首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Adult zebrafish regenerate their appendages (fins) after amputation including the regeneration of bone structures (fin rays). Fibroblast growth factor (Fgf) signaling, which is involved in morphogenetic processes during development, has been shown to be essential for the process of fin regeneration. Moreover, mutations in Fgf pathway component genes lead to abnormal skeletal growth in teleosts and mammals, including humans, illustrating the importance of Fgf signaling in the growth control of tissues. Here, we revisited Fgf signaling pathway component expression by RNA in situ hybridization to test for the expression of about half of the ligands and all receptors of the pathway in the regenerating zebrafish fin. Expression patterns of fgf7, fgf10b, fgf12b, fgf17b and fgfr1b have not been reported in the literature before. We summarize and discuss known and novel localization of expression and find that all five Fgf receptors (fgfr1a, fgfr1b, fgfr2, fgfr3 and fgfr4) and most of the tested ligands are expressed in specific regions of the regenerate. Our work provides a basis to study domain specific functions of Fgf signaling in the regenerating teleost appendage.  相似文献   

2.
Barbels are skin sensory appendages found in fishes, reptiles and amphibians. The zebrafish, Danio rerio, develops two pairs of barbels- a short nasal pair and a longer maxillary pair. Barbel tissue contains cells of ectodermal, mesodermal and neural crest origin, including skin cells, glands, taste buds, melanocytes, circulatory vessels and sensory nerves. Unlike most adult tissue, the maxillary barbel is optically clear, allowing us to visualize the development and maintenance of these tissue types throughout the life cycle. This video shows early development of the maxillary barbel (beginning approximately one month post-fertilization) and demonstrates a surgical protocol to induce regeneration in the adult appendage (>3 months post-fertilization). Briefly, the left maxillary barbel of an anesthetized fish is elevated with sterile forceps just distal to the caudal edge of the maxilla. A fine, sterile spring scissors is positioned against the forceps to cut the barbel shaft at this level, establishing an anatomical landmark for the amputation plane. Regenerative growth can be measured with respect to this plane, and in comparison to the contralateral barbel. Barbel tissue regenerates rapidly, reaching maximal regrowth within 2 weeks of injury.Techniques for analyzing the regenerated barbel include dissecting and embedding matched pairs of barbels (regenerate and control) in the wells of a standard DNA electrophoresis gel. Embedded specimens are conveniently photographed under a stereomicroscope for gross morphology and morphometry, and can be stored for weeks prior to downstream applications such as paraffin histology, cryosectioning, and/or whole mount immunohistochemistry. These methods establish the maxillary barbel as a novel in vivo tissue system for studying the regenerative capacity of multiple cell types within the genetic context of zebrafish.  相似文献   

3.
4.
Roles for Fgf signaling during zebrafish fin regeneration   总被引:7,自引:0,他引:7  
  相似文献   

5.
Ultrathin sections of the nasal barbel of the channel catfish, Ictalurus punctatus, were studied in the electron microscope and the fine structure was compared to that of barbels of other teleosts and to the mandibular (dentary) barbels of I. punctatus. While the overall histology of the nasal barbel is similar to that of barbels described previously, this study revealed far greater cellular complexity and variability than was previously reported. A layer of stratified epidermal cells rests upon a connective tissue dermis containing a cartilage rod, a large number of nerve fibers and numerous blood vessels, fibroblasts and pigment cells. Taste buds are present in the epidermal layer. This layer was found to contain probably 16 kinds of cell types, several of which may represent transitional stages, in addition to taste bud cells. Observations were made pertaining to innervation and cell types in the taste buds. A new terminology for designating the barbels of I. punctatus is suggested.  相似文献   

