首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper reports the results of leaching experiments conducted with and without Thiobacillus ferrooxidans at the same conditions in solution. The extent of leaching of ZnS with bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, while no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T. ferrooxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions.  相似文献   

2.
The role of Thiobacillus ferrooxidans in bacterial leaching of mineral sulfides is controversial. Much of the controversy is due to the fact that the solution conditions, especially the concentrations of ferric and ferrous ions, change during experiments. The role of the bacteria would be more easily discernible if the concentrations of ferric and ferrous ions were maintained at set values throughout the experimental period. In this paper we report results obtained by using the constant redox potential apparatus described previously (P. I. Harvey and F. K. Crundwell, Appl. Environ. Microbiol. 63:2586–2592, 1997). This apparatus is designed to control the redox potential in the leaching compartment of an electrolytic cell by reduction or oxidation of dissolved iron. By controlling the redox potential the apparatus maintains the concentrations of ferrous and ferric ions at their initial values. Experiments were conducted in the presence of T. ferrooxidans and under sterile conditions. Analysis of the conversion of zinc sulfide in the absence of the bacteria and analysis of the conversion of zinc sulfate in the presence of the bacteria produced the same results. This indicates that the only role of the bacteria under the conditions used is regeneration of ferric ions in solution. In this work we found no evidence that there is a direct mechanism for bacterial leaching.  相似文献   

3.
The existence of a hydrogen sulfide:ferric ion oxidoreductase, which catalyzes the oxidation of elemental sulfur with ferric ions as an electron acceptor to produce ferrous and sulfite ions, was assayed with washed intact cells and cell extracts of various kinds of iron-oxidizing bacteria, such as Thiobacillus ferrooxidans 13598, 13661, 14119, 19859, 21834, 23270, and 33020 from the American Type Culture Collection, Leptospirillum ferrooxidans 2705 and 2391 from the Deutsche Sammlung von Mikroorganismen, L. ferrooxidans BKM-6-1339 and P3A, and moderately thermophilic iron-oxidizing bacterial strains BC1, TH3, and Alv. It was found that hydrogen sulfide:ferric ion oxidoreductase activity comparable to that of T. ferrooxidans AP19-3 was present in all iron-oxidizing bacteria tested, suggesting a wide distribution of this enzyme in iron-oxidizing bacteria.  相似文献   

4.
In spite of the environmental and commercial interests in the bacterial leaching of pyrite, two central questions have not been answered after more than 35 years of research: does Thiobacillus ferrooxidans enhance the rate of leaching above that achieved by ferric sulfate solutions under the same conditions, and if so, how do the bacteria affect such an enhancement? Experimental conditions of previous studies were such that the concentrations of ferric and ferrous ions changed substantially throughout the course of the experiments. This has made it difficult to interpret the data obtained from these previous works. The aim of this work was to answer these two questions by employing an experimental apparatus designed to maintain the concentrations in solution at a constant value. This was achieved by using the constant redox potential apparatus described previously (P. I. Harvey, and F. K. Crundwell, Appl. Environ. Microbiol. 63:2586–2592, 1997; T. A. Fowler, and F. K. Crundwell, Appl. Environ. Microbiol. 64:3570–3575, 1998). Experiments were conducted in both the presence and absence of T. ferrooxidans, maintaining the same conditions in solution. The rate of dissolution of pyrite with bacteria was higher than that without bacteria at the same concentrations of ferrous and ferric ions in solution. Analysis of the dependence of the rate of leaching on the concentration of ferric ions and on the pH, together with results obtained from electrochemical measurements, provided clear evidence that the higher rate of leaching with bacteria is due to the bacteria increasing the pH at the surface of the pyrite.  相似文献   

