1-2 caused a tremendous increase in [32P]Pi incorporation into PIP and PIP2 without any effect on incorporation into ATP and PI, suggesting that cAMP plays an important role in polyphosphoinositide synthesis. We therefore examined the activities of PI and PIP kinases, the enzymes that catalyze the sequential steps from PI to PIP2 via PIP. The activities of both kinases were found to be very low in the membranes of cry1-2 and ras2 but very high in the membranes of bcy1 and ras1 ras2 bcy1 strain cells. The addition of cAMP to cyr1-2 cells caused the activation of PI and PIP kinases. Furthermore, the treatment of membranes with cAMP or dibutyryl cAMP caused the activation of PI kinase in wild type, ras1, cry1-2, and ras2 strains, but not in bcy1 strain cells. The effect was most prominent in membranes from cyr1-2 and ras2 cells. These results show that cAMP-dependent phosphorylation enhances polyphosphoinositide synthesis through activation of PI and PIP kinase, an effect which may lead to the enhanced production of inositol 1,4,5-trisphosphate and diacylglycerol.  相似文献   

5.
EGF is a low molecular weight polypeptide hormone which acts as a regulator of cell growth and differentiation. The A-431 cell line has been used frequently to examine receptor-mediated biochemical effects of EGF, since this cell line has an increased (20-50 fold) level of EGF receptors. We have utilized A-431 cells to examine the influence of EGF on formation of an intracellular second messenger, inositol, 1,4,5-trisphosphate (Ins-1,4,5-P3), and other inositol phosphates. The results show that EGF induces rapid formation of Ins-1,4,5-P3 as well as Ins-1,3,4-P3 and Ins-1,3,4,5-P4. There is a concurrent decrease in the level of the lipid precursor for Ins-1,4,5-P3, phosphatidylinositol 4,5-biphosphate (PIP2). Furthermore, we have examined five other cell lines that overexpress the EGF receptor and find that EGF treatment induces formation of inositol polyphosphates in those cell lines also.  相似文献   

6.
Spermine (SPM) and spermidine (SPD) activate isolated phosphatidylinositol-4-phosphate 5-kinases (PI(4)P5K), enzymes that convert phosphatidylinositol-4-phosphate to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). PI(4,5)P2 formation is known to be involved in cellular actin reorganization and motility, functions that are also influenced by polyamines. It has not been proven that endogenous polyamines can control inositol phospholipid metabolism. We evoked large decreases in SPD and putrescine (PUT) contents in HL60 cells, using the ornithine decarboxylase inhibitor, alpha-difluoromethylornithine (DFMO), which resulted in decreases in PI(4,5)P2 content per cell and inositol phosphate formation to 76.9 +/- 3.5% and 81.5 +/- 4.0% of control, respectively. Accurately reversing DFMO-evoked decreases in SPD content by incubating cells with exogenous SPD for 20 min rescued these decreases. DFMO treatment and SPD rescues also changed the ratio of total cellular PI(4,5)P2 to PIP suggesting involvement of a SPD-sensitive PI(4)P5K. PUT and SPM were not involved in DFMO-evoked changes in cellular PI(4,5)P2 contents. In DFMO-treated HL60 cells, the percent of total actin content that was filamentous was decreased to 59.1 +/- 5.8% of that measured in paired control HL60 cells, a finding that was rescued following reversal of DFMO-evoked decreases in SPD and PI(4,5)P2 contents. In slowly proliferating DMSO-differentiated HL60 cells, inositol phospholipid metabolism was uncoupled from SPD control. We conclude: in rapidly proliferating HL60 cells, but not in slowly proliferating differentiated HL60 cells, there are endogenous SPD-sensitive PI(4,5)P2 pools, probably formed via SPD-sensitive PI(4)P5K, that likely control actin polymerization.  相似文献   

