首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reproductive potentials of balsam fir and white spruce (co-dominants in mixedwood forests) and black spruce (dominant in coniferous forests) were studied to explain the location of the ecotone between the two forest types in the boreal zone of Quebec. Four sites were selected along a latitudinal gradient crossing the ecotone. Cone crop, number of seeds per cone, percentage filled seeds, and percentage germination were measured for each species. Balsam fir and white spruce cone crops were significantly lower in the coniferous than in the mixedwood forest, while black spruce had greater crop constancy and regularity between both forest types. Mast years were more frequent for black spruce than for balsam fir in both forest types (mast year data not available for white spruce). The number of seeds per cone was more related to cone size than to forest type for all species. Black spruce produced more filled seeds in the coniferous forest than balsam fir or white spruce. The sum of growing degree-days and the maximum temperature of the warmest month (both for the year prior to cone production) significantly affected balsam fir cone production. The climate-related northward decrease in reproductive potential of balsam fir and white spruce could partly explain the position of the northern limit of the mixedwood forest. This could change drastically, however, as the ongoing climate warming might cancel this competitive advantage of black spruce.  相似文献   

2.
The boreal ecocline (ca 49°N) between the southern mixedwood (dominated by balsam fir) and the northern coniferous bioclimatic domain (dominated by black spruce) may be explained by a northward decrease of balsam fir regeneration, explaining the gradual shift to black spruce dominance. 7,010 sample plots, with absence of major disturbances, were provided by the Quebec Ministry of Forest, Fauna, and Parks. The regeneration (sapling abundance) of balsam fir and black spruce were compared within and between the two bioclimatic domains, accounting for parental trees, main soil type (clay and till) and climate conditions, reflected by summer growing degree‐days above 5°C (GDD_5), total summer precipitation (May–August; PP_MA). Parental trees and soil type determined balsam fir and black spruce regeneration. Balsam fir and black spruce, respectively, showed higher regeneration in the mixedwood and the coniferous bioclimatic domains. Overall, higher regeneration was obtained on till for balsam fir, and on clay soils for black spruce. GDD_5 and PP_MA were beneficial for balsam fir regeneration on clay and till soils, respectively, while they were detrimental for black spruce regeneration. At a population level, balsam fir required at least 28% of parental tree basal area in the mixedwood, and 38% in the coniferous bioclimatic domains to maintain a regeneration at least equal to the mean regeneration of the whole study area. However, black spruce required 82% and 79% of parental trees basal area in the mixedwood and the coniferous domains, respectively. The northern limit of the mixedwood bioclimatic domain was attributed to a gradual decrease toward the north of balsam fir regeneration most likely due to cooler temperatures, shorter growing seasons, and decrease of the parental trees further north of this northern limit. However, balsam fir still persists above this northern limit, owing to a patchy occurrence of small parental trees populations, and good establishment substrates.  相似文献   

3.
Carbon pools in a boreal mixedwood logging chronosequence   总被引:2,自引:0,他引:2  
Mixedwood forests are an ecologically and economically important forest type in central Canada, but the ecology of these forests is not as well studied as that of single-species dominated stands in the boreal forest. Northern boreal mixedwood forests have only recently been harvested and the effects of harvesting on carbon content in these stands are unknown. We quantified the carbon content and aboveground net primary production (NPP) for four different-aged mixedwood boreal forest stands in northern Manitoba, Canada. The stands included 11-, 18-, and 30-year-old stands that originated from harvesting and a 65-year-old fire-originated stand that typifies the origin of all northern boreal mixed-wood forests that are coming under management. Trees included black spruce (Picea mariana (Mill.) B.S.P.), jack pine (Pinus banksiana Lamb.), balsam poplar (Populus balsamifera L.), and quaking aspen (Populus tremuloides Michx.). Overstory biomass was estimated using species-specific allometric models that generally explained greater than 95% of the observed variation in biomass. Carbon content of the overstory vegetation was greatest in the 65-year-old stand and was 74% larger than the 11-year-old stand and showed a positive relationship with stand age (F1, 2=122.62, P=0.0081 R2=0.99). The slope of mineral soil carbon did not differ significantly among stands (F1, 2=0.39, P=0.5956, R2=0.16). Coarse woody debris carbon content followed a U-shaped pattern among stands. Aboveground NPP differed by 24% between the youngest and oldest stand. Mean annual carbon accumulation and aboveground NPP rates of the mixedwood forests were on average two times greater than nearby relatively pure stands studied during the BOREAS (BOReal Ecosystem Atmospheric Study) project. The trends in the results, along with other field studies, suggest that harvesting does not significantly affect the total soil carbon content. The results of this study suggest that scientists should be cautious about extrapolating results from BOREAS stands to a broader region until more data on other forest types and regions are available.  相似文献   