5.
The oxidation of either ferrous iron or sulfur by Thiobacillus ferrooxidans was selectively inhibited or controlled by various anions, inhibitors, and osmotic pressure. Iron oxidation was more sensitive than sulfur oxidation to inhibition by chloride, phosphate, and nitrate at low concentrations (below 0.1 M) and also to inhibition by azide and cyanide. Sulfur oxidation was more sensitive than iron oxidation to the inhibitory effect of high osmotic pressure. These differences were evident not only between iron oxidation by iron-grown cells and sulfur oxidation by sulfur-grown cells but also between the iron and sulfur oxidation activities of the same iron-grown cells. Growth experiments with ferrous iron or sulfur as an oxidizable substrate confirmed the higher sensitivity of iron oxidation to inhibition by phosphate, chloride, azide, and cyanide. Sulfur oxidation was actually stimulated by 50 mM phosphate or chloride. Leaching of Fe and Zn from pyrite (FeS2) and sphalerite (ZnS) by T. ferrooxidans was differentially affected by phosphate and chloride, which inhibited the solubilization of Fe without significantly affecting the solubilization of Zn.  相似文献   

6.
The purpose of this investigation was to determine the effect of Thiobacillus acidophilus on the leaching of a low-grade Cu-Ni sulfide ore by Thiobacillus ferrooxidans. A sample of low-grade Cu-Ni sulfide ore containing 0.36% Cu, 0.48% Ni, and 7.87% Fe was pulverized and initially leached for a 21-day period using two different pure cultures of T. ferrooxidans, an environmental strain (F2) and a strain from the American Type Culture Collection (ATCC 23270). Samples of the ore slurries were drawn and the pH was monitored over the course of the leaching period. The concentrations of Cu and Ni leached by each strain were determined and compared. No significant differences were observed in the concentrations of Cu and Ni leached by the two pure cultures of T. ferrooxidans. Subsequently, the ore was leached with mixed cultures of T. ferrooxidans and T. acidophilus to determine the effect of the latter on the concentrations of Cu and Ni leached from the ore. The environmental strain F2 of T. ferrooxidans was used in combination with both a type strain (ATCC 27807) and an environmental strain (64) of T. acidophilus. After 21 days, the mixed cultures of T. ferrooxidans and T. acidophilus leached significantly greater amounts of copper than the pure strain alone, but no such difference was observed for the leaching of nickel.  相似文献   

7.
In order to better understand the bioleaching mechanism, expression of genes involved in energy conservation and community structure of free and attached acidophilic bacteria in chalcopyrite bioleaching were investigated. Using quantitative real-time PCR, we studied the expression of genes involved in energy conservation in free and attached Acidithiobacillus ferrooxidans during bioleaching of chalcopyrite. Sulfur oxidation genes of attached A. ferrooxidans were up-regulated while ferrous iron oxidation genes were down-regulated compared with free A. ferrooxidans in the solution. The up-regulation may be induced by elemental sulfur on the mineral surface. This conclusion was supported by the results of HPLC analysis. Sulfur-oxidizing Acidithiobacillus thiooxidans and ferrous-oxidizing Leptospirillum ferrooxidans were the members of the mixed culture in chalcopyrite bioleaching. Study of the community structure of free and attached bacteria showed that A. thiooxidans dominated the attached bacteria while L. ferrooxidans dominated the free bacteria. With respect to available energy sources during bioleaching of chalcopyrite, sulfur-oxidizers tend to be on the mineral surfaces whereas ferrous iron-oxidizers tend to be suspended in the aqueous phase. Taken together, these results indicate that the main role of attached acidophilic bacteria was to oxidize elemental sulfur and dissolution of chalcopyrite involved chiefly an indirect bioleaching mechanism.  相似文献   

8.
9.
Acidophilic microorganisms involved in uranium bioleaching are usually suppressed by dissolved fluoride ions, eventually leading to reduced leaching efficiency. However, little is known about the regulation mechanisms of microbial resistance to fluoride. In this study, the resistance of Acidithiobacillus ferrooxidans ATCC 23270 to fluoride was investigated by detecting bacterial growth fluctuations and ferrous or sulfur oxidation. To explore the regulation mechanism, a whole genome microarray was used to profile the genome-wide expression. The fluoride tolerance of A. ferrooxidans cultured in the presence of FeSO4 was better than that cultured with the S0 substrate. The differentially expressed gene categories closely related to fluoride tolerance included those involved in energy metabolism, cellular processes, protein synthesis, transport, the cell envelope, and binding proteins. This study highlights that the cellular ferrous oxidation ability was enhanced at the lower fluoride concentrations. An overview of the cellular regulation mechanisms of extremophiles to fluoride resistance is discussed.  相似文献   

