首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 150 毫秒
1.
Given the centrality of chemical communication in social insects, there are many selective pressures acting on morpho‐functional traits that mediate chemical pheromones. On the last gastral sternite of Polistes females, there is an important exocrine surface secreting chemical pheromone, named Van der Vecht's organ. It is involved in chemical defence of the nest, in rank and nestmate recognition, preventing workers from direct reproduction. Allometric differential growth of phenotypic traits between castes of social insects is generally considered as an indication of incipient physical castes. European Polistes present different nesting strategies and reproductive choices. Here, we carry out a comparison of Van der Vecht's organ size between castes of four European Polistes to provide a general measure of dimorphism. We show that Van der Vecht's organ of Polistes dominula and Polistes nimphus foundresses shows an allometric development being enlarged with respect to workers. Otherwise, no allometries have been highlighted in the other two studied species (i.e. Polistes associus and Polistes biglumis). Therefore, our data show that neither rigid monogyny nor specific nesting habits foster the evolution of true morphological castes in primitively eusocial taxa. Thus, at least two other species of Ezuropean Polistes show real evidence of incipient morphological castes.  相似文献   

2.
In Polistes, nestmate recognition relies on the learning of recognition cues from the nest. When wasps recognize nestmates, they match the template learned with the odor of the encountered wasp. The social wasp Polistes biglumis use the homogeneous odor of their colony to recognize nestmates. When these colonies become host colonies of the social parasite P. atrimandibularis, colony odor is no longer homogeneous, as the parasite offspring have an odor that differs from that of their hosts. In trying to understand how the mechanism of nestmate recognition works in parasitized colonies and why parasite offspring are accepted by hosts, we tested the responses of resident Polistes biglumis wasps from parasitized and unparasitized colonies to newly emerged parasites and to nestmate and non-nestmate conspecifics. The experiments indicate that immediately upon eclosion both young parasites and young hosts lack a colony odor and that colony odor can be soon acquired from the accepting colony. In addition, while residents of nonparasitized colonies recognize only the odor of their species, resident hosts of parasitized colonies have learned a template that fits the odors of two species.  相似文献   

3.
Social insect colonies contain attractive resources for many organisms. Cleptoparasites sneak into their nests and steal food resources. Social parasites sneak into their social organisations and exploit them for reproduction. Both cleptoparasites and social parasites overcome the ability of social insects to detect intruders, which is mainly based on chemoreception. Here we compared the chemical strategies of social parasites and cleptoparasites that target the same host and analyse the implication of the results for the understanding of nestmate recognition mechanisms. The social parasitic wasp Polistes atrimandibularis (Hymenoptera: Vespidae), and the cleptoparasitic velvet ant Mutilla europaea (Hymenoptera: Mutillidae), both target the colonies of the paper wasp Polistes biglumis (Hymenoptera: Vespidae). There is no chemical mimicry with hosts in the cuticular chemical profiles of velvet ants and pre-invasion social parasites, but both have lower concentrations of recognition cues (chemical insignificance) and lower proportions of branched alkanes than their hosts. Additionally, they both have larger proportions of alkenes than their hosts. In contrast, post-invasion obligate social parasites have proportions of branched hydrocarbons as large as those of their hosts and their overall cuticular profiles resemble those of their hosts. These results suggest that the chemical strategies for evading host detection vary according to the lifestyles of the parasites. Cleptoparasites and pre-invasion social parasites that sneak into host colonies limit host overaggression by having few recognition cues, whereas post-invasion social parasites that sneak into their host social structure facilitate social integration by chemical mimicry with colony members.  相似文献   