6.
7.
Morphological development in laboratory-reared larval and juvenile Hemibagrus filamentus, and behavioral features observed under rearing conditions are described. Body lengths (BL) of larvae and juveniles were 3.8 ± 0.2 (mean ± SD) mm just after hatching and 11.7 ± 1.6 mm on day 15, reaching 26.5 ± 5.4 mm on day 30 after hatching. Aggregate fin ray numbers (for caudal fin, except for procurrent rays) attained full complements in specimens larger than 12.9 mm BL. A maxillary barbel bud appeared on day 0, and all larvae initiated feeding on day 3 with the development of mandibular barbels and conical teeth. Pectoral fin buds and primordial nostrils were present on day 1. Notochord flexion began on day 3, and the yolk was completely absorbed by day 4. Melanophores were scarce at hatching, but increased with growth to cover almost the entire body except the ventral surface of the head and body. Body proportions became relatively constant in juveniles, excepting maxillary barbel length that continued to increase, reaching over 40% BL. Fish were negatively phototactic from day 1. Cannibalism was observed from day 6, continuing to the juvenile stage.  相似文献   

8.
The expression of all four fgfr genes was extensively examined throughout early embryogenesis of the zebrafish (Danio rerio). fgfr1 alone was expressed maternally throughout the blastoderm, and then zygotically in the anterior neural plate and presomitic mesoderm. fgfr4 expression was first detected in late blastulae and was gradually restricted to the brain. fgfr2 and fgfr3 expression were initiated in early and late gastrulae, respectively; fgfr2 was expressed in the anterior neural plate and somitic mesoderm, whereas fgfr3 was activated in the axial mesoderm and then in the midbrain and somitic mesoderm. During somitogenesis, each of these fgfr genes was expressed in a characteristic manner in the brain. Using an FGF signal inhibitor, dominant-negative FGF receptors and fgf8.1/fgf8a mutants, we found that fgfr expression is directly or indirectly regulated by FGF signaling during epiboly and at the end of somitogenesis, revealing the presence of an autoregulatory mechanism.  相似文献   

9.
10.
Activin-betaA signaling is required for zebrafish fin regeneration   总被引:1,自引:0,他引:1  
  相似文献   

11.
Synopsis The development of the sensory barbels of the tropical goatfish, Upeneus tragula (Mullidae), was examined from their first appearance early in planktonic life through to the reef-associated juvenile period. The structure of the barbel was examined histologically and found to represent an outgrowth of the gustatory (taste) system, composed of at least 50% sensory tissue at settlement. Abrupt changes in morphology were found to be coincident with the 6–12 h settlement period: barbels rapidly moved forward along the hyoid arch to abut the dentary; the length of the barbels increased by up to 52%; the epidermal layer increased to comprise 75% of the cross-sectional area; and the mean size of the taste bud cells increased by up to 100%. A strong relationship was found between barbel length and mean taste-bud size. This relationship was used to predict the mean taste-bud sizes for 237 newly-settled fish, collected as 12 samples over two recruitment seasons. Mean taste-bud size varied significantly among samples. Experiments examined whether food availability or temperature of the water within the pelagic phase influenced the size of the barbels at settlement. Food availability influenced the relationship between barbel length and fish size. Slower growing fish had larger barbels relative to fish length than those that grew faster. Temperature did not influence the relationship between barbel length and fish size. Variability in sensory development at settlement, and the factors which influence it, may have important ramifications for the potential success of the fish once on the reef.  相似文献   

12.
Goatfish use a pair of large chin barbels to probe the sea bottom to detect buried prey. The barbels are studded with taste buds but little else is known about the neural organization of this system. We found that the taste buds of the barbel are innervated in a strict orthogonal fashion. The barbel is innervated by a main nerve trunk running in the core of the barbel. A longitudinal nerve bundle originates from the main trunk and, after running a short distance distally, divides into two circumferential nerve bundles (CNB) extending respectively, medially and laterally around the barbel. Approximately 15 CNBs innervate each 1 mm length of barbel. At each transverse level, the CNB innervates two clusters of taste buds, each containing 14 end-organs. The primary taste centre in the brain is similarly extraordinary. The sensory inputs from the barbel terminate in a derived dorsal facial lobe, which has a highly convoluted surface forming a multitude of tubercles. Electrophysiological mapping experiments show that the entire barbel is somatotopically represented in a recurved elongate tubular fashion within the dorsal facial lobe.  相似文献   