10.
Thiobacillus ferroxidans is an obligate acidophile that respires aerobically on pyrite, elemental sulfur, or soluble ferrous ions. The electrophoretic mobility of the bacterium was determined by laser Doppler velocimetry under physiological conditions. When grown on pyrite or ferrous ions, washed cells were negatively charged at pH 2.0. The density of the negative charge depended on whether the conjugate base was sulfate, perchlorate, chloride, or nitrate. The addition of ferric ions shifted the net charge on the surface asymptotically to a positive value. When grown on elemental sulfur, washed cells were close to their isoelectric point at pH 2.0. Both pyrite and colloidal sulfur were negatively charged under the same conditions. The electrical double layer around the bacterial cells under physiological conditions exerted minimal electrostatic repulsion in possible interactions between the cell and either of its charged insoluble substrates. When Thiobacillus ferrooxidans was mixed with either pyrite or colloidal sulfur at pH 2.0, the mobility spectra of the free components disappeared with time to be replaced with a new colloidal particle whose electrophoretic properties were intermediate between those of the starting components. This new particle had the charge and size properties anticipated for a complex between the bacterium and its insoluble substrates. The utility of such measurements for the study of the interactions of chemolithotrophic bacteria with their insoluble substrates is discussed.  相似文献   

11.
《Process Biochemistry》2007,42(9):1265-1271
The aim of this paper is to determine the efficiency of bioleaching of arsenic in realgar, a Chinese mineral drug, using pure cultures of Acidithiobacillus ferrooxidans or Acidithiobacillus thiooxidans and a mixed culture of A. ferrooxidans and A. thiooxidans. The experiments were carried out in shaker flasks, at 150 rpm, 30 °C at a culture pH of 1.80. To investigate the mechanism of the bioleaching in realgar, media with and without ferrous iron were chosen for the experiments. The results showed that the leaching rate of arsenic in realgar after 20 days was higher (43%) in A. ferrooxidans cultures with ferrous iron compared to cultures without ferrous iron (10%), and the leaching rate of A. thiooxidans cultures only increased from 21% to 23% in the presence of ferrous iron. The leaching rate of arsenic in mixed culture with ferrous iron was greatly enhanced from 16% to 56%, indicating that bioleaching in mixed culture is preferable for the dissolution of realgar.  相似文献   

12.
Growth of Thiobacillus ferrooxidans on Elemental Sulfur   总被引:5,自引:4,他引:1       下载免费PDF全文
Growth kinetics of Thiobacillus ferrooxidans in batch cultures, containing prills of elementary sulfur as the sole energy source, were studied by measuring the incorporation of radioactive phosphorus in free and adsorbed bacteria. The data obtained indicate an initial exponential growth of the attached bacteria until saturation of the susceptible surface was reached, followed by a linear release of free bacteria due to successive replication of a constant number of adsorbed bacteria. These adsorbed bacteria could continue replication provided the colonized prills were transferred to fresh medium each time the stationary phase was reached. The bacteria released from the prills were unable to multiply, and in the medium employed they lost viability with a half-life of 3.5 days. The spreading of the progeny on the surface was followed by staining the bacteria on the prills with crystal violet; this spreading was not uniform but seemed to proceed through distortions present in the surface. The specific growth rate of T. ferrooxidans ATCC 19859 was about 0.5 day−1, both before and after saturation of the sulfur surface. The growth of adsorbed and free bacteria in medium containing both ferrous iron and elementary sulfur indicated that T. ferrooxidans can simultaneously utilize both energy sources.  相似文献   

