首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feeding experiments with lizards are used to examine the function of small eyespot markings found along the wing margins of many butterfly species. Such eyespots are frequently suggested to function by deflecting the attacks of vertebrate predators away from the vulnerable body towards the wing margins, which can tear easily; the eyespots are considered to mislead predators and to act as targets for their attacks. Such misdirected attacks give the butterflies a chance to evade capture, albeit sometimes losing pieces of wing tissue. As a model prey species, we used fruit-feeding individuals of the tropical butterfly Bicyclus anynana that were attacked in a standard way in laboratory cages by the anolis lizard, Anolis carolinensis . We also manipulated the butterflies' wing patterns by pasting eyespots on different parts of the wings to examine the deflection hypothesis in more detail. Our results indicate no influence on the lizard attacks either of the presence of eyespots, or of their position on the wings. The lizards attacked butterflies in a highly stereotyped manner both when the prey were presented on matching or on contrasting backgrounds. We thus found no support for the deflection hypothesis for attacks by insectivorous lizards. Indeed, our only support to date has been obtained for naïve flycatcher birds, but even this requires further corroboration. Although effective deflection may occur rather infrequently, except perhaps under certain ecological conditions such as high-density feeding of butterflies on fallen fruit, it may still be sufficiently consistent over time to have contributed to shaping the evolution of marginal eyespot patterns.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 661–667.  相似文献   

2.
Junonia evarete Cramer is a fast-flying butterfly that perches on the ground with wings opened exhibiting four eyespots close to wing borders. These eyespots presumably function either to intimidate predators, like insectivorous birds, or to deflect bird attacks to less vital parts of the body. We assessed the form, frequency, and location of beak marks on the wings of wild butterflies in central Brazil during two not consecutive years. We found that almost 50% of males and 80% of females bore signals of predator attacks (wing tears), most of them consisting of partially or totally V-shaped forms apparently produced by birds. Males were significantly less attacked and showed a lower proportion of attacks on eyespots than females, suggesting they are better to escape bird attacks. In contrast, females were heavily attacked on eyespots. Eyespot tears in females were higher (and significant different) than expected by chance, indicating that birds do attempt to reach the eyespots when striking on these butterflies. Other comparisons involving the proportion of tears directed or not directed to eyespots in males and females are presented and discussed.  相似文献   

3.
Seasonal polyphenism in animal colour patterns indicates that temporal variation in selection pressures maintains phenotypic plasticity. Spring generation of the polyphenic European map butterfly Araschnia levana has an orange–black fritillary‐like pattern whilst individuals of the summer generation are black with white bands across the wings. What selects for the colour difference is unknown. Because predation is a major selection pressure for insect coloration, we first tested whether map butterfly coloration could have a warning function (i.e. whether the butterflies are unpalatable to birds). In a following field experiment with butterfly dummies we tested whether the spring form is better protected than the summer form from predators in the spring, and vice versa in the summer. The butterflies were palatable to birds (blue tits Cyanistes caeruleus) and in the field the spring and summer form dummies were attacked equally irrespective of season. Therefore, we found no evidence that the map butterfly is warning‐coloured or that seasonal polyphenism is an adaptation to avian predation. Because insect coloration has multiple functions and map butterfly coloration is linked to morphology, life history and development it is likely that the interplay of several selection pressures explains the evolution of colour polyphenism. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

4.
Some eyespots are thought to deflect attack away from the vulnerable body, yet there is limited empirical evidence for this function and its adaptive advantage. Here, we demonstrate the conspicuous ventral hindwing eyespots found on Bicyclus anynana butterflies protect against invertebrate predators, specifically praying mantids. Wet season (WS) butterflies with larger, brighter eyespots were easier for mantids to detect, but more difficult to capture compared to dry season (DS) butterflies with small, dull eyespots. Mantids attacked the wing eyespots of WS butterflies more frequently resulting in greater butterfly survival and reproductive success. With a reciprocal eyespot transplant, we demonstrated the fitness benefits of eyespots were independent of butterfly behaviour. Regardless of whether the butterfly was WS or DS, large marginal eyespots pasted on the hindwings increased butterfly survival and successful oviposition during predation encounters. In previous studies, DS B. anynana experienced delayed detection by vertebrate predators, but both forms suffered low survival once detected. Our results suggest predator abundance, identity and phenology may all be important selective forces for B. anynana. Thus, reciprocal selection between invertebrate and vertebrate predators across seasons may contribute to the evolution of the B. anynana polyphenism.  相似文献   

