首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estimating and predicting temporal trends in species richness is of general importance, but notably difficult because detection probabilities of species are imperfect and many datasets were collected in an opportunistic manner. We need to improve our capabilities to assess richness trends using datasets collected in unstandardized procedures with potential collection bias. Two methods are proposed and applied to estimate richness change, which both incorporate models for sampling effects and detection probability: (a) nonlinear species accumulation curves with an error variance model and (b) Pradel capture–recapture models. The methods are used to assess nationwide temporal trends (1945–2018) in the species richness of wild bees in the Netherlands. Previously, a decelerating decline in wild bee species richness was inferred for part of this dataset. Among the species accumulation curves, those with nonconstant changes in species richness are preferred. However, when analyzing data subsets, constant changes became selected for non‐Bombus bees (for samples in collections) and bumblebees (for spatial grid cells sampled in three periods). Smaller richness declines are predicted for non‐Bombus bees than bumblebees. However, when relative losses are calculated from confidence intervals limits, they overlap and touch zero loss. Capture–recapture analysis applied to species encounter histories infers a constant colonization rate per year and constant local species survival for bumblebees and other bees. This approach predicts a 6% reduction in non‐Bombus species richness from 1945 to 2018 and a significant 19% reduction for bumblebees. Statistical modeling to detect species richness time trends should be systematically complemented with model checking and simulations to interpret the results. Data inspection, assessing model selection bias, and comparisons of trends in data subsets were essential model checking strategies in this analysis. Opportunistic data will not satisfy the assumptions of most models and this should be kept in mind throughout.  相似文献   

2.
Diversity in biological communities frequently is compared using species accumulation curves, plotting observed species richness versus sample size. When species accumulation curves intersect, the ranking of communities by observed species richness depends on sample size, creating inconsistency in comparisons of diversity. We show that species accumulation curves for two communities are expected to intersect when the community with lower actual species richness has higher Simpson diversity (probability that two random individuals belong to different species). This may often occur when comparing communities that differ in habitat heterogeneity or disturbance, as we illustrate using data from neotropical butterflies. In contrast to observed species richness, estimated Simpson diversity always produces a consistent expected ranking among communities across sample sizes, with the statistical accuracy to confidently rank communities using small samples. Simpson diversity should therefore be particularly useful in rapid assessments to prioritize areas for conservation.  相似文献   

3.
Capsule The capture–recapture model M(o) is an efficient way to estimate local population size.

Aims To test if a single capture–recapture modelling approach, combined with a simple survey method, can produce estimates of local population size from a dataset involving large‐scale multi‐observer surveys

Methods We sampled the presence of Nightjars in three separate sessions at three forests. Territory numbers were estimated using conventional territory‐mapping criteria. We ran different capture–recapture models to analyse the detection histories of territories obtained across the three sampling sessions and in the three different forests, using either only registrations of churring birds or all contacts.

Results The capture–recapture model M(o), assuming a constant detection probability, was the most efficient one to produce estimates of local population size. Using only two of the three sampling sessions gave less precise, though quite similar, estimates of the number of territories, with standard deviations representing 5–10% of the estimate values. However, this was reduced to 0.7–3.5%, i.e. three to seven times lower, when using the three sessions.

Conclusion Repeated sampling sessions to map territories can be efficiently used within the capture–recapture model M(o) to estimate detection probability and produce precise estimates of local population size.  相似文献   