4.
Associations among the few tree species in the North American boreal landscape are the result of complex interactions between climate, biota, and historical disturbances during the Holocene. The closed-crown boreal forest of eastern North America is subdivided into two ecological regions having distinct tree species associations; the balsam fir zone and the black spruce zone, south and north of 49°N, respectively. Subalpine old-growth stands dominated by trees species typical of the balsam fir forest flora (either balsam fir or white spruce) are found on high plateaus, some of which are isolated within the black spruce zone. Here we identified the ecological processes responsible for the distinct forest associations in the subalpine belt across the eastern boreal landscape. Extensive radiocarbon dating, species composition, and size structure analyses indicated contrasted origin and dynamics of the subalpine forests between the two ecological regions. In the black spruce zone, the subalpine belt is a mosaic of post-fire white spruce or balsam fir stands coexisting at similar elevation on the high plateaus. With increasing time without wildfire, the subalpine forests become structurally similar to the balsam fir forest of the fir zone. These results concur with the hypothesis that the subalpine forests of this area are protected remnants of an historical northern expansion of the fir zone. Its replacement by the fire-prone black spruce forest flora was caused by recurrent fires. In the subalpine belt of the fir zone, no fire was recorded for several millennia. Harsh climate at high altitude is the primary factor explaining white spruce dominance over balsam fir forming a distinct subalpine white spruce belt above the balsam fir dominated forest.  相似文献   

5.
Aim Our two main goals are first to evaluate the resilience of the boreal forest according to latitude across the closed‐crown forest zone using the post‐disturbance distribution and cover of lichen woodlands and closed‐crown forests as a metric, and second to identify the disturbance factors responsible for the regeneration and degradation of the closed‐crown forest according to latitude since the 1950s. Location The study area extends between 70°00′ and 72°00′ W and throughout the closed‐crown forest zone, from its southern limit near 47°30′ N to its northern limit at the contact with the lichen woodland zone at around 52°40′ N. Methods Recent (1972–2002) and old (1954–1956) aerial photos were used to map the distribution of lichen woodlands across the closed‐crown forest zone. Forest disturbances such as fire, spruce budworm (Choristoneura fumiferana (Clemens)) outbreak, and logging were recorded on each set of aerial photos. Each lichen woodland and stand disturbance was validated by air‐borne surveys and digitized using GIS software. Results Over the last 50 years, the area occupied by lichen woodlands has increased according to latitude; that is, 9% of the area that was occupied by closed‐crown forests has shifted to lichen woodlands. Although logging activities have been concentrated in the same areas during the last 50 years, the area covered by logging has increased significantly. Outbreaks by the spruce budworm occurred predominantly in the southern (47°30′ N to 48°30′ N) and central (48°53′ N to 50°42′ N) parts of the study area, where balsam fir stands are extensive. In the northern part of the study area (51°–52°40′ N), extensive fires affected the distribution and cover of closed‐crown forests and lichen woodlands. Main conclusions Over the last 50 years, the area occupied by closed‐crown forests has decreased dramatically, and the ecological conditions that allow closed‐crown forests to establish and develop are currently less prevalent. Fire is by far the main disturbance, reducing the ability of natural closed‐crown forests to self‐regenerate whatever the latitude. Given the current biogeographical shift from dense to open forests, the northern part of the closed‐crown forest zone is in a process of dramatic change towards the dominance of northern woodlands.  相似文献   