5.
The responses of two adult and three hand-reared, naive young rufous-tailed jacamars (Galbula ruficauda) to local butterflies were studied in feeding experiments. Four behavioural characteristics distinguish jacamars from other less specialized avian predators: (1) Exposed to butterflies for the first time, naive young jacamars would attack butterflies without showing signs of inhibition. Unacceptable butterflies, once captured, were taste-rejected quickly, and most survived the sampling. The few presumably unacceptable butterflies consumed by the birds were not observed to cause vomiting. (2) After gaining some familiarity with butterflies, young birds, like the adults, developed a reluctance to attack. They visually rejected certain classes of butterflies, often failing to attack them during an entire four-hour feeding trial. However, occasional attacks were made on butterflies in these ‘rejected’ classes. When this did occur, the insects proved to be actually easier to catch than those that were more often attacked. Once captured, however, the majority of these butterflies were taste-rejected. (3) For a given butterfly species, most individuals were either consumed or rejected. Thus, each species could be clearly classified as either acceptable or unacceptable to the jacamars. This consistency in jacamar responses resulted in a bimodal acceptability distribution of sympatric butterflies. (4) Young jacamars were capable of rapid associative learning and their responses were closely associated with butterfly visual characteristics in which colour pattern, flight behaviour, and morphology were also closely correlated. Thus, a single butterfly morphological parameter termed body shape (body length/thoracic diameter ratio) can adequately predict the feeding responses of jacamars. Visually detectable traits associated with butterflies possessing chemical defences may represent a balance between the need to signal unambiguously to specialized and/or experienced predators and the need to escape attacks by generalized and/or opportunistic predators. Since the proportion of specialized predators is higher in the tropical rainforest than in other habitat types, we expect greater divergence of morphological and behavioural characteristics between palatable and unpalatable butterflies in rainforest habitats.  相似文献   

6.
The butterfly Bicyclus anynana exhibits phenotypic plasticity involving the wet-season phenotype, which possesses marginal eyespots on the ventral surface of the wings, and the dry-season form, which lacks these eyespots. We examined the adaptive value of phenotypic plasticity of B. anynana in relation to the defence mechanisms of crypsis and deflection. We assessed the visibility differences between spotless and spotted butterflies against backgrounds of brown (dry season) or green (wet season) leaves. Spotless butterflies were highly cryptic and less predated by adult bird predators than were spotted ones when presented against brown leaf litter. However, the advantage of crypsis disappeared in the wet-season habitat as both forms were equally visible. In later experiments, naive birds presented with resting butterflies in the wet-season habitat tended to learn more rapidly to capture spotless butterflies, suggesting a slight selective advantage of possessing eyespots. Moreover, marginal eyespots increased significantly the escape probability of butterflies that were attacked by naive birds compared to those attacked by adult birds, although there were no differences in prey capture success within naive predators. Our results show that natural selection acts against eyespots in the dry season, favouring crypsis, whereas in the wet season it may favour eyespots as deflective patterns.  相似文献   