4.
Inferences about nested subsets structure when not all species are detected   总被引:4,自引:1,他引:3  
Comparisons of species composition among isolated ecological communities of different size have often provided evidence that the species in communities with lower species richness form nested subsets of the species in larger communities. In the vast majority of studies, the question of nested subsets has been addressed using information on presence‐absence, where a “0” is interpreted as the absence of a given species from a given location. Most of the methodological discussion in earlier studies investigating nestedness concerns the approach to generation of model‐based matrices corresponding to the null hypothesis of a nonnested pattern. However, it is most likely that in many situations investigators cannot detect all the species present in the location sampled. The possibility that zeros in incidence matrices reflect nondetection rather than absence of species has not been considered in studies addressing nested subsets, even though the position of zeros in these matrices forms the basis of earlier inference methods. These sampling artifacts are likely to lead to erroneous conclusions about both variation over space in species richness, and the degree of similarity of the various locations. Here we propose an approach to investigation of nestedness, based on statistical inference methods explicitly incorporating species detection probability, that take into account the probabilistic nature of the sampling process. We use presence‐absence data collected under Pollock's robust capture‐recapture design, and resort to an estimator of species richness originally developed for closed populations to assess the proportion of species shared by different locations. We develop testable predictions corresponding to the null hypothesis of a nonnested pattern, and an alternative hypothesis of perfect nestedness. We also present an index for assessing the degree of nestedness of a system of ecological communities. We illustrate our approach using avian data from the North American Breeding Bird Survey collected in Florida Keys.  相似文献   

5.
ABSTRACT.   Because the winter season is potentially limiting for migratory birds, understanding their nonbreeding distributional patterns is essential. At a given site, patterns of species occurrence and abundance may vary over time and, within a species, wintering strategies may vary with regard to the degree that individuals are site-faithful both within and between winters. We examined long-term patterns in the composition of a winter resident bird community to determine how long a site must be studied to understand the wintering community. Over a 34-yr period of constant-effort mist netting at a site in Guánica, Puerto Rico, we captured 21 species of winter resident birds, with mean total captures varying from 8.3 to 18.9 individuals per net line and 6–14 species captured per year. Species richness capture/recapture models generated numbers similar to actual capture rates. Capture and recapture data allowed us to categorize winter residents into three groups: sporadic winter residents (14 species), regular winter residents (four species captured nearly every year), and dominant winter residents (three species captured each year with high rates of recapture). Our results suggest that sampling for at least three consecutive winters is needed to accurately characterize the bird community at a site. However, sampling for 5 yr is better, and 10-yr samples generate patterns similar to those based on our entire 34-yr sample. A 1-yr sample provides minimal information about the composition and characteristics of a winter resident bird community.  相似文献   

6.
Species richness is a fundamental measurement of community and regional diversity, and it underlies many ecological models and conservation strategies. In spite of its importance, ecologists have not always appreciated the effects of abundance and sampling effort on richness measures and comparisons. We survey a series of common pitfalls in quantifying and comparing taxon richness. These pitfalls can be largely avoided by using accumulation and rarefaction curves, which may be based on either individuals or samples. These taxon sampling curves contain the basic information for valid richness comparisons, including category–subcategory ratios (species-to-genus and species-to-individual ratios). Rarefaction methods – both sample-based and individual-based – allow for meaningful standardization and comparison of datasets. Standardizing data sets by area or sampling effort may produce very different results compared to standardizing by number of individuals collected, and it is not always clear which measure of diversity is more appropriate. Asymptotic richness estimators provide lower-bound estimates for taxon-rich groups such as tropical arthropods, in which observed richness rarely reaches an asymptote, despite intensive sampling. Recent examples of diversity studies of tropical trees, stream invertebrates, and herbaceous plants emphasize the importance of carefully quantifying species richness using taxon sampling curves.  相似文献   

7.
Abstract We examined 11 non‐linear regression models to determine which of them best fitted curvilinear species accumulation curves based on pit‐trapping data for reptiles in a range of heterogeneous and homogenous sites in mesic, semi‐arid and arid regions of Western Australia. A well‐defined plateau in a species accumulation curve is required for any of the models accurately to estimate species richness. Two different measures of effort (pit‐trapping days and number of individuals caught) were used to determine if the measure of effort influenced the choice of the best model(s). We used species accumulation curves to predict species richness, determined the trapping effort required to catch a nominated percentage (e.g. 95%) of the predicted number of species in an area, and examined the relationship between species accumulation curves with diversity and rarity. Species richness, diversity and the proportion of rare species in a community influenced the shape of species accumulation curves. The Beta‐P model provided the best overall fit (highest r2) for heterogeneous and homogeneous sites. For heterogeneous sites, Hill, Rational, Clench, Exponential and Weibull models were the next best. For homogeneous habitats, Hill, Weibull and Chapman–Richards were the next best models. There was very little difference between Beta‐P and Hill models in fitting the data to accumulation curves, although the Hill model generally over‐estimated species richness. Most models worked equally well for both measures of trapping effort. Because the number of individuals caught was influenced by both pit‐trapping effort and the abundance of individuals, both measures of effort must be considered if species accumulation curves are to be used as a planning tool. Trapping effort to catch a nominated percentage of the total predicted species in homogeneous and heterogeneous habitats varied among sites, but even for only 75% of the predicted number of species it was generally much higher than the typical effort currently being used for terrestrial vertebrate fauna surveys in Australia. It was not possible to provide a general indication of the effort required to predict species richness for a site, or to capture a nominated proportion of species at a site, because species accumulation curves are heavily influenced by the characteristics of particular sites.  相似文献   