6.
Balsam fir (Abies balsamea) and black spruce (Picea mariana) forests are the main conifer forest types in the North American boreal zone. The coexistence of the two species as well as their respective canopy dominance in distinct stands raises questions about the long-term evolution from one forest type to the other in relation to environmental factors including climate and stand disturbance. We tested the hypothesis that repetitive fire events promote the succession of balsam fir forest to black spruce forest and vice versa. Postfire chronosequences of one black spruce (BSP) and one balsam fir (BFI) sites were reconstructed based on the botanical composition and 14C-dated soil macrocharcoals. The results support the hypothesis of a successional dynamics. The BSP site has been affected by fires for the last 7600 years, whereas the BFI site, after having been impacted by several fires during the first half of the Holocene, evolved in a fire-free environment for the last 4400 years. Periods of fire activity facilitated the dominance of black spruce forests. The cessation of fires around 4400 cal. years BP on BFI site marks the beginning of the transition from black spruce to balsam fir stands. This succession is a long process, due to the ability of black spruce to regenerate by layering in the absence of fire. The resulting balsam fir stands are ancient and precarious ecosystems, since fire generally leads to the return of black spruce. The increase in balsam fir to the detriment of black spruce in boreal forests is a response to a decrease in fire frequency.  相似文献   

7.
Mountain coniferous forests, refugia and butterflies   总被引:1,自引:0,他引:1  
Varga Z 《Molecular ecology》2008,17(9):2101-2103
The boreal coniferous forests form the most extended vegetation zone of the Northern Hemisphere. As opposed to North America, they are disconnected from the mountain coniferous forests in Europe, because of the dominant east-west direction of the mountain chains. Consequently, the mountain forests show some unique characteristic features of glacial survival and postglacial history, as well. The mountain coniferous forests have numerous common floral and faunal elements with the boreal zone. However, the few unique faunal elements of the European mountain coniferous forests can be used to unravel the peculiar patterns and processes of this biome. In this issue of Molecular Ecology, Thomas Schmitt and Karola Haubrich (2008) use the relatively common and taxonomically well-studied butterfly, the large ringlet (Erebia euryale) to identify the last glacial refugia and postglacial expansion routes.  相似文献   

8.
Biodiversity conservation of forest ecosystems strongly relies on effective dead wood management. However, the responses of saproxylic communities to variations in dead wood characteristics remains poorly documented, a lack of knowledge that may impede the development of efficient management strategies. We established the relationship between saproxylic beetles—at the species and community levels—and attributes of black spruce and balsam fir in old-growth boreal forests. The relationship was first evaluated for individual snag bole segments, and then for forest stands. A total of 168 bole sections were collected in summer 2006 along a compositional gradient ranging from black spruce-dominated stands to balsam fir-dominated ones, in a boreal forest dominated by >90-year-old stands. A total of 16,804 beetles belonging to 47 species emerged from bole segments, with 21% of the species being found exclusively in black spruce snags and 36% exclusively in balsam fir snags. Black spruce and balsam fir snags thus contributed differently to forest biodiversity by being inhabited by different saproxylic communities. Wood density was an important attribute in the host-use patterns for several species of saproxylic beetles, but no relationship was found between snag availability within stands and abundance of beetles strongly linked to either black spruce or balsam fir. Our study outlines the relative contribution of tree compositional diversity to saproxylic species, while highlighting the contribution of black spruce and balsam fir to animal diversity in old-growth boreal forests.  相似文献   