13.
Zebrafish have the remarkable ability to regenerate body parts including the heart and fins by a process referred to as epimorphic regeneration. Recent studies have illustrated that similar to adult zebrafish, early life stage larvae also possess the ability to regenerate the caudal fin. A comparative microarray analysis was used to determine the degree of conservation in gene expression among the regenerating adult caudal fin, adult heart, and larval fin. Results indicate that these tissues respond to amputation/injury with strikingly similar genomic responses. Comparative analysis revealed raldh2, a rate-limiting enzyme for the synthesis of retinoic acid, as one of the most highly induced genes across the three regeneration platforms. In situ localization and functional studies indicate that raldh2 expression is critical for the formation of wound epithelium and blastema. Patterning during regenerative outgrowth was considered to be the primary function of retinoic acid signaling; however, our results suggest that it is also required for early stages of tissue regeneration. Expression of raldh2 is regulated by Wnt and fibroblast growth factor/ERK signaling.  相似文献   

14.
The morphological development, including the fins, body proportions and pigmentation, of laboratory-reared larval and juvenile Pangasianodon hypophthalmus was described and their behavioral features were observed under rearing conditions. Body lengths (BL) of larvae and juveniles were 3.0 ± 0.2 (mean ± SD) mm just after hatching, and 12.9 ± 1.1 mm on day 13, reaching 23.4 ± 1.8 mm on day 25 after hatching. Aggregate fin ray numbers (for caudal fin, principal soft ray number) attained their full complements in specimens larger than 12.8 mm BL. Notochord flexion began in yolksac larvae on day 0 (10.5 h after hatching), with teeth buds and barbels appearing with jaw formation in yolksac flexion larvae on day 1. Melanophores on the body increased with growth, with a broad vertical band forming on the lateral line and an oblique band extending from above the pectoral fin base towards the forepart of the anal fin during the postflexion larval and juvenile stages. Body proportions became relatively constant in juveniles, except for maxillary barbel length (MBL), which continued to decrease. Yolksac flexion larvae started feeding on day 2 with the onset of intense cannibalism. Yolks were completely absorbed by day 3, and cannibalism ended by day 6. Subsequently, fish displayed a schooling behavior with growth, preferring relatively dark areas during the juvenile stage.  相似文献   

15.
Medaka (Oryzias latipes) is a small freshwater teleost that provides an excellent developmental genetic model complementary to zebrafish. Our recent mutagenesis screening using medaka identified headfish (hdf) which is characterized by the absence of trunk and tail structures with nearly normal head including the midbrain-hindbrain boundary (MHB). Positional-candidate cloning revealed that the hdf mutation causes a functionally null form of Fgfr1. The fgfr1hdf is thus the first fgf receptor mutant in fish. Although FGF signaling has been implicated in mesoderm induction, mesoderm is induced normally in the fgfr1hdf mutant, but subsequently, mutant embryos fail to maintain the mesoderm, leading to defects in mesoderm derivatives, especially in trunk and tail. Furthermore, we found that morpholino knockdown of medaka fgf8 resulted in a phenotype identical to the fgfr1hdf mutant, suggesting that like its mouse counterpart, Fgf8 is a major ligand for Fgfr1 in medaka early embryogenesis. Intriguingly, Fgf8 and Fgfr1 in zebrafish are also suggested to form a major ligand-receptor pair, but their function is much diverged, as the zebrafish fgfr1 morphant and zebrafish fgf8 mutant acerebellar (ace) only fail to develop the MHB, but develop nearly unaffected trunk and tail. These results provide evidence that teleost fish have evolved divergent functions of Fgf8-Fgfr1 while maintaining the ligand-receptor relationships. Comparative analysis using different fish is thus invaluable for shedding light on evolutionary diversification of gene function.  相似文献   