4.
Nest-mate recognition is fundamental for protecting social insect colonies from intrusion threats such as predators or social parasites. The aggression of resident females towards intruders is mediated by their cuticular semiochemicals. A positive relation between the amount of cues and responses has been widely assumed and often taken for granted, even though direct tests have not been carried out. This hypothesis has important consequences, since it is the basis for the chemical insignificance strategy, the most common explanation for the reduction in the amount of semiochemicals occurring in many social parasites. Here we used the social wasp Polistes dominulus, a model species in animal communication studies and host of three social parasites, to test this hypothesis. We discovered that different amounts of cuticular hydrocarbons (CHC) of a foreign female evoke quantitatively different behavioural reactions in the resident foundress. The relation between CHC quantity and the elicited response supports the idea that a threshold exists in the chemical recognition system of this species. The chemical insignificance hypothesis thus holds in a host–parasite system of Polistes wasps, even though other explanations should not be discarded.  相似文献   

5.
The occurrence of a pre-imaginal caste determination represents a sort of “point of no return” to eusociality. In some social insect taxa, including Polistes species, the occurrence of distinct queen and worker castes is still debated. Before this report, no clear morphological differences between reproductive and non-reproductive individuals were known. Here we show that several pre-imaginal morphological differences of the Van der Vecht organ occur between foundresses (queens) and workers. Geometric morphometrics revealed that queens are characterized by shape deformations of this organ, which is responsible for a typical allometric growth of the secretory area. This organ is predicted to be larger in foundresses compared to workers because its secretion is involved in defense against ants, in nestmate recognition and in preventing workers from challenging for direct reproduction. The results presented here indicate the existence of an incipient morphological caste determination Polistes gallicus and suggest that this species may have passed the “point of no return” for eusociality.  相似文献   

6.
Insect social parasites rely on host workers to rear and protect their own brood. To conquer a host colony, a parasite must overcome the defensive mechanisms of the host, often by exploiting its chemical communication system. A widespread strategy involves the production of specific allomones (the so-called “propaganda pheromones”) to facilitate the usurpation process by manipulating the defensive behavior of the host. Polistes sulcifer is the obligate and permanent social parasite of the congeneric paper wasp Polistes dominulus. In this study, we investigated if the venom volatiles, well known to be alarm pheromones in the host species, could be used by the parasite to manipulate the host defense. We thus performed laboratory bioassays, to evaluate the possible effect of the venom volatile compounds of the parasite on the host. Our results show that host colony members reacted to the venom volatiles extract of the parasite with an increase in intra-colonial aggression compared to the reaction induced by the venom volatiles extract of the host foundress. Besides, a re-analysis of previously published chemical data showed that the parasite venom volatiles profile differs from that of the host: the spiroacetals are absent, whilst the amides are very abundant in the parasite venom when compared with that of the host. Similar to other insect social parasites, Polistes wasp parasites might be able to increase their invasion success by using venom volatile pheromones to distract the host defenders.  相似文献   

7.
Nest Hydrocarbons as Cues for Philopatry in a Paper Wasp   总被引:3,自引:0,他引:3  
Philopatric behavior has been demonstrated in a wide taxonomic spread of animals. In temperate environments, overwintered Polistes wasp foundresses often return to their natal nest prior to initiating colony construction. Previous research has shown that these spring foundresses can identify the natal nest in the absence of landmark and gross morphological cues. Hydrocarbons are essential recognition cues for Polistes nest and nestmate discrimination, but cuticular hydrocarbon profiles can become homogenized when foundresses overwinter in mixed colony groups. We examined the hydrocarbon profiles of Polistes dominulus foundresses and nests before and after an overwintering period, and found that the hydrocarbon profiles of nests remain unique over time and that this uniqueness is influenced by the original foundresses. Our data raise the possibility that in returning to the natal nest, foundresses reacquire their colony‐specific signature, which may play a role in the formation of cooperative associations.  相似文献   