9.
A model simulating the regeneration, growth and death of trees and the consequent carbon and nitrogen dynamics of the forest ecosystem was applied to determine the effect of expected temperature rise on tree species composition and the accumulation of organic matter in the boreal forest ecosystem in Finland (between latitudes 60°–70° N). In the southern and middle boreal zones a temperature rise of 2–3° C (temperature for 2 x CO2) over a period of one hundred years increased the competitive capacity of Scots pine (Pinus sylvestris) and birch species (Betula pendula and B. pubescens), and slowed down the invasion by Norway spruce (Picea abies). In the northern boreal zone a corresponding rise in temperature promoted the invasion of sites by Norway spruce. The accumulation of organic matter was promoted only slightly compared to that taking place in the current climatic conditions.A further doubling of temperature (temperature for 4 x CO2) over an additional period of two hundred years led to the replacement of coniferous stands with deciduous onesin the southern and middle boreal zones. In the northern boreal zone an admixture of coniferous and deciduous species replaced pure coniferous stands with the latter taking over sites formerly classified as tundra woodland. In the southern and middle boreal zones the replacement of coniferous species induced a substantial decrease in the amount of organic matter; this returned to its former level following the establishment of deciduous species. In the northern boreal zone there was no major change in the amount of organic matter such as occurred in the case of the tundra woodland where the amount of organic matter accumulated was nearly as high as in the northern boreal zone.  相似文献   

10.
Lowell  Kim 《Plant Ecology》1999,143(1):99-106
The possibility that forest characteristics on one side of a stand boundary will be related to the characteristics of the forest type on the other side of the boundary was examined in this study for the boreal forest in Quebec, Canada. It was found that alone, due to uncertainty in the photo-interpretation process, forest density and height – as identified by photo-interpreters – explained only about 10% of the variability inherent in total forest volume, balsam fir volume, or percentage balsam fir volume. The addition of boundary-related variables improved this to about 15% of variability explained. This led to the conclusion that the volume at any given location in the forest is related to the distance of the location from its stand boundary, as well as the characteristics of the forest type on the other side of the boundary. However, it was concluded that the relatively small improvement in R2 does not justify using boundary-related information for additional forest stratification in the planning of (for example) forest inventories. Nonetheless, this work has implications for all ecosystem sampling that is based on maps derived from manual interpretation of natural phenomena.  相似文献   

11.
The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China.  相似文献   

12.
Effects of habitat loss and fragmentation on the behavior of individual organisms may have direct consequences on population viability in altered forest ecosystems. The American marten (Martes americana) is a forest specialist considered as one of the most sensitive species to human-induced disturbances. As some studies have shown that martens cannot tolerate >30–40% clear-cuts within their home range, we investigated marten space use (home range size and overlap) and habitat selection in landscapes fragmented by 2 different patterns of timber harvesting in the black spruce boreal forest: dispersed-cut landscapes (10–80 ha cut-blocks) and clustered-cut landscapes (50–200 ha cut-blocks). We installed radio-collars on female martens and determined 20 winter home ranges (100% minimum convex polygons and 60–90% kernels) in dispersed-cut (n = 8) and clustered-cut (n = 12) landscapes. Home range size was not related to the proportion of clear-cuts (i.e., habitat loss), but rather to the proportion of mixedwood stands 70–120 years old. However, female body condition was correlated to habitat condition inside their home ranges (i.e., amount of residual forest and recent clear-cuts). At the home range scale, we determined that mixedwood forests were also among the most used forest stands and the least used were recent clear-cuts and forested bogs, using resource selection functions. At the landscape scale, home ranges included more mixedwood forests than random polygons and marten high activity zones were composed of more residual forest and less human-induced disturbances (clear-cuts, edges, and roads). These results suggest that mixedwood forests, which occupy approximately 10% of the study area, play a critical role for martens in this conifer-dominated boreal landscape. We recommend permanent retention or special management considerations for these isolated stands, as harvesting mixedwood often leads to forest composition conversion that would reduce the availability of this highly used habitat. © The Wildlife Society, 2013  相似文献   