7.
Abnormalities in blood cell membrane phospholipid composition and metabolism from schizophrenic patients have been reported by many groups of investigators. Among membrane phospholipids, inositol phospholipids are of special importance as they are involved in transduction system that generates second messengers such as inositol trisphosphate and diacylglycerol. Our studies on platelet inositol phospholipid turnover suggest a significant increase in platelet phosphatidylinositol 4,5-bisphosphate levels, an increased production of inositol trisphosphate in neuroleptic-treated and neuroleptic-free schizophrenic patients platelets and a reduced calcium release by thrombin in neuroleptic-treated schizophrenic patients platelets. The enhanced production of inositol trisphosphate may be due to an increase in its precursor phosphatidylinositol 4,5-bisphosphate with an associated desensitisation of the intracellular inositol trisphosphate receptor by neuroleptics, which may explain the diminished calcium response to thrombin in schizophrenic patients platelets.  相似文献   

8.
Phosphoinositide plays a critical role not only in generating second messengers, such as inositol 1,4,5-trisphosphate and diacylglycerol, but also in modulating a variety of cellular functions including cytoskeletal organization and membrane trafficking. Many inositol lipid kinases and phosphatases appear to regulate the concentration of a variety of phosphoinositides in a specific area, thereby inducing spatial and temporal changes in their availability. For example, local concentration changes in phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) in response to extracellular stimuli cause the reorganization of actin filaments and a change in cell shape. PI(4,5)P(2) uncaps the barbed end of actin filaments and increases actin nucleation by modulating a variety of actin regulatory proteins, leading to de novo actin polymerization. PI(4,5)P(2) also plays a key role in membrane trafficking processes. In endocytosis, PI(4,5)P(2) targets clathrin-associated proteins to endocytic vesicles, leading to clathrin-coated pit formation. On the contrary, PI(4,5)P(2) must be dephosphorylated when they shed clathrin coats to fuse endosome. Thus, through regulating actin cytoskeleton organization and membrane trafficking, phosphoinositides play crucial roles in a variety of cell functions such as growth, polarity, movement, and pattern formation.  相似文献   

9.
The phosphatidylinositol phosphate (PIP) kinases are a unique family of enzymes that generate an assortment of lipid messengers, including the pivotal second messenger phosphatidylinositol 4,5-bisphosphate (PI4,5P2). While members of the PIP kinase family function by catalyzing a similar phosphorylation reaction, the specificity loop of each PIP kinase subfamily determines substrate preference and partially influences distinct subcellular targeting. Specific protein-protein interactions that are unique to particular isoforms or splice variants play a key role in targeting PIP kinases to appropriate subcellular compartments to facilitate the localized generation of PI4,5P2 proximal to effectors, a mechanism key for the function of PI4,5P2 as a second messenger. This review documents the discovery of the PIP kinases and their signaling products, and summarizes our current understanding of the mechanisms underlying the localized generation of PI4,5P2 by PIP kinases for the regulation of cellular events including actin cytoskeleton dynamics, vesicular trafficking, cell migration, and an assortment of nuclear events.  相似文献   

10.
The incorporation of phosphatidyl[2-3H]inositol ([3H]PI) from vesicles or microsomal membranes into rat liver nuclei is greatly stimulated by phosphatidylinositol transfer protein (PI-TP). The nuclei are able to phosphorylate [3H]PI, with the production of phosphatidylinositol 4-phosphate (PIP). Recovery of tritiated inositol trisphosphate, inositol phosphate, glycerophosphoinositol and inositol, suggests that in isolated nuclei a large set of enzymes of the PI cycle is present, similar to the enzymes involved in the plasma membrane PI cycle. Incubation with [gamma-32P]ATP shows that isolated nuclei are able to phosphorylate endogenous PI to PIP and phosphatidylinositol 4,5-bisphosphate (PIP2). In the presence of exogenous PI and detergent the synthesis of PIP is increased, indicating that in nuclei the PI pool is suboptimal for the PI-kinase activity. The present study suggests that PI-TP may be involved in providing substrates for PI metabolism at the nuclear level.  相似文献   

11.
The protein kinase C (PKC)-MAPK signaling cascade is activated and is essential for viability when cells are starved for the phospholipid precursor inositol. In this study, we report that inhibiting inositol-containing sphingolipid metabolism, either by inositol starvation or treatment with agents that block sphingolipid synthesis, triggers PKC signaling independent of sphingoid base accumulation. Under these same growth conditions, a fluorescent biosensor that detects the necessary PKC signaling intermediate, phosphatidylinositol (PI)-4-phosphate (PI4P), is enriched on the plasma membrane. The appearance of the PI4P biosensor on the plasma membrane correlates with PKC activation and requires the PI 4-kinase Stt4p. Like other mutations in the PKC-MAPK pathway, mutants defective in Stt4p and the PI4P 5-kinase Mss4p, which generates phosphatidylinositol 4,5-bisphosphate, exhibit inositol auxotrophy, yet fully derepress INO1, encoding inositol-3-phosphate synthase. These observations suggest that inositol-containing sphingolipid metabolism controls PKC signaling by regulating access of the signaling lipids PI4P and phosphatidylinositol 4,5-bisphosphate to effector proteins on the plasma membrane.  相似文献   