16.
Epigenetic modifications such as DNA methylation and chromatin modifications are critical for regulation of spatiotemporal gene expression during development. In mammals, the de novo-type DNA methyltransferases (Dnmts), Dnmt3a and Dnmt3b, are responsible for the creation of DNA methylation patterns during development. In addition to developmental processes, we recently showed that DNA methylation levels are dynamically changed during zebrafish fin regeneration, suggesting that the de novo-type Dnmts might play roles in the regulation of gene expression during regeneration processes. Here, we showed the detailed expression profiles of three zebrafish dnmt genes (dnmt3aa, dnmt3ab, and dnmt4), which were identified as the orthologues of mammalian dnmt3a and dnmt3b, during embryonic and larval development, as well as fin regeneration processes. dnmt3aa and dnmt3ab are expressed in the brain, pharyngeal arches, pectoral fin buds, intestine, and swim bladder; the specific expression of dnmt3aa is observed in the pronephric duct during larval development. dnmt4 expression is observed in the zona limitans intrathalamica, midbrain–hindbrain boundary, ciliary marginal zone, pharyngeal arches, auditory capsule, pectoral fin buds, intestine, pancreas, liver, and hematopoietic cells in the aorta–gonad–mesonephros and caudal hematopoietic tissue from 48 to 72 h post-fertilization. Furthermore, during fin regeneration, strong dnmt3aa expression, and faint dnmt3ab and dnmt4 expression are detected in blastema cells at 72 h post-amputation. Taken together, our results suggest that zebrafish Dnmt3aa, Dnmt3ab, and Dnmt4 may play roles in the formation of various organs, such as the brain, kidney, digestive organs, and/or hematopoietic cells, as well as in the differentiation of blastema cells.  相似文献   

17.
We used the 500-bp Xenopus ef1-alpha promoter and the 2-kb zebrafish histone 2A.F/Z promoter to generate several independent transgenic zebrafish lines expressing EGFP. While both promoters drive ubiquitous EGFP expression in early zebrafish development, they are systematically silenced in several adult tissues, including the retina and caudal fin. However, EGFP expression is temporarily renewed in the adult during either caudal fin or retinal regeneration. In the Tg(H2A.F/Z:EGFP)nt line, EGFP is moderately expressed in both the wound epithelium and blastema of the regenerating caudal fin. In the Tg(ef1-alpha:EGFP)nt line, EGFP expression is reinitiated and restricted to the blastema of the regenerating caudal fin and colabels with BrdU, PCNA, and msxc-positive cells. Thus, these two ubiquitous promoters drive EGFP transgene expression in different cell populations during caudal fin regeneration. We further analyzed the ability of the ef1-alpha:EGFP transgene to label nonterminally differentiated cells during adult tissue regeneration. First, we demonstrated that the transgene is highly methylated in adult zebrafish caudal fin tissue, but not during fin regeneration, implicating methylation as a potential means of transgene silencing in this line. Next, we determined that the ef1-alpha:EGFP transgene is also re-expressed during adult retinal regeneration. Specifically, the ef1-alpha:EGFP transgene colabels with PCNA in the Müller glia, a specialized cell that is the source of neuronal progenitors during zebrafish retinal regeneration. Thus, we concluded that Tg(ef1-alpha:EGFP)nt line visually marks nonterminally differentiated cells in multiple adult regeneration environments and may prove to be a useful marker in tissue regeneration studies in zebrafish.  相似文献   

18.

Background

The zebrafish has the capacity to regenerate many tissues and organs. The caudal fin is one of the most convenient tissues to approach experimentally due to its accessibility, simple structure and fast regeneration. In this work we investigate how the regenerative capacity is affected by recurrent fin amputations and by experimental manipulations that block regeneration.