13.
Wave-like patterns of mortality and regeneration of balsam fir (Abies balsamea {L.} Mill.) and Fraser fir (A. fraseri {Pursh.} Poir.) forests at high elevations in the Appalachian Mountains offer a unique opportunity to study the effects of stand development on nitrogen cycling. We sampled two fir waves, one with Fraser fir on Mt. LeConte in the Great Smoky Mountains National Park, and one with balsam fir on Whiteface Mountain in New York. Net nitrogen mineralization for 3 summer months at Mt. LeConte was high in the dead fir zone (47 kg-N/ha), lower in the regeneration and juvenile zones (24 and 21 kg-N/ha), and highest in the mature zone (61 kg-N/ha). This sampling period probably accounted for about 60% of the annual total. The pattern was similar in the balsam fir wave on Whiteface Mountain, with N mineralization rates of 39 and 33 kg-N/ha over 2 months for the regenerating and juvenile zones, and 43 and 54 kg-N/ha for the mature and dead zones. Throughfall nitrogen followed a fairly similar pattern, with rates ranging from 4.5 to 10 kg-N/ha for 2 or 3 months across all zones at both sites. Tension-free lysimeters indicated very little leaching of nitrogen below 30 cm depth (the maximum was 2.6 kg-N/ha), but these estimates may be low. We conclude that nitrogen mineralization is high at all stages of stand development, perhaps exceeding the uptake capacity of the trees. Rates of nitrogen leaching may be high in these ecosystems and should receive further attention. Request for offprints  相似文献   

14.
Premise of the study: In ecosystems where seed production is low and masting years are sporadic, or with species that have short-lived seeds, regeneration is assured by seedling banks rather than seed banks. Seedling establishment and survival play a critical role in determining the composition of these plant communities by supplying new individuals for their maintenance. Seedling emergence and mortality were investigated to test the hypothesis that recruitment into the seedling bank is periodic. • Materials and methods: Seed production and seedling emergence and survival was monitored during 1994-2007 in balsam fir (Abies balsamea) and white spruce (Picea glauca) in four pristine stands of the boreal forest of Quebec, Canada. Measurements were collected twice per month by sampling one permanent plot of 20 × 20 m per stand. • Key results: Seed-rain abundance reached 9 × 103 seeds m−2 year−1, and was characterized by synchronous sequences of low and high seed production. New seedlings appeared only during the year following a seed production of at least 1 × 103 and 1.5 × 102 seeds m−2 year−1 for balsam fir and white spruce, respectively. Seedlings emerged in July and survived 34-52 d on average, with balsam fir showing a longer lifespan and lower mortality, although 85–99% of seedlings died before completing one year of life. • Conclusions: The emergence of young seedlings was coupled with massive seed rains, which allowed synchronous replenishment of the seedling banks among stands and species, and generated different cohorts, yielding a discontinuous age structure.  相似文献   

15.
Mast seeding is considered a reproductive trait resulting from several potential evolutionary forces. Although the mechanisms driving reproduction have been thoroughly investigated and discussed, their relative importance and possible coexistence remain an open question. Seed rain abundance and viability of balsam fir Abies balsamea, white spruce Picea glauca, and white birch Betula papyrifera were monitored during 1994–2007 along a chronosequence of developmental stages at different densities represented by four stands in the boreal forest of Quebec, Canada. The aim of the study was to verify whether seeding temporal dynamics and abundance were affected by stand density, and to test the causal relationships between the hypotheses of pollination efficiency and predator satiation. Seed rain abundance varied substantially among years and species, with the highest values being observed in 1994 and 1996, and attaining up to 28.2 × 103 seeds m?2 year?1. However, the annual dynamics of seed production was similar in the three sites with the higher densities. The greater proportions of germinating and dead seeds were observed in white birch, while balsam fir showed an average of 11.2% of damaged seeds, which were infected by larvae. The conifer species had the higher proportions of empty seeds. The causal models tested on balsam fir demonstrated that seed rain abundance influenced the amount of both viable and larval‐infected seeds, although no causal relationship existed between these last two variables. The comparable and synchronous seed rain abundances observed among sites demonstrated that stand density can significantly affect the reproduction of trees, probably by limiting the access to resources, but not the annual dynamics of seeding. Pollination efficiency and predator satiation are important forces in the reproductive effort of trees and could be not mutually exclusive because both these mechanisms of natural selection synergistically coexist in driving the seeding dynamics of balsam fir.  相似文献   