12.
Phosphoinositides: key players in cell signalling, in time and space   总被引:15,自引:0,他引:15  
Over the last few years, many reports have extended our knowledge of the inositol lipid metabolism and brought out some exciting information about the location, the variety and the role of phosphoinositides (PIs). Besides the so-called "canonical PI pathway" leading to the production of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), the precursor of the intracellular second messengers inositol 1,4,5-trisphosphate and diacylglycerol (DAG), many other metabolic pathways have been identified to produce seven different polyphosphoinositides. Several of these quantitatively minor lipid molecules appear to be specifically involved in the control of cellular events, such as the spatial and temporal organisation of key signalling pathways, the rearrangement of the actin cytoskeleton or the intracellular vesicle trafficking. This is consistent with the fact that many of the enzymes, such as kinases and phosphatases, involved in the tight control of the intracellular level of polyphosphoinositides, are regulated and/or relocated through cell surface receptors for extracellular ligands. The remarkable feature of PIs, which can be rapidly synthesised and degraded in discrete membrane domains or even subnuclear structures, places them as ideal regulators and integrators of very dynamic mechanisms of cell regulation. In this review, we will summarise recent studies on the potential location, the metabolic pathways and the role of the different PIs. Some aspects of the temporal synthesis of D3 PIs will also be discussed.  相似文献   

13.
The agonist-dependent hydrolysis of inositol phospholipids was investigated by studying the breakdown of prelabelled lipid or by measuring the accumulation of inositol phosphates. Stimulation of insect salivary glands with 5-hydroxytryptamine for 6 min provoked a rapid disappearance of [3H]phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and [3H]phosphatidylinositol 4-phosphate (PtdIns4P) but had no effect on the level of [3H]phosphatidylinositol (PtdIns). The breakdown of PtdIns(4,5)P2 was associated with a very rapid release of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], which reached a peak 5 1/2 times that of the resting level after 5 s of stimulation. This high level was not maintained but declined to a lower level, perhaps reflecting the disappearance of PtdIns(4,5)P2. 5-Hydroxytryptamine also induced a rapid and massive accumulation of inositol 1,4-bisphosphate [Ins(1,4)P2]. The fact that these increases in Ins(1,4,5)P3 and Ins(1,4)P2 precede in time any increase in the level of inositol 1-phosphate or inositol provides a clear indication that the primary action of 5-hydroxytryptamine is to stimulate the hydrolysis of PtdIns(4,5)P2 to yield diacylglycerol and Ins(1,4,5)P3. The latter is then hydrolysed by a series of phosphomonoesterases to produce Ins(1,4)P2, Ins1P and finally inositol. The very rapid agonist-dependent increases in Ins(1,4,5)P3 and Ins(1,4)P2 suggests that they could function as second messengers, perhaps to control the release of calcium from internal pools. The PtdIns(4,5)P2 that is used by the receptor mechanism represents a small hormone-sensitive pool that must be constantly replenished by phosphorylation of PtdIns. Small changes in the size of this small energy-dependent pool of polyphosphoinositide will alter the effectiveness of the receptor mechanism and could account for phenomena such as desensitization and super-sensitivity.  相似文献   

14.
The effect of prolactin action on nuclear polyphosphoinositide synthesis was investigated in isolated rat liver nuclei. An increased uptake of phosphate from [gamma 32P] adenosinetriphosphate was observed in both phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate with a maximum response at 10(-12) M concentration of hormone. Pulse-chase experiments in isolated nuclei following prolactin treatment indicate that the observed increase in accumulation of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate is mainly due to a decrease in their rate of turnover possibly induced by a change in activity of polyphosphoinositide-specific monoesterases. In vitro prolactin also reduces the activity of nuclear phospholipase C specific for phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Moreover, this feature is strongly supported by the concomitant decrease in nuclear diacylglycerol mass. Thus these data suggest that once prolactin reaches the nucleus an intranuclear signalling is evoked through inositol lipid metabolism.  相似文献   