8.
Defining the species pool of a community is crucial for many types of ecological analyses, providing a foundation to metacommunity, null modelling or dark diversity frameworks. It is a challenge to derive the species pool empirically from large and heterogeneous databases. Here, we propose a method to define a site-specific species pool (SSSP), i.e. the probabilistic set of species that may co-occur with the species of a target community. Using large databases with geo-referenced records that comprise full plant community surveys, our approach characterizes each site by its own species pool without requiring a pre-defined habitat classification. We calculate the probabilities of each species in the database to occur in the target community using Beals’ index of sociological favourability, and then build sample-based rarefaction curves from neighbouring records with similar species composition to estimate the asymptotic species pool size. A corresponding number of species is then selected among the species having the highest occurrence probability, thus defining both size and composition of the species pool. We tested the robustness of this approach by comparing SSSPs obtained with different spatial extents and dissimilarity thresholds, fitting different models to the rarefaction curves, and comparing the results obtained when using Beals co-occurrence probabilities or presence/absence data. As an example application, we calculated the SSSPs for all calcareous grassland records in the German Vegetation Reference Database, and show how our method could be used to 1) produce grain-dependent estimations of species richness across plots, 2) derive scalable maps of species richness and 3) define the full list of species composing the SSSP of each target site. By deriving the species pool exclusively from community characteristics, the SSSP framework presented here provides a robust approach to bridge biodiversity estimations across spatial scales.  相似文献   

9.
Abstract 1. Species richness is the most widely used biodiversity index, but can be hard to measure. Many species remain undetected, hence raw species counts will often underestimate true species richness. In contrast, capture–recapture methods estimate true species richness and correct for imperfect and varying detectability. 2. Detectability is a crucial quantity that provides the link between a species count and true species richness. For insects, it has hardly ever been estimated, although this is required for the interpretation of species counts. 3. In the Swiss butterfly monitoring programme about 100 transect routes are surveyed seven times a year using a highly standardised protocol. In July 2003, control observers made two additional surveys on 38 transects. Data from these 38 quadrats were analysed to see whether currently available capture–recapture models can provide quadrat‐specific estimates of species richness, and to estimate species detectability in relation to transect, observer, survey, region, and abundance. 4. Species richness over the entire season cannot be estimated using current capture–recapture methods. The species pool was open, preventing use of closed population models, and detectability varied by species, preventing use of current open population models. Assuming a closed species pool during two mid‐season (July) surveys, a Jackknife capture–recapture method was used that accounts for heterogeneity to estimate mean detectability and species richness. 5. In every case, more species were present than were counted. Mean species detectability was 0.61 (SE 0.01) with significant differences between observers (range 0.37–0.83). Species‐specific detection at time t+ 1 was then modelled for those species seen at t for three mid‐season surveys. Detectability averaged 0.50 (range 0.17–0.81) for individual species and 0.65, 0.44, and 0.42 for surveys. Abundant species were detected more easily, although this relationship explained only 5% of variation in species detectability. 6. These are important, although not entirely unexpected, results for species richness estimation of short‐lived animals. Raw counts of species may be misleading species richness indicators unless many surveys are conducted. Monitoring programmes should be calibrated, i.e. the assumption of constant detectability over dimensions of interest needs to be tested. The development of capture–recapture or similar models that can cope with both open populations and heterogeneous species detectability to estimate species richness should be a research priority.  相似文献   