16.
Aim The spruce–moss forest is the main forest ecosystem of the North American boreal forest. We used stand structure and fire data to examine the long‐term development and growth of the spruce–moss ecosystem. We evaluate the stability of the forest with time and the conditions needed for the continuing regeneration, growth and re‐establishment of black spruce (Picea mariana) trees. Location The study area occurs in Québec, Canada, and extends from 70°00′ to 72°00′ W and 47°30′ to 56°00′ N. Methods A spatial inventory of spruce–moss forest stands was performed along 34 transects. Nineteen spruce–moss forests were selected. A 500 m2 quadrat at each site was used for radiocarbon and tree‐ring dating of time since last fire (TSLF). Size structure and tree regeneration in each stand were described based on diameter distribution of the dominant and co‐dominant tree species [black spruce and balsam fir (Abies balsamea)]. Results The TSLF of the studied forests ranges from 118 to 4870 cal. yr bp . Forests < 325 cal. yr bp are dominated by trees of the first post‐fire cohort and are not yet at equilibrium, whereas older forests show a reverse‐J diameter distribution typical of mature, old‐growth stands. The younger forests display faster height and radial growth‐rate patterns than the older forests, due to factors associated with long‐term forest development. Each of the stands examined established after severe fires that consumed all the soil organic material. Main conclusions Spruce–moss forests are able to self‐regenerate after fires that consume the organic layer, thus allowing seed regeneration at the soil surface. In the absence of fire the forests can remain in an equilibrium state. Once the forests mature, tree productivity eventually levels off and becomes stable. Further proof of the enduring stability of these forests, in between fire periods, lies in the ages of the stands. Stands with a TSLF of 325–4870 cal. yr bp all exhibited the same stand structure, tree growth rates and species characteristics. In the absence of fire, the spruce–moss forests are able to maintain themselves for thousands of years with no apparent degradation or change in forest type.  相似文献   

17.
Abstract: To provide habitat for late-successional wildlife species, new ecosystem-based forest management practices aim to retain elements of complex stand structure, including live residual trees, dead wood legacies, and advanced regeneration, within managed stands. Predicting the effectiveness of these strategies is a challenge for species whose habitat relationships may involve multiple factors and can vary among sites. For 2 years, we live-trapped a common, late-successional microtine rodent, the southern red-backed vole (Myodes [formerly Clethrionomys] gapperi), in 40 1.4-ha boreal mixedwood sites in Ontario, Canada. Using a neighborhood-scale modeling approach, we related red-backed vole capture locations to spatially referenced measures of overstory trees, shrubs and saplings, downed woody debris (DWD), and forest floor substrate. We further assessed how associations with these features varied with availability of the features within a site and as a function of stand management history. In spring, red-backed voles were associated with trap stations that had, within a 26-m radius, a dense shrub layer, abundant late-decay DWD, coniferous understory and litter, and possibly, understory vegetation associated with moist conditions. Positive associations with shrub cover, late-decay DWD, and a moisture-associated understory were most apparent in sites in which these elements were scarce (e.g., <1,500 stems/ha of hardwood saplings and short shrubs; <0.8% projected ground cover of late-decay DWD). The importance of late-decay DWD; shade-tolerant, coniferous understory composition; and substrate varied depending on a site's management history, with each feature having a strong positive effect in 47–64-year-old stands that were harvested using horse skidding and weaker effects in both 31–40-year-old stands that were clearcut with mechanical skidding and >80-year-old fire-origin stands. Our models of fine-scale habitat relationships for red-backed voles may be useful in establishing structural retention guidelines suitable for wildlife species dependent on late-successional habitat structure. In this regard, retaining abundant DWD and 10–30% live trees at harvest may be effective management strategies for providing favorable habitat conditions at localized scales.  相似文献   