8.
Workers of most social insects can distinguish between nestmates and non-nestmates, and actively attack the latter if they attempt to intrude into the nest or surrounding territory. Nevertheless, there are many records of heterospecific organisms living within the nests of social insects, and they are thought to gain access through chemical mimicry. The salticid spider Cosmophasis bitaeniata lives within the leaf nests of the ant Oecophylla smaragdina, where it preys on the ant larvae. We investigated, using behavioural bioassays and chemical analyses, whether the previously reported resemblance of the cuticular hydrocarbons of ant and spider was colony-specific. Behavioural experiments revealed that the spiders can distinguish between nestmate and non-nestmate major workers and are less inclined to escape when confined with ants that are nestmates. More significantly, C. bitaeniata were more likely to capture ant larvae from nestmate minor workers than non-nestmate minor workers. The chemical analyses revealed that the cuticular hydrocarbon profiles of the spiders and the major workers of the ant colonies were colony-specific. However, the hydrocarbon profiles of C. bitaeniata do not match those of the major workers of O. smaragdina from the same colony. Perhaps the colony-specific cuticular hydrocarbon profiles of C. bitaeniata function to obtain prey from the minor workers rather than avoid eliciting aggression from the major workers.  相似文献   

9.
Polistes foundresses can behave as facultative social parasites when, instead of founding their own nest, they usurp colonies of the same or a different species and temporary use the host workforce to raise their own brood. Conspecific usurpation appears to be common among Polistes wasps, but nothing is known about the mechanisms that these facultative social parasites use to have themselves accepted within usurped colonies. Using behavioural tests, we studied the chemical strategies employed by females of Polistes nimphus when they behave as facultative social parasites in colonies of the same or of a different species. We hypothesized that usurpers would mark host nests with their own odours and/or acquire host nest odours in order to camouflage their real identity from host workers. Our results indicated that P. nimphus usurpers used different chemical strategies depending on host nest species: they acquired conspecific host odours but marked heterospecific host combs with their own odours.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 505–512.  相似文献   

10.
In multiple-foundress nests of the wasp Polistes dominulus, dominance hierarchies are established among foundresses, and only the dominant (=alpha) individual lays eggs. The alpha female can be distinguished from subordinate females and workers on the basis of the proportions of some hydrocarbons present on the cuticle, suggesting that chemical signaling of her reproductive status could occur. P. dominulus is also the host species of the obligate social parasite Polistes sulcifer. After aggressively usurping host colonies and behaviorally replacing the host alpha female, parasites are characterized by a change in the proportions of their cuticular hydrocarbons to match that of the host cuticular profile at both species and colony levels. In the current study, we demonstrate that P. sulcifer queens also modify their cuticular hydrocarbon proportions after usurpation to match that of the host alpha female. Parasite females, therefore, acquire the dominant rank in host colonies both reproductively and chemically by mimicking the typical alpha profile of the host. Parasite females were not able to fully inhibit ovary development in host foundresses, and 10 days after usurpation, parasites, alpha and beta foundresses show similar chemical profiles and ovarian development.  相似文献   

11.
Sulcopolistes atrimandibularis Zimmermann is the obligate social parasite of Polistes biglumis bimaculatus Geoffry in Furcroy, a mountain species of paper wasp. Unlike all the other hymenopteran social parasites, the Sulcopolistes female obtains part of the food for her immature brood by plundering other nests of the host species. Parasite females can control more than one host nest: one of them (the nursery nest) she uses solely for reproduction purposes (from which the Sulcopolistes reproductives emerge) and others (supply nests) are used for exploiting the Polistes brood content. It is possible that this behaviour is an adaptation to the extremely short colonial cycle of the host.  相似文献   

12.
A colony of social insects is like a fortress where access is allowed only to colony members. The epicuticular mixture of hydrocarbons has been widely reported to be involved in nestmate recognition in insects. However, recent studies have shown that polar compounds (mainly peptides) are also present, mixed with hydrocarbons, on the cuticle of various insects, including the paper wasps of the genus Polistes. As these polar compounds are variable among Polistes species and are perceived by the wasps, this cuticular fraction could also be involved in nestmate recognition. Through MALDI-TOF (Matrix-Assisted Laser Desorption Ionization Time of Flight) mass spectrometry analysis, we assessed, for the first time, the intercolonial variability of the cuticular polar fraction of Polistes dominulus in order to evaluate its reliability as source of nestmate recognition cues. We then tested through behavioral assays the importance of the 2 isolated fractions (apolar and polar) in nestmate recognition by presenting them separately to colonies of P. dominulus. Our results showed that the cuticular polar compounds are not colony specific and they are not used by paper wasps to discriminate nestmates from non-colony members. On the contrary, we confirmed that the isolated cuticular hydrocarbons are the chemical mediators prompting nestmate recognition in paper wasps.  相似文献   