13.
The oxidation of ferrous iron and elemental sulfur by Thiobacillus ferrooxidans that was absorbed and unabsorbed onto the surface of sulfur prills was studied. Unadsorbed sulfur-grown cells oxidized ferrous iron at a rate that was 3 to 7 times slower than that of ferrous iron-grown cells, but sulfur-grown cells were able to reach the oxidation rate of the ferrous iron-adapted cells after only 1.5 generations in a medium containing ferrous iron. Bacteria that were adsorbed to sulfur prills oxidized ferrous iron at a rate similar to that of unadsorbed sulfur-grown bacteria. They also showed the enhancement of ferrous iron oxidation activity in the presence of ferrous iron, even though sulfur continued to be available to the bacteria in this case. An increase in the level of rusticyanin together with the enhancement of the ferrous iron oxidation rate were observed in both sulfur-adsorbed and unadsorbed cells. On the other hand, sulfur oxidation by the adsorbed bacteria was not affected by the presence of ferrous iron in the medium. When bacteria that were adsorbed to sulfur prills were grown at a higher pH (ca. 2.5) in the presence of ferrous iron, they rapidly lost both ferrous iron and sulfur oxidation capacities and became inactive, apparently because of the deposition of a jarosite-like precipitate onto the surface to which they were attached.  相似文献   

14.
Summary Bioleaching of manganese (IV) oxide with Thiobacillus thiooxidans has been studied in media with and without sulfur, ferrous sulfide and ferrous sulfate. The knowledge of the role played by the bacteria and the reducing substances suggest that the leaching of manganese (IV) ores through the use of thiobacteria is only justified when suitable amounts of sulfur or metal sulfides are present.  相似文献   

15.
When ferrous iron and sulfur were supplied, cells of T. ferrooxidans in a well-aerated medium started growth by oxidizing ferrous iron. After ferrous iron depletion a lagphase followed before sulfur oxidation started. During sulfur oxidation at pH-values below 1.3 (±0,2) the ferrous iron concentration increased again, although the oxygen saturation of the medium amounted to more than 95%. The number of viable cells did not increase. Thus resting cells of T. ferrooxidans, which are oxidizing sulfur to maintain their proton balance, reduce ferric to ferrous iron. The ferrous iron-oxidizing system seemed to be inhibited at pH-values below 1.3. At a pH-value of 1.8 the ferrous iron was reoxidized at once. A scheme for the linkage of iron- and sulfur metabolism is discussed.  相似文献   

16.
Acidophilic microorganisms such as Acidithiobacillus ferrooxidans have the capability to carry out processes of bioleaching, biosorption and bioprecipitation of heavy metal ions, which have important environmental applications. At. ferrooxidans derives the energy for their metabolism from ferrous iron oxidation, process, which can be affected by the presence of heavy metals in the medium. Moreover, organic matter produces an inhibitory effect over the ferrous iron oxidation of At. ferrooxidans. In this work, heterotrophic bacterium Acidiphilium sp. was added when the medium is supplemented with organic matter to reduce this negative effect. The purpose of this work is the kinetic study of ferrous sulphate oxidation by At. ferrooxidans in the presence of different concentrations of several heavy metal ions (Cr(III), Cu(II), Cd(II), Zn(II) and Ni(II)) and compare this kinetic behaviour with a mixed culture with Acidiphilium sp.The obtained results show a non-competitive inhibition of heavy metals over bacterial oxidation of ferrous sulphate. In accordance with this kind of inhibition, a kinetic equation has been proposed to predict the behaviour of At. ferrooxidans in the presence of heavy metals in the range of concentrations studied.  相似文献   