18.
Jian Ni 《Folia Geobotanica》2001,36(2):113-129
A biome classification for China was established based on plant functional types (PFTs) using the BIOME3 model to include 16 biomes. In the eastern part of China, the PFTs of trees determine mostly the physiognomy of landscape. Biomes range from boreal deciduous coniferous forest/woodland, boreal mixed forest/woodland, temperate mixed forest, temperate broad-leaved deciduous forest, warm-temperate broad-leaved evergreen/mixed forest, warm-temperate/cool-temperate evergreen coniferous forest, xeric woodland/scrub, to tropical seasonal and rain forest, and tropical deciduous forest from north to south. In the northern and western part of China, grass is the dominant PFT. From northeast to west and southwest the biomes range from moist savannas, tall grassland, short grassland, dry savannas, arid shrubland/steppe, desert, to alpine tundra/ice/polar desert. Comparisons between the classification introduced here and the four classifications which were established over the past two decades, i.e. the vegetation classification, the vegetation division, the physical ecoregion, and the initial biome classification have showed that the different aims of biome classifications have resulted in different biome schemes each with its own unique characteristics and disadvantages for global change study. The new biome classification relies not only on climatic variables, but also on soil factor, vegetation functional variables, ecophysiological parameters and competition among the PFTs. It is a comprehensive classification that using multivariables better expresses the vegetation distribution and can be compared with world biome classifications. It can be easily used in the response study of Chinese biomes to global change, regionally and globally.  相似文献   

19.
Abstract. In order to describe and compare the post‐fire succession patterns of the two ecological regions (mixed‐wood and coniferous ecoregions) of northwestern Quebec, 260 forest stands were sampled with the point‐centred plot method. The mixed‐wood ecological region belongs to the Abies balsamea‐Betula papyrifera bioclimatic domain whereas the coniferous ecological region belongs to the Picea mariana‐moss bioclimatic domain. In each plot, tree composition was described, surficial deposits and drainage were recorded, and fire history was reconstructed using standard dendro‐ecological methods. Ordination techniques (Correspondence Analysis and Canonical Correspondence Analysis) were used to describe the successional patterns of forest vegetation and to correlate them with the explanatory variables. The results showed the importance of surficial deposits, the time since fire and the ecoregion in explaining the variation of stand composition. Abies balsamea tends to increase in importance with an increase in time since fire, and this trend is more pronounced in the mixed‐wood region. Even when controlling both for surficial deposits and time since fire, differences in successional trends were observed between the two ecoregions. As all the species are present in both ecoregions and as they are all observed further north, our results suggest that both the landscape configuration and fire regime parameters such as fire size and fire intensity are important factors involved in these differences.  相似文献   

20.
The ecology and management of boreal forest ecosystems are drawing greater attention worldwide as their importance is being increasingly recognized for carbon sequestration or for harbouring the world's largest remaining intact forests. Selection cuts have been introduced as a more socially acceptable silvicultural method to improve the maintenance of habitat structure and functions as they mimic aspects of boreal forest succession dynamics. Many studies have shown that selection cutting helps maintaining arthropod communities in mature forests, but few have examined the increased risks of damage by bark‐ and wood‐boring insects in boreal forests of eastern North America. We used multidirectional flight‐interception traps to quantify the response of these beetles to 25 and 40% selection cutting in a balsam fir–white birch forest of Québec, Canada. The abundance and species number of both cerambycid and scolytid beetles were 5–6 times larger in selectively cut stands than in controls the year following treatments. Analyses revealed that bark‐ and wood‐boring beetles’ response was mostly associated with increased canopy openness in selectively cut stands (and sun‐exposed locations within them) and residual tree injuries caused by harvesting operations. These conditions attracted beetles such as Trypodendron lineatum (Scolytinae) and Rhagium inquisitor (Cerambycidae), two species known for their ability to attack weakened, dying and dead hosts. Most species were more abundant in selection cuts, except for Evodinus m. monticola (Cerambycidae) whose abundance was strongly reduced after treatment. Some beetles can have detrimental effects on residual trees and thus could reduce timber value, but most species found in treated stands do not represent a high risk for healthy trees. Thus, selection cuts do not seem favourable to the establishment of tree‐killing beetles. However, as they were found more active/abundant after selection cutting, it would be wise to further study their population dynamics over mid‐ and long‐term periods, along with the ecological and economic implications associated with this silvicultural treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号