7.
The hypothesis of satyric mimicry postulates that the colour patterns of an animal may make its identity ambiguous, and this ambiguity interferes with the process of perception in vertebrate predators for a sufficient time to allow the potential prey to take evasive action. It has now been found that eyespots and other designs on the wings of many insect species are often coupled with other wing patterns and designs. These composite images often closely resemble heads and bodies of vertebrates (including birds and reptiles) and of various invertebrates. Such images can be perceived in living insects, although only rarely in set specimens because of displacement of the components. Visual processing by non‐mammalian vertebrates generally involves attention to detail, suggesting that, at least initially, and unlike humans, they perceive embedded images on insect wings and bodies and ignore the whole or Gestalt. They are therefore likely to be confused by the ambiguity of the potential prey. It can be calculated that a delay of the order of only tenths of a second in the attack on a stationary insect by a predator could result in failure of capture. It is proposed in the present review that the concept of satyric mimicry be extended to include complex imagery of other organisms. Such iconic images, which often represent toxic or dangerous animals, are particularly common amongst saturniid moths and nymphalid and danaid butterflies (including the Monarch butterfly, Danaus plexippus). © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 203–214.  相似文献   

8.
Eyespots are conspicuous circular features found on the wings of several lepidopteran insects. Two prominent hypotheses have been put forth explaining their function in an antipredatory role. The deflection hypothesis posits that eyespots enhance survival in direct physical encounters with predators by deflecting attacks away from vital parts of the body, whereas the intimidation hypothesis posits that eyespots are advantageous by scaring away a potential predator before an attack. In the light of these two hypotheses, we investigated the evolution of eyespot size and its interaction with position and number within a phylogenetic context in a group of butterflies belonging to the genus Junonia. We found that larger eyespots tend to be found individually, rather than in serial dispositions. Larger size and conspicuousness make intimidating eyespots more effective, and thus, we suggest that our results support an intimidation function in some species of Junonia with solitary eyespots. Our results also show that smaller eyespots in Junonia are located closer to the wing margin, thus supporting predictions of the deflection hypothesis. The interplay between size, position, and arrangement of eyespots in relation to antipredation and possibly sexual selection, promises to be an interesting field of research in the future. Similarly, further comparative work on the evolution of absolute eyespot size in natural populations of other butterfly groups is needed.  相似文献   

9.
Many butterfly genera are characterised by the presence of marginal eyespots on their wings. One hypothesis to account for an occurrence of eyespots is that these wing pattern elements are partly the outcome of visual selection by predators. Bicyclus anynana (Satyrinae) has underside spotting on its wings but there is also a seasonal form in which the eyespots are reduced in size or totally absent. This natural variation gives us a useful tool to test the hypothesis that marginal eyespot patterns can decoy the attacking predator by, at least sometimes, diverting attack from vital body parts to the edges of the wings. We used lizards, Anolis carolinensis , and pied flycatchers, Ficedula hypoleuca , as predators for living spotted and spotless B. anynana . The presence of eyespots did not increase the escape probability of resting butterflies once captured (even a form with enlarged eyespots did not add to effective deflection of attacks). There was also no evidence that eyespots influenced the location of strikes by the predators. This study thus provides no support that marginal eyespot patterns can act as an effective deflection mechanism to avoid lizard or avian predation.  相似文献   

10.
The “false head” hypothesis states that due to the posterior ventral wing markings of certain butterflies which resemble a “false head,” visually hunting predators, such as birds, are deceived into attacking the hind wing area rather than the true head of the butterfly. In the laboratory, six groups of artificially marked dead cabbage butterflies, Pieris rapae, were presented to Blue Jays, Cyanocitta cristata. Of the six “false head” markings, only the eyespot significantly influenced the point of attack. All of the “false head” markings, however, led to a greater proportion of attacks to the hind wing area of the butterfly. In the course of prey handling following an initial attack, each of the six “false head” markings significantly directed predator handling strikes away from the true head of captive butterflies to the anal angle of the hind wing. In a second experiment, live P. rapae with “false head” markings were mishandled and thus escaped, significantly more frequently than controls. Therefore, “false head” markings may confer a selective advantage by increasing the probability of escape, particularly during handling.  相似文献   