15.
In Drosophila, a phospholipase C (PLC)-mediated signaling cascade, couples photo-excitation of rhodopsin to the opening of the transient receptor potential (TRP) and TRP-like (TRPL) channels. A lipid product of PLC, diacylglycerol (DAG), and its metabolites, polyunsaturated fatty acids (PUFAs) may function as second messengers of channel activation. However, how can one separate between the increase in putative second messengers, change in pH, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) depletion when exploring the TRPL gating mechanism? To answer this question we co-expressed the TRPL channels together with the muscarinic (M1) receptor, enabling the openings of TRPL channels via G-protein activation of PLC. To dissect PLC activation of TRPL into its molecular components, we used a powerful method that reduced plasma membrane-associated PI(4,5)P2 in HEK cells within seconds without activating PLC. Upon the addition of a dimerizing drug, PI(4,5)P2 was selectively hydrolyzed in the cell membrane without producing DAG, inositol trisphosphate, or calcium signals. We show that PI(4,5)P2 is not an inhibitor of TRPL channel activation. PI(4,5)P2 hydrolysis combined with either acidification or application of DAG analogs failed to activate the channels, whereas PUFA did activate the channels. Moreover, a reduction in PI(4,5)P2 levels or inhibition of DAG lipase during PLC activity suppressed the PLC-activated TRPL current. This suggests that PI(4,5)P2 is a crucial substrate for PLC-mediated activation of the channels, whereas PUFA may function as the channel activator. Together, this study defines a narrow range of possible mechanisms for TRPL gating.  相似文献   

16.
Once thought of as simply an oily barrier that maintains cellular integrity, lipids are now known to play an active role in a large variety of cellular processes. Phosphoinositides are of particular interest because of their remarkable ability to affect many signaling pathways. Ion channels and transporters are an important target of phosphoinositide signaling, but identification of the specific phosphoinositides involved has proven elusive. TRPV1 is a good example; although phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P(2)) can potently regulate its activation, we show that phosphatidylinositol (4)-phosphate (PI(4)P) and phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P(3)) can as well. To determine the identity of the endogenous phosphoinositide regulating TRPV1, we applied recombinant pleckstrin homology domains to inside-out excised patches. Although a PI(4,5)P(2)-specific pleckstrin homology domain inhibited TRPV1, a PI(3,4,5)P(3)-specific pleckstrin homology domain had no effect. Simultaneous confocal imaging and electrophysiological recording of whole cells expressing a rapamycin-inducible lipid phosphatase also demonstrates that depletion of PI(4,5)P(2) inhibits capsaicin-activated TRPV1 current; the PI(4)P generated by the phosphatases was not sufficient to support TRPV1 function. We conclude that PI(4,5)P(2), and not other phosphoinositides or other lipids, is the endogenous phosphoinositide regulating TRPV1 channels.  相似文献   

17.
Phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] is a second messenger produced in response to agonist stimulation. Traditionally, visualization of phosphoinositide polyphosphates (PtdInsP(n)) in living cells is accomplished using chimeric green fluorescent protein (GFP)-pleckstrin homology (PH) domain proteins, while PtdInsP(n) quantitation is accomplished by extraction and separation of radiolabeled cellular PtdInsP(n)s. Here we describe preparation of a covalent protein-PtdIns(3,4,5)P(3) immunogen, characterization of binding selectivity of an anti-PtdIns(3,4,5)P(3) IgM, and immunodetection of PtdIns(3,4,5)P(3) in stimulated mammalian cells. This antibody has greater than three orders of magnitude selectivity for binding PtdIns(3,4,5)P(3) relative to its precursor, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)), and is therefore optimal for studies of cell function. The immunodetection in platelet-derived growth factor (PDGF)-stimulated NIH 3T3 cells was benchmarked against HPLC analysis of [3H]-myo-inositol-labeled cellular PtdInsP(n)s. In addition, the changes in subcellular amounts and localizations of both PtdIns(3,4,5)P(3) and PtdIns(4,5)P(2) in stimulated NIH 3T3 fibroblasts and human neutrophils were observed by immunofluorescence. In insulin- or PDGF-stimulated fibroblasts, PtdIns(3,4,5)P(3) levels increased in the cytoplasm, peaking at 10 min. In contrast, increases in the PtdIns(4,5)P(2) levels were detected in nuclei, corresponding to the production of new substrate following depletion by phosphoinositide (PI) 3-kinase.  相似文献   