Methodology/Principal Findings

We show that consecutive repeated amputations of zebrafish caudal fin do not reduce its regeneration capacity and do not compromise any of the successive regeneration steps: wound healing, blastema formation and regenerative outgrowth. Interfering with Wnt/ß-catenin signalling using heat-shock-mediated overexpression of Dickkopf1 completely blocks fin regeneration. Notably, if these fins were re-amputated at the non-inhibitory temperature, the regenerated caudal fin reached the original length, even after several rounds of consecutive Wnt/ß-catenin signalling inhibition and re-amputation.

Conclusions/Significance

We show that the caudal fin has an almost unlimited capacity to regenerate. Even after inhibition of regeneration caused by the loss of Wnt/ß-catenin signalling, a new amputation resets the regeneration capacity within the caudal fin, suggesting that blastema formation does not depend on a pool of stem/progenitor cells that require Wnt/ß-catenin signalling for their survival.  相似文献   

19.
Certain species of urodeles and teleost fish can regenerate their tissues. Zebrafish have become a widely used model to study the spontaneous regeneration of adult tissues, such as the heart1, retina2, spinal cord3, optic nerve4, sensory hair cells5, and fins6.The zebrafish fin is a relatively simple appendage that is easily manipulated to study multiple stages in epimorphic regeneration. Classically, fin regeneration was characterized by three distinct stages: wound healing, blastema formation, and fin outgrowth. After amputating part of the fin, the surrounding epithelium proliferates and migrates over the wound. At 33 °C, this process occurs within six hours post-amputation (hpa, Figure 1B)6,7. Next, underlying cells from different lineages (ex. bone, blood, glia, fibroblast) re-enter the cell cycle to form a proliferative blastema, while the overlying epidermis continues to proliferate (Figure 1D)8. Outgrowth occurs as cells proximal to the blastema re-differentiate into their respective lineages to form new tissue (Figure 1E)8. Depending on the level of the amputation, full regeneration is completed in a week to a month.The expression of a large number of gene families, including wnt, hox, fgf, msx, retinoic acid, shh, notch, bmp, and activin-betaA genes, is up-regulated during specific stages of fin regeneration9-16. However, the roles of these genes and their encoded proteins during regeneration have been difficult to assess, unless a specific inhibitor for the protein exists13, a temperature-sensitive mutant exists or a transgenic animal (either overexpressing the wild-type protein or a dominant-negative protein) was generated7,12. We developed a reverse genetic technique to quickly and easily test the function of any gene during fin regeneration.Morpholino oligonucleotides are widely used to study loss of specific proteins during zebrafish, Xenopus, chick, and mouse development17-19. Morpholinos basepair with a complementary RNA sequence to either block pre-mRNA splicing or mRNA translation. We describe a method to efficiently introduce fluorescein-tagged antisense morpholinos into regenerating zebrafish fins to knockdown expression of the target protein. The morpholino is micro-injected into each blastema of the regenerating zebrafish tail fin and electroporated into the surrounding cells. Fluorescein provides the charge to electroporate the morpholino and to visualize the morpholino in the fin tissue.This protocol permits conditional protein knockdown to examine the role of specific proteins during regenerative fin outgrowth. In the Discussion, we describe how this approach can be adapted to study the role of specific proteins during wound healing or blastema formation, as well as a potential marker of cell migration during blastema formation.  相似文献   

20.
A new species of hillstream loach Balitora eddsi is described from the Karnali River drainage in south‐western Nepal. The new species is distinguished from all its congeners by possessing the following combination of characters: six to seven unbranched pectoral‐fin rays, pelvic‐fin length 12–14% standard length (LS), dorsal surface without circular or irregular shaped dark blotches, snout pointed, median lobe between anterior rostral barbels pointed posteriorly, dorsal‐fin origin posterior to pelvic‐fin origin, lateral line scales 66–67, caudal peduncle length 22–23·2% LS, caudal peduncle depth 4·1–4·2 times its length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号