11.
Long-lived butterflies that hibernate as adults are expected to have well-developed antipredation devices as a result of their long exposure to natural enemies. The peacock butterfly, Inachis io, for instance, is a cryptic leaf mimic when resting, but shifts to active defence when disturbed, performing a repeated sequence of movements exposing major eyespots on the wings accompanied by a hissing noise. We studied the effect of visual and auditory defence by staging experiments in which wild-caught blue tits, Parus caeruleus, were presented with one of six kinds of experimentally manipulated living peacock butterflies as follows: butterflies with eyespots painted over and their controls (painted on another part of the wing), butterflies with their sound production aborted (small part of wings removed) and their controls, and butterflies with eyespots painted over and sound production aborted and their controls. The results showed that eyespots alone, or in combination with sound, constituted an effective defence; only 1 out of 34 butterflies with intact eyespots was killed, whereas 13 out of 20 butterflies without eyespots were killed. The killed peacocks were eaten, indicating that they are not distasteful. Hence, intimidation by bluffing can be an efficient means of defence for an edible prey.  相似文献   

12.
The angled sunbeam butterfly, Curetis acuta (Lycaenidae), is a distinctly sexually dimorphic lycaenid butterfly from Asia. The dorsal wings of female and male butterflies have a similar pattern, with a large white area in the female and an orange area in the male, framed within brown–black margins. The ventral wings of both sexes are silvery white, which is caused by stacks of overlapping, non‐pigmented, and specular‐reflecting scales. With oblique illumination, the reflected light of the ventral wings is strongly polarized. We show that the silvery reflection facilitates camouflage in a shaded, foliaceous environment. The ecological function of the silvery reflection is presumably two‐fold: for intraspecific signalling in flight, and for reducing predation risk at rest and during hibernation. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 279–289.  相似文献   

13.
1. This article reports the responses of wild, adult jacamars to butterflies with distinct coloration types in central Brazil. Fully aposematic species, i.e. those exhibiting bright and/or contrasting colours on both wing surfaces (= A/A), were predominantly sight‐rejected by birds and, with one exception, the few butterflies attacked and captured were taste‐rejected afterwards. 2. Aposematic and cryptic butterflies, i.e. those exhibiting bright and/or contrasting colours on the upper and cryptic colours on the underwings (= A/C) were sight‐rejected while flying, when they show their conspicuous colours to predators. This suggests that birds associate butterfly colours with their difficulty of capture, as in the case of Morpho and several Coliadinae species. These butterflies, however, were heavily attacked at rest, when they are cryptic. 3, Fully cryptic butterflies, i.e. those exhibiting cryptic colours on both wing surfaces (= C/C) did not elicit sight rejections by birds. Comparisons involving the number of attacks and the capture success of flying and resting individuals showed no significant differences in species more frequently observed like some cracker butterflies (Hamadryas feronia and H. februa) and Taygetis laches. Compared with the A/C Coliadinae, these butterflies showed a lesser, although not significantly different, ability to escape while flying, but a greater and significantly different ability to escape while at rest. 4, A hunting tactic of jacamars, which consists of following flying A/C and C/C butterflies on sight, and waiting until they perch to locate and attack them, is described for the first time.  相似文献   

14.
Many species of lepidoptera bear conspicuous circular patterns on their wings, known as eyespots, that are hypothesised to protect their bearers against predatory birds. In this study, we focus on a small but ubiquitous feature occurring naturally in lepidopteran eyespots, namely the so‐called ‘sparkle’. The ‘pupil’ in an eyespot is often highlighted by a ‘sparkle’, which is hypothesised to mimic a natural corneal total light reflection evident as a highlight, twinkle, or sparkle in the vertebrate eye. In a study exploring the presence of such sparkles, we found that 53% of lepidopteran eyespots exceeding 1 mm in diameter have a central, pinpoint‐like ‘sparkle’, 12% have a marginal, crescent‐shaped ‘sparkle’, 13% have a semi‐circular ‘sparkle’, and 22% have an intermediate semi‐circular to crescent‐shaped ‘sparkle’. In the lepidopterans’ natural resting position, the marginal ‘sparkles’ are positioned in the upper part of the eyespots’‘pupil’ and thus may create the illusion of a spherical eyeball. The ‘sparkles’ in lepidopteran eyespots do not only appear white to humans, but also reflect ultraviolet light. White and UV‐reflecting ‘sparkles’ also appear ‘white’ for UV‐sensitive viewers such as birds, and thus may effectively mimic the natural highlight in vertebrate eyes as an area of total light reflection. In field experiments using lepidopteran dummies baited with a mealworm, we show that the ‘sparkle’ is one of several components of eyespots eliciting a deterrent effect and that eyespots with a ‘sparkle’ in a natural position have a stronger deterrent effect than those with a ‘sparkle’ in an unnatural position. These findings support the eye mimicry hypothesis that better vertebrate eye mimicry improves the deterrent effect of eyespots.  相似文献   