10.
The species accumulation curve, or collector’s curve, of a population gives the expected number of observed species or distinct classes as a function of sampling effort. Species accumulation curves allow researchers to assess and compare diversity across populations or to evaluate the benefits of additional sampling. Traditional applications have focused on ecological populations but emerging large-scale applications, for example in DNA sequencing, are orders of magnitude larger and present new challenges. We developed a method to estimate accumulation curves for predicting the complexity of DNA sequencing libraries. This method uses rational function approximations to a classical non-parametric empirical Bayes estimator due to Good and Toulmin [Biometrika, 1956, 43, 45–63]. Here we demonstrate how the same approach can be highly effective in other large-scale applications involving biological data sets. These include estimating microbial species richness, immune repertoire size, and k-mer diversity for genome assembly applications. We show how the method can be modified to address populations containing an effectively infinite number of species where saturation cannot practically be attained. We also introduce a flexible suite of tools implemented as an R package that make these methods broadly accessible.  相似文献   

11.
Conservation and management agencies require accurate and precise estimates of abundance when considering the status of a species and the need for directed actions. Due to the proliferation of remote sampling cameras, there has been an increase in capture–recapture studies that estimate the abundance of rare and/or elusive species using closed capture–recapture estimators (C–R). However, data from these studies often do not meet necessary statistical assumptions. Common attributes of these data are (1) infrequent detections, (2) a small number of individuals detected, (3) long survey durations, and (4) variability in detection among individuals. We believe there is a need for guidance when analyzing this type of sparse data. We highlight statistical limitations of closed C–R estimators when data are sparse and suggest an alternative approach over the conventional use of the Jackknife estimator. Our approach aims to maximize the probability individuals are detected at least once over the entire sampling period, thus making the modeling of variability in the detection process irrelevant, estimating abundance accurately and precisely. We use simulations to demonstrate when using the unconditional-likelihood M 0 (constant detection probability) closed C–R estimator with profile-likelihood confidence intervals provides reliable results even when detection varies by individual. If each individual in the population is detected on average of at least 2.5 times, abundance estimates are accurate and precise. When studies sample the same species at multiple areas or at the same area over time, we suggest sharing detection information across datasets to increase precision when estimating abundance. The approach suggested here should be useful for monitoring small populations of species that are difficult to detect.  相似文献   

12.
We compare species richness of bryophytes and vascular plants in Estonian moist forests and mires. The material was collected from two wetland nature reserves. Bryophyte and vascular plant species were recorded in 338 homogeneous stands of approximately 1 ha in nine forest and two mire types. Regional species pools for bryophytes and vascular plants were significantly correlated. The correlations between the species richnesses of bryophytes and vascular plants per stand were positive in all community types. The relative richnesses (local richness divided by the regional species pool size) were similar for bryophyte species and for vascular plant species. This shows that on larger scales, conservation of the communities rich in species of one taxonomic plant group, maintains also the species richness of the other. The minimum number of stands needed for the maintenance of the regional species pool of typical species for the every community type was calculated using the species richness accumulation curves. Less stands are needed to maintain the bryophyte species pools (300–5300 for bryophytes and 400–35 000 for vascular plants).  相似文献   

13.
In many animal populations, demographic parameters such as survival and recruitment vary markedly with age, as do parameters related to sampling, such as capture probability. Failing to account for such variation can result in biased estimates of population‐level rates. However, estimating age‐dependent survival rates can be challenging because ages of individuals are rarely known unless tagging is done at birth. For many species, it is possible to infer age based on size. In capture–recapture studies of such species, it is possible to use a growth model to infer the age at first capture of individuals. We show how to build estimates of age‐dependent survival into a capture–mark–recapture model based on data obtained in a capture–recapture study. We first show how estimates of age based on length increments closely match those based on definitive aging methods. In simulated analyses, we show that both individual ages and age‐dependent survival rates estimated from simulated data closely match true values. With our approach, we are able to estimate the age‐specific apparent survival rates of Murray and trout cod in the Murray River, Australia. Our model structure provides a flexible framework within which to investigate various aspects of how survival varies with age and will have extensions within a wide range of ecological studies of animals where age can be estimated based on size.  相似文献   