13.
Colonies of the polistine wasp Polistes dominulus are parasitized by the permanent worker-less social parasite Polistes sulcifer. After usurpation of the host colony, parasite females are characterized by a change in the relative proportions of their cuticular hydrocarbons to match those of the host species. In this paper we present evidence from field data and laboratory experiments that P. sulcifer females adopt a colony-specific host odour that facilitates their acceptance by host females of the usurped colony. Presentation experiments demonstrate that parasite females are recognized as foreign individuals by workers of other parasitized nests. We show that the modification of parasite cuticular compounds is sufficient for this recognition. This provides evidence that, after invasion, P. sulcifer queens do not require appeasement or propaganda substances for their acceptance by host colonies. Furthermore, multivariate discriminant analysis of the cuticular hydrocarbon proportions of the parasites after usurpation assigns the parasites together with P. dominulus females of their own host colony. To the authors' knowledge, this is the first confirmation that social parasites adopt colony-specific host odours.  相似文献   

14.
Host and parasite distributions are crucial to understand the coevolutionary outcomes of their relationships. This comes from the fact that the distribution of a species (fragmented vs. continuous habitats) influences its dispersal opportunities. In this work, we studied the effect of the spatial distribution on dispersal and coevolution between three species of social parasite ants of the genus Rossomyrmex (one distributed in high mountains in Spain and two distributed in extended plains in Turkey and Kazakhstan) and their ant hosts Proformica. We analysed the variation at the mitochondrial gene cytochrome c oxidase (COI) to infer female dispersal for parasites as well as the cuticular hydrocarbons (CHCs) of parasites and hosts to study their coevolutionary process, given that CHCs are involved in nestmate recognition. Our genetic results revealed a surprising scarce variation at COI for the three parasite species, suggesting selective forces that prevent from mutation fixation. Therefore, COI appeared to be a poor tool to study dispersal. Furthermore, chemical results showed population differentiation for all host–parasite systems, pointing that coevolution would take place at a local scale regardless of the spatial distribution or dispersal opportunities of the counterparts.  相似文献   

15.
Microsatellite primers developed for a given species are sometimes useful for another in the same genus and in other genera within the same family, making possible to search for pre-existing suitable primers in the databanks such as GenBank. We examined whether existing primers developed for Polistes could be used for Polistes satan Bequaert. We tested 50 microsatellite primers from three Polistes species and found that six microsatellite loci show polymorphism in size in P. satan. These six loci were highly polymorphic, having four to 15 alleles in P. satan with an expected heterozygosity of 0.525?C0.832. These loci can be used to study parameters concerning genetic relatedness such as social interactions in colonies and genetic conflicts of interest among nestmate individuals.  相似文献   

16.
In primitively eusocial insects, caste expression is flexible. Even though Polistes species are well known to show social trait variation (e.g., worker vs. gyne) depending on ecological context, loss of worker caste in some populations of a eusocial, worker-containing species has never been documented. We report first data on geographic variation in caste expression in Polistes biglumis. We compared physiological and behavioural traits of the first female offspring from four populations that experience different climatic conditions and social parasite prevalence. We demonstrated that the first female offspring to emerge in cold areas with high parasite prevalence had more abundant, gyne-like fat bodies and exhibited lower foraging effort, in comparison to the first female offspring produced in warm areas with low parasite prevalence. Thus, the populations under severe environmental conditions produced a totipotent female offspring and suppressed worker production, whereas the population living in less extreme environmental conditions produced worker-like females as first female offspring and gyne-like females as offspring that emerged later. The existence of mixed social strategies among populations of primitively eusocial species could have important consequences for the study of social evolution, shedding light on the sequence of steps by which populations evolve between the extremes of solitary state and eusocial state.  相似文献   