15.
Wild rufous-tailed jacamars (Galbula ruficauda) were shown to prey frequently, but selectively, upon butterflies in a Costa Rican rainforest. Two individually caged birds (a male and a female) were further tested with over 1000 butterflies of 114 morphs. Both wild jacamars and the two captive individuals were able to capture and handle all kinds and sizes of local butterflies. These butterflies (and other winged insects) were recognized by the jacamars as prey only through their movement. The captive birds discriminated between an unacceptable group of butterflies, which generally fly slowly or regularly, are warningly coloured and mimetic, with transparent, or white, orange, red, and/or black coloration, and an acceptable group that generally fly fast or erratically, are cryptic (on one or both sides), and have yellow, orange, green, blue, and/or brown coloration. These different morphological and behavioural characteristics of butterflies presumably helped the jacamars to assess their palatability. Most individuals of unacceptable butterflies (e.g. Battus and Parides (Papilionidae), some Pieridae, Diaethria and Callicore (Nymphalinae), Heliconiinae, Acraeinae, Ithomiidae, and Danaidae) were sight-rejected by the male jacamar (Jacamar 2), and many of the same were also sight-rejected by the female (Jacamar 1). In cases when the above butterflies were attacked, they were quickly released and usually unharmed. The captive female bird, after long periods without food, consumed many pierid and heliconiine butterflies that were consistently rejected by the male for their distasteful and dangerous qualities. In contrast, palatable butterflies (e.g. Papilio, Charaxinae, most Nymphalinae, Morpho, Brassolinae, and Satyrinae) were usually quickly attacked and consumed. The captive jacamars were able to discriminate between the very similar colour patterns of some Batesian mimics and their models, and could memorize the palatability of a large variety of butterflies. The discriminatory abilities of specialized insectivorous birds such as jacamars are likely to play a major role in the evolution of neotropical butterfly mimicry.  相似文献   

16.
Eyespots (colour patterns consisting of concentric rings) are found in a wide range of animal taxa and are often assumed to have an anti-predator function. Previous experiments have found strong evidence for an intimidating effect of eyespots against passerine birds. Some eyespots have been suggested to increase prey survival by diverting attacks towards less vital body parts or a direction that would facilitate escape. While eyespots in aquatic environments are widespread, their function is extremely understudied. Therefore, we investigated the protective function of eyespots against attacking fish. We used artificial prey and predator-naive three-spined sticklebacks (Gasterosteus aculeatus) as predators to test both the diversion (deflection) and the intimidation hypothesis. Interestingly, our results showed that eyespots smaller than the fish’ own eye very effectively draw the attacks of the fish towards them. Furthermore, our experiment also showed that this was not due to the conspicuousness of the eyespot, because attack latency did not differ between prey items with and without eyespots. We found little support for an intimidating effect by larger eyespots. Even though also other markings might misdirect attacks, we can conclude that the misdirecting function may have played an important role in the evolution of eyespots in aquatic environments.  相似文献   