14.
The incorporation of suitable quantitative methods into ethnobotanical studies enhances the value of the research and the interpretation of the results. Prediction of sample species richness and the use of species accumulation functions have been addressed little in applied ethnobotany. In this paper, incidence-based species richness estimators, species accumulation curves and similarity measures are used to compare and predict species richness, evaluate sampling effort and compare the similarity of species inventories for ethnobotanical data sets derived from the trade in traditional medicine in Johannesburg and Mpumalanga, South Africa. EstimateS was used to compute estimators of species richness (e.g. Jackknife), rarefaction curves, species accumulation curves and complimentarity. Results showed that while the Michaelis–Menten Means estimator appeared to be the best estimator because the curve approached a horizontal asymptote, it was not able to accurately predict species richness for one of the data sets when two of its subsamples were individually tested. Instead, the first-order Jackknife estimator best approximated the known richness.  相似文献   

15.
A long-standing observation in community ecology is that the scaling of species richness, as exemplified by species-area curves, differs on local and regional scales. This decoupling of scales may be largely due to sampling processes (the increasing constraint imposed by sampling fewer individuals at fine scales), as distinct from ecological processes, such as environmental heterogeneity, that operate across scales. Removal of the sampling constraint from fine-scale richness estimates should yield species-area curves that behave like those of the regions in which they are embedded, but an effective method for this removal has not been available. We suggest an approach that incorporates the manner in which small areas accumulate species over time as a way to remove the signature of sampling processes from fine-scale species-area curves. We report for three species-rich grasslands from two continents how local plant species richness is distributed through time at multiple, nested spatial scales, and we ask whether sampling-corrected curves reflect the spatial scaling of richness of each larger floristic province. Our analysis suggests that fine-scale values of richness are highly constrained by sampling processes, but once these constraints are removed, the spatial scaling of species richness is consistent from the scale of individuals to that of an entire province.  相似文献   

16.
ABSTRACT Point counts are the most frequently used technique for sampling bird populations and communities, but have well‐known limitations such as inter‐ and intraobserver errors and limited availability of expert field observers. The use of acoustic recordings to survey birds offers solutions to these limitations. We designed a Soundscape Recording System (SRS) that combines a four‐channel, discrete microphone system with a quadraphonic playback system for surveying bird communities. We compared the effectiveness of SRS and point counts for estimating species abundance, richness, and composition of riparian breeding birds in California by comparing data collected simultaneously using both methods. We used the temporal‐removal method to estimate individual bird detection probabilities and species abundances using the program MARK. Akaike's Information Criterion provided strong evidence that detection probabilities differed between the two survey methods and among the 10 most common species. The probability of detecting birds was higher when listening to SRS recordings in the laboratory than during the field survey. Additionally, SRS data demonstrated a better fit to the temporal‐removal model assumptions and yielded more reliable estimates of detection probability and abundance than point‐count data. Our results demonstrate how the perceptual constraints of observers can affect temporal detection patterns during point counts and thus influence abundance estimates derived from time‐of‐detection approaches. We used a closed‐population capture–recapture approach to calculate jackknife estimates of species richness and average species detection probabilities for SRS and point counts using the program CAPTURE. SRS and point counts had similar species richness and detection probabilities. However, the methods differed in the composition of species detected based on Jaccard's similarity index. Most individuals (83%) detected during point counts vocalized at least once during the survey period and were available for detection using a purely acoustic technique, such as SRS. SRS provides an effective method for surveying bird communities, particularly when most species are detected by sound. SRS can eliminate or minimize observer biases, produce permanent records of surveys, and resolve problems associated with the limited availability of expert field observers.  相似文献   