17.
Microbiological leaching of synthetic cobaltous sulfide (CoS) was investigated with a pure strain of Thiobacillus ferroxidans. The strain could not grow on CoS-salts medium in the absence of ferrous ions (Fe2+). However, in CoS-salts medium supplemented with 18 mM Fe2+, the strain utilized both Fe2+ and the sulfur moiety in CoS for growth, resulting in an enhanced solubilization of Co2+. Cell growth on sulfur-salts medium was strongly inhibited by Co2+, and this inhibition was completely protected by Fe2+. Cobalt-resistant cells, obtained by subculturing the strain in medium supplemented with both Fe2+ and Co2+, brought a marked decrease in the amount of Fe2+ absolutely required for cell growth on CoS-salts medium. As one mechanism of protection by Fe2+, it is proposed that the strain utilizes one part of Fe2+ externally added to CoS-salts medium to synthesize the cobalt-resistant system. Since a similar protective effect by Fe2+ was also observed for cell inhibition by stannous, nickel, zinc, silver, and mercuric ions, a new role of Fe2+ in bacterial leaching in T. ferrooxidans is proposed.  相似文献   

18.
Bioleaching of zinc sulfide concentrate by Thiobacillus ferrooxidans   总被引:2,自引:0,他引:2  
The kinetics of the bioleaching of ZnS concentrate by Thiobacillus ferrooxidans was studied in a well-mixed batch reactor. Experimental studies were made at 30 degrees C and pH 2.2 on adsorption of the bacteria to the mineral, ferric iron leaching, and bacterial leaching. The adsorption rate of the bacteria was fairly rapid in comparison with the bioleaching rate, indicating that the bacterial adsorption is at equilibrium during the leaching process. The adsorption equilibrium data were correlated by the Langmuir isotherm, which is a useful means for predicting the number of bacteria adsorbed on the mineral surface. The rate of chemical leaching varied with the concentration of ferric iron, and the first-order reaction rate constant was determined. Bioleaching in an iron-containing medium was found to take place by both direct bacterial attack on the sulfide mineral and indirect attack via ferric iron. In this case, the ferric iron was formed from the reaction product (ferrous iron) through the biological oxidation reaction. To develop rate expressions for the kinetics of bacterial growth and zinc leaching, the two bacterial actions were considered. The key parameters appearing in the rate equations, the growth yield and specific growth rate of adsorbed bacteria, were evaluated by curve fitting using the experimental data. This kinetic model allowed us to predict the liquid-phase concentrations of the leached zinc and free cells during the batch bioleaching process.  相似文献   

19.
Summary The leaching activity of five batches of Thiobacillus ferrooxidans, strain F26-77, cultivated under various conditions, towards elemental sulphur, ferrous ions, pyrite, covellite, chalcopyrite and sphalerite was studied. The activities of sulphite oxidase, thiosulphate oxidase and rhodanese were determined in crude, cell-free bacterial extracts. The effectiveness of leaching was directly correlated with the enzymic activity of the cultures. The results suggest that the activities of the enzymes metabolizing sulphur and its inorganic compounds in Thiobacillus ferrooxidans, or bacterial leaching activity on sulphur and sulphides, rather than the rate of oxidation of ferrous ions, should be taken as the criterion of usefulness for the leaching of sulphide minerals.  相似文献   

20.
The concentrations of ferrous and ferric ions change dramatically during the course of the batch experiments usually performed to study the kinetics of the bacterial oxidation of ferrous ions and sulfide minerals. This change in concentration of the iron species during the course of the experiment often makes it difficult to interpret the results of these experiments, as is evidenced by the lack of consensus concerning the mechanism of bacterial leaching. If the concentrations of ferrous and ferric ions were constant throughout the course of the batch experiment, then the role of the bacteria could be easily established, because the rate of the chemical leaching should be the same at a given redox potential in the presence and in the absence of bacteria. In this paper we report an experiment designed to obtain kinetic data under these conditions. The redox potential is used as a measure of the concentrations of ferrous and ferric ions, and the redox potential of the leaching solution is controlled throughout the experiment by electrolysis. The effects of ferrous, ferric, and arsenite ions on the rate of growth of Thiobacillus ferrooxidans on ferrous ions in this redox-controlled reactor are presented. In addition, the growth of this bacterium on ferrous ions in batch culture was also determined, and it is shown that the parameters obtained from the batch culture and the redox-controlled batch culture are the same. An analysis of the results from the batch culture indicates that the initial number of bacteria that are adapted to the solution depends on the concentrations of ferrous and arsenite ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号