17.
Many unpalatable butterfly species use coloration to signal their distastefulness to birds, but motion cues may also be crucial to ward off predatory attacks. In previous research, captive passion-vine butterflies Heliconius mimetic in colour pattern were also mimetic in motion. Here, I investigate whether wing motion changes with the flight demands of different behaviours. If birds select for wing motion as a warning signal, aposematic butterflies should maintain wing motion independently of behavioural context. Members of one mimicry group (Heliconius cydno and Heliconius sapho) beat their wings more slowly and their wing strokes were more asymmetric than their sister-species (Heliconius melpomene and Heliconius erato, respectively), which were members of another mimicry group having a quick and steady wing motion. Within mimicry groups, wing beat frequency declined as its role in generating lift also declined in different behavioural contexts. In contrast, asymmetry of the stroke was not associated with wing beat frequency or behavioural context-strong indication that birds process and store the Fourier motion energy of butterfly wings. Although direct evidence that birds respond to subtle differences in butterfly wing motion is lacking, birds appear to generalize a motion pattern as much as they encounter members of a mimicry group in different behavioural contexts.  相似文献   

18.
Large conspicuous eyespots on butterfly wings have been shown to deter predators. This has been traditionally explained by mimicry of vertebrate eyes, but recently the classic eye-mimicry hypothesis has been challenged. It is proposed that the conspicuousness of the eyespot, not mimicry, is what causes aversion due to sensory biases, neophobia or sensory overloads. We conducted an experiment to directly test whether the eye-mimicry or the conspicuousness hypothesis better explain eyespot efficacy. We used great tits (Parus major) as model predator, and tested their reaction towards animated images on a computer display. Birds were tested against images of butterflies without eyespots, with natural-looking eyespots, and manipulated spots with the same contrast but reduced resemblance to an eye, as well as images of predators (owls) with and without eyes. We found that mimetic eyespots were as effective as true eyes of owls and more efficient in eliciting an aversive response than modified, less mimetic but equally contrasting eyespots. We conclude that the eye-mimicry hypothesis explains our results better than the conspicuousness hypothesis and is thus likely to be an important mechanism behind the evolution of butterfly eyespots.  相似文献   

19.
Research has shown that the mere presence of stimuli that resemble eyes is sufficient to attract attention, elicit aesthetic responses, and can even enhance prosocial behavior. However, it is less clear whether eye-like stimuli could also be used as a tool for nature conservation. Several animal species, including butterflies, develop eye-like markings that are known as eyespots. In the present research, we explored whether the mere display of eyespots on butterfly wings can enhance: (a) liking for a butterfly species, and (b) attitudes and behaviors towards conservation of a butterfly species. Four online experimental studies, involving 613 participants, demonstrated that eyespots significantly increased liking for a butterfly species. Furthermore, eyespots significantly increased positive attitudes towards conservation of a butterfly species (Studies 1, 2 and 4), whereas liking mediated the eyespot effect on conservation attitudes (Study 2). However, we also found some mixed evidence for an association between eyespots and actual conservation behavior (Studies 3 and 4). Overall, these findings suggest that eyespots may increase liking for an animal and sensitize humans to conservation. We discuss possible implications for biodiversity conservation and future research directions.  相似文献   

20.
Mimetic wing coloration evolves in butterflies in the context of predator confusion. Unless butterfly eyes have adaptations for discriminating mimetic color variation, mimicry also carries a risk of confusion for the butterflies themselves. Heliconius butterfly eyes, which express recently duplicated ultraviolet (UV) opsins, have such an adaptation. To examine bird and butterfly color vision as sources of selection on butterfly coloration, we studied yellow wing pigmentation in the tribe Heliconiini. We confirmed, using reflectance and mass spectrometry, that only Heliconius use 3-hydroxy-DL-kynurenine (3-OHK), which looks yellow to humans but reflects both UV- and long-wavelength light, whereas butterflies in related genera have chemically unknown yellow pigments mostly lacking UV reflectance. Modeling of these color signals reveals that the two UV photoreceptors of Heliconius are better suited to separating 3-OHK from non-3-OHK spectra compared with the photoreceptors of related genera or birds. The co-occurrence of potentially enhanced UV vision and a UV-reflecting yellow wing pigment could allow unpalatable Heliconius private intraspecific communication in the presence of mimics. Our results are the best available evidence for the correlated evolution of a color signal and color vision. They also suggest that predator visual systems are error prone in the context of mimicry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号