17.
Aim  To consider the role of local colonization and extinction rates in explaining the generation and maintenance of species richness gradients at the regional scale.
Location  A Mediterranean biome (oak forests, deciduous forests, shrublands, pinewoods, firwoods, alpine heathlands, crops) in Catalonia, Spain.
Methods  We analysed the relative importance of direct and indirect effects of community size in explaining species richness gradients. Direct sampling effects of community size on species richness are predicted by Hubbell's neutral theory of biodiversity and biogeography. The greater the number of individuals in a locality, the greater the number of species expected by random direct sampling effects. Indirect effects are predicted by the abundance–extinction hypothesis, which states that in more productive sites increased population densities and reduced extinction rates may lead to high species richness. The study system was an altitudinal gradient of forest bird species richness.
Results  We found significant support for the existence of both direct and indirect effects of community size in species richness. Thus, both the neutral and the abundance–extinction hypotheses were supported for the altitudinal species richness gradient of forest birds in Catalonia. However, these mechanisms seem to drive variation in species richness only in low-productivity areas; in high-productivity areas, species richness was uncorrelated with community size and productivity measures.
Main conclusions  Our results support the existence of a geographical mosaic of community-based processes behind species richness gradients, with contrasting abundance–extinction dynamics and sampling effects in areas of low and high productivity.  相似文献   

18.
1 Species richness typically increases with the number of individuals sampled, although many ecological processes that influence species richness are also well known to depend on density of individuals. We separated the effects of density on species richness that are due to sampling, from those due to density-dependent ecological processes such as competition or predation, by manipulating the density of an entire community.
2 A seed bank from a community of desert annual plants that occur on semi-stabilized sand dunes in Israel was collected from the field and sown in an experimental garden at a range of densities from 1/16 to eight times the natural density. The species pool observed in the lowest density plots was used as the null community, which was repeatedly sampled to calculate the species richness (and other diversity indices) in higher density plots that would be expected from sampling considerations alone. The significance of deviations of observed diversity from this expected diversity was then evaluated.
3 Both observed and expected number of species increased substantially with the experimental increase in density. However, observed species richness, the Shannon–Wiener diversity index and Simpson's diversity index were often significantly lower than that expected based on sampling considerations. The magnitude of the deviation from expected increased significantly with increasing density for richness and the Shannon–Wiener index. This provides some of the first direct experimental evidence from diverse natural assemblages that increasing competition among all the individuals in a community can lead to competitive exclusion.  相似文献   

19.
Chao A  Lin CW 《Biometrics》2012,68(3):912-921
Summary A number of species richness estimators have been developed under the model that individuals (or sampling units) are sampled with replacement. However, if sampling is done without replacement so that no sampled unit can be repeatedly observed, then the traditional estimators for sampling with replacement tend to overestimate richness for relatively high-sampling fractions (ratio of sample size to the total number of sampling units) and do not converge to the true species richness when the sampling fraction approaches one. Based on abundance data or replicated incidence data, we propose a nonparametric lower bound for species richness in a single community and also a lower bound for the number of species shared by multiple communities. Our proposed lower bounds are derived under very general sampling models. They are universally valid for all types of species abundance distributions and species detection probabilities. For abundance data, individuals' detectabilities are allowed to be heterogeneous among species. For replicated incidence data, the selected sampling units (e.g., quadrats) need not be fully censused and species can be spatially aggregated. All bounds converge correctly to the true parameters when the sampling fraction approaches one. Real data sets are used for illustration. We also test the proposed bounds by using subsamples generated from large real surveys or censuses, and their performance is compared with that of some previous estimators.  相似文献   

20.
Ecology and biodiversity research are underpinned by species richness patterns and their environmental drivers. However, a key topic in this discussion is the accuracy of these patterns which are greatly dependent on species detection probabilities. Due to variations in detection of species, true ecological patterns may be distorted. This is particularly true for subtidal macro‐infaunal communities. We tested three hypothesized relationships between marine benthic macrofaunal diversity and depth using species richness per site estimated with a capture–recapture heterogeneity model that accounts for variable detection probabilities. These metrics were based on data from 42 replicated sites across the continental shelf of the Southern Benguela. Average detection probability decreased with greater depth but species richness increased along the same depth gradient. The conflation of these trends in observed diversity data resulted in a positively near‐linear depth–diversity relationship, while accounting for variable species detection revealed a much stronger relationship. Ignoring species detection in ecosystems with imperfect detection could therefore distort species richness patterns, which has implications for ecological theory, management and conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号