18.
Swiss 3T3 cells incubated for 60 h with [3H]inositol incorporated radioactivity into phosphatidylinositol (PI) and the two polyphosphoinositides phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2). On stimulation with platelet-derived growth factor (PDGF) there were significant increases in the levels of inositol 1-phosphate (IP1), inositol 1,4-bisphosphate (IP2) and inositol 1,4,5-trisphosphate (IP3). The effect of PDGF and IP3 on Ca2+ mobilization was studied in both intact cells and in 'leaky' cells that had been permeabilized with saponin. In intact cells, PDGF stimulated the efflux of 45Ca2+, whereas IP3 had no effect. Conversely, IP3 stimulated 45Ca2+ efflux from 'leaky' cells, which were insensitive to PDGF. 'Leaky' cells, which accumulated 45Ca2+ to a steady state within 20 min, were found to release approx. 40% of the label within 1 min after addition of 10 microM-IP3. This stimulation of 45Ca2+ release by IP3 was reversible and was also dose-dependent, with a half-maximal effect at approx. 0.3 microM. It seems likely that an important action of PDGF on Swiss 3T3 cells is to stimulate the hydrolysis of PIP2 to form IP3 and diacylglycerol, both of which may function as second messengers. Our results indicate that IP3 mobilizes intracellular Ca2+, and we propose that diacylglycerol may act through C-kinase to activate the Na+/H+ antiport. By generating two second messengers, PDGF can simultaneously elevate the intracellular level of Ca2+ and alkalinize the cytoplasm by lowering the level of H+.  相似文献   

19.
Several T-cell functions are controlled by the regulatory peptide interleukin 2 (IL-2). Binding of IL-2 with specific receptors has been well documented, but the molecular mechanism by which IL-2/IL-2 receptor interaction is transduced is not known. We have found that treatment of IL-2-dependent T-cell lines with IL-2 is followed by a rapid stimulation of inositol phospholipid metabolism, as determined by isotopic methodology employing myo-[1,2-3H]inositol. Increased incorporation of the metabolic precursor into phosphatidylinositol and phosphatidylinositol 4-monophosphate, together with the appearance of radiolabeled phosphatidylinositol 4,5-bisphosphate, occurred within minutes of treatment with IL-2 of factor-dependent CT6 cells. Analysis of labeled water-soluble compounds from prelabeled cells indicated a rapid (within 1 min) stimulation of inositol phospholipid hydrolysis following IL-2 treatment. Increased recovery of [3H] inositol phosphates and appearance of [3H]inositol trisphosphate were observed after treatment with IL-2 of CT6 cells, as well as of a second IL-2-dependent cell line, CTB6. These findings suggests that inositol phospholipid-derived metabolites (i.e. diacylglycerol and inositol trisphosphate) may be part of the mechanism by which certain IL-2 signals are transduced.  相似文献   

20.
Thrombin stimulates 32Pi incorporation into phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bis-phosphate (PIP2), and phosphatidylinositol (PI), and initiates DNA synthesis in hamster (NIL) fibroblasts at a half-maximal concentration of 125 ng/ml. Neomycin, which binds PIP2 and PIP, inhibits both thrombin-stimulated initiation of cell proliferation and 32P pI incorporation into at concentrations above 2 mM without affecting thrombin binding, thymidine uptake, or cellular protein synthesis. At lower concentrations, neomycin inhibits thrombin-stimulated release of inositol 1,4,5-trisphosphate (IP3), by selectively binding PIP2, but does not inhibit 32P incorporation into PI or initiation of DNA synthesis. Phosphoinositide recycling and diacylglycerol release therefore appear necessary for initiation of cell proliferation by thrombin. IP3-stimulated Ca++ mobilization may not be required for thrombin mitogenesis, however, since neomycin can block IP3 release without inhibiting initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号