17.
Host-parasite coevolution shapes the structure of communities and simultaneously the traits of the interacting species. Social parasites developed sophisticated chemical integration strategies to circumvent host defences. Here, we show that the two Leptothorax host species of the obligate social parasite Harpagoxenus sublaevis exhibit extremely divergent chemical profiles, making it nearly impossible for this parasite to closely adapt to both hosts at once. Our cuticular hydrocarbon analyses demonstrate that H. sublaevis acquires some host chemicals passively, but additionally, actively biosyntheses some host hydrocarbons. The parasite adjusts thereby more closely to its smaller host, L. muscorum, because it actively produces two of its cuticular substances and also more easily acquires the short-chained hydrocarbons of this host. Community composition analyses indicate that the social parasite overexploits this chemical closer host species and, albeit costly for the parasite, frequently enslaves workers of the second host concurrently.  相似文献   

18.
Coevolutionary theories applied in the study of host–parasite systems indicate that lineages exhibit progressive trends in response to reciprocal selective pressures. Avian brood parasites have generated intense interest as models for coevolutionary processes. Similar to avian cuckoos, Polistes wasp social parasites usurp a nest and exploit the parental care of a congeneric species to rear their own brood. In the present study, we show a coevolutionary arms race in the daily activity pattern in a Polistes host–parasite pair. We measured the daily activity rate, in constant laboratory conditions, of both host and parasite females during the period in which nest usurpations occur. The parasites showed a hyperkinesis in the middle of the day. As the field observations suggested, this mid-day activity is used to perform host nest usurpation attempts. Timing the usurpations allows the parasite to maximize its usurpation attempts during daytime when the host defence is lower. A field comparison of host presence on the nest in two populations with different parasitism rates showed that populations under strong parasitic pressure exhibit timing counteradaptations to optimize nest defence. This study provides the first example of a mutual coadaptation in timing activity in a parasite–host system.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 399–405.  相似文献   

19.
The wasps of the genus Polistes have been considered the key to understanding the evolution of social behavior in Hymenoptera. Several studies have shown that the development of organized insect societies was accompanied by the evolution of structures like exocrine glands, which became specialized to perform specific functions. This article investigates the ultrastructural and cytochemical features of the hypopharyngeal glands of Polistes versicolor. These glands have been studied in depth in social bees, where they occur only in nurses and produce the royal jelly. Our results revealed that these glands basically did not vary among individuals or between sexes. They are constituted by spherical cells, each with a large nucleus and well‐developed rough endoplasmic reticulum. Secretion vesicles are abundant, but lipid droplets were not observed, indicating that these glands may not have a role in pheromone synthesis. Acid phosphatase was detected in lysosomes, and also free in the cytosol, but did not seem to be related with cell death. Thus, our results suggest that the hypopharyngeal glands of P. versicolor may not have a specialized social role, but could produce digestive enzymes.  相似文献   

20.
Summary During the late pre-emergence phase, a foundress of the paper waspPolistes biglumis bimaculatus may be expelled by a conspecific female from her own nest (usurpation) or, less frequently, joined by another female of the same species (late association). The behaviour of femalePolistes biglumis bimaculatus, when usurping a conspecific colony or joining another foundress, is compared with that of foundresses on non-usurped colonies. The most conspicous difference is the intense abdomen stroking behaviour the usurper performs over the comb surface on the first days after usurpation. As observed in otherPolistes species, once usurpers and joiners arrive on a strange nest they will destroy most of the immature brood of the previous nest owner. Although host workers are not aggressive towards the intruder females, reproductive success of usurpers and joiners is low compared with that of legitimate foundresses. The same behaviours observed on usurped colonies are found in the obligate social parasites ofPolistes. These behaviours are therefore discussed in the context of the evolution of intra- and inter-specific parasitism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号