首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Comparative plastomics approaches have been used to identify available molecular markers for different taxonomic level studies of orchid species. However, the adoption of such methods has been largely limited in phylogeographic studies. Therefore, in this study, Dendrobium huoshanense, an endangered species with extremely small populations, was used as a model system to test whether the comparative plastomic approaches could screen available molecular markers for the phylogeographic study. We sequenced two more plastomes of D. huoshanense and compared them with our previously published one. A total of 27 mutational hotspot regions and six polymorphic cpSSRs have been screened for the phylogeographic studies of D. huoshanense. The cpDNA haplotype data revealed that the existence of haplotype distribution center was located in Dabieshan Mts. (Huoshan). The genetic diversity and phylogenetic analyses showed that the populations of D. huoshanense have been isolated and evolved independently for long period. On the contrary, based on cpSSR data, the genetic structure analysis revealed a mixed structure among the populations in Anhui and Jiangxi province, which suggested that the hybridization or introgression events have occurred among the populations of D. huoshanense. These results indicated that human activities have played key roles in shaping the genetic diversity and distributional patterns of D. huoshanense. According to our results, both two markers showed a high resolution for the phylogeographic studies of D. huoshanense. Therefore, we put forth that comparative plastomic approaches could revealed available molecular markers for phylogeographic study, especially for the species with extremely small populations.  相似文献   

2.
The Andean uplift has played a major role in shaping the current Neotropical biodiversity. However, in arthropods other than butterflies, little is known about how this geographic barrier has impacted species historical diversification. Here, we examined the phylogeography of the widespread color polymorphic spider Gasteracantha cancriformis to evaluate the effect of the northern Andean uplift on its divergence and assess whether its diversification occurred in the presence of gene flow. We inferred phylogenetic relationships and divergence times in G. cancriformis using mitochondrial and nuclear data from 105 individuals in northern South America. Genetic diversity, divergence, and population structure were quantified. We also compared multiple demographic scenarios for this species using a model‐based approach (Phrapl ) to determine divergence with or without gene flow. At last, we evaluated the association between genetic variation and color polymorphism. Both nuclear and mitochondrial data supported two well‐differentiated clades, which correspond to populations occurring on opposite sides of the Eastern cordillera of the Colombian Andes. The final uplift of this cordillera was identified as the most likely force that shaped the diversification of G. cancriformis in northern South America, resulting in a cis‐ and trans‐Andean phylogeographic structure for the species. We also found shared genetic variation between the cis‐ and trans‐Andean clades, which is better explained by a scenario of historical divergence in the face of gene flow. This has been likely facilitated by the presence of low‐elevation passes across the Eastern Colombian cordillera. Our work constitutes the first example in which the Andean uplift coupled with gene flow influenced the evolutionary history of an arachnid lineage.  相似文献   

3.
Aim Many tropical tree species have poorly delimited taxonomic boundaries and contain undescribed or cryptic species. We examined the genetic structure of a species complex in the tree genus Carapa in the Neotropics in order to evaluate age, geographic patterns of diversity and evolutionary relationships, and to quantify levels of introgression among currently recognized species. Location Lowland moist forests in the Guiana Shield, the Central and Western Amazon Basin, Chocó and Central America. Methods Genetic structure was analysed using seven nuclear simple sequence repeats (nuSSR), five chloroplast SSRs (cpSSR), and two chloroplast DNA (cpDNA) intergenic sequences (trnH–psbA and trnC–ycf6). Bayesian clustering analysis of the SSR data was used to infer population genetic structure and to assign 324 samples to their most likely genetic cluster. Bayesian coalescence analyses were performed on the two cpDNA markers to estimate evolutionary relationships and divergence times. Results Two genetic clusters (nu_guianensis and nu_surinamensis) were detected, which correspond to the Neotropical species C. guianensis (sensu latu) and C. surinamensis. Fourteen cpDNA haplotypes clustered into six haplogroups distributed between the two nuclear genetic clusters. Divergence between the haplogroups was initiated in the Miocene, with some haplotype structure evolving as recently as the Pleistocene. The absence of complete lineage sorting between the nuclear and chloroplast genomes and the presence of hybrid individuals suggest that interspecific reproductive barriers are incomplete. NuSSR diversity was highest in C. guianensis and, within C. guianensis, cpDNA diversity was highest in the Central and Western Amazon Basin. Regional genetic differentiation was strong but did not conform to an isolation‐by‐distance process or exhibit a phylogeographical signal. Main conclusions The biogeographical history of Neotropical Carapa appears to have been influenced by events that took place during the Neogene. Our results point to an Amazonian centre of origin and diversification of Neotropical Carapa, with subsequent migration to the Pacific coast of South America and Central America. Gene flow apparently occurs among species, and introgression events are supported by inconsistencies between chloroplast and nuclear lineage sorting. The absence of phylogeographical structure may be a result of the ineffectiveness of geographical barriers among populations and of reproductive isolation mechanisms among incipient and cryptic species in this species complex.  相似文献   

4.
Aim We analysed variation in chloroplast DNA (cpDNA) in red maple (Acer rubrum L.) and silver maple (Acer saccharinum L.) across a large part of their geographic ranges. Acer rubrum is one of the most common and morphologically variable deciduous trees of eastern North America, while its sister species A. saccharinum has a more restricted habitat distribution and displays markedly less morphological variation. Our objective was to infer the impact of biogeographic history on cpDNA diversity and phylogeographic structure in both species. Location Deciduous forests of eastern North America. Methods We sequenced 1289 to 1645 bp of non‐coding cpDNA from A. rubrum (n = 258) and A. saccharinum (n = 83). Maximum parsimony networks and spatial analysis of molecular variance (SAMOVA) were used to analyse phylogeographic structure. Rarefaction analyses were used to compare genetic diversity. Results A total of 40 cpDNA haplotypes were recovered from A. rubrum (38 haplotypes) and A. saccharinum (7 haplotypes). Five of the seven A. saccharinum haplotypes were shared with nearby samples of A. rubrum. SAMOVA recovered four phylogeographic groups for A. rubrum in: (1) south‐eastern USA, (2) the Gulf and south‐eastern Coastal Plain, (3) the lower Mississippi River Valley, and (4) the central and northern regions of eastern North America. Acer saccharinum had significantly lower haplotype diversity than A. rubrum, and novel haplotypes in post‐glaciated northern limits of its range were shared with A. rubrum. Main conclusions This is the first study of A. rubrum to report a distinct phylogeographic group centred on the lower Mississippi River, and the first to examine data comparatively with A. saccharinum. We hypothesized that A. rubrum would display stronger phylogeographic structure and greater haplotype diversity than A. saccharinum because of its greater geographic range, and ecological and morphological variation. This hypothesis was supported by the cpDNA analysis. The sharing of cpDNA and chloroplast simple sequence repeat (cpSSR) haplotypes in areas of geographic overlap provides evidence of introgression, which led to an increase in haplotype diversity in both species, and to novel phylogeographic structure in A. rubrum. We recommend that introgression be considered, along with other potential causes, as an explanation for the phylogeographic structure of cpDNA in plants.  相似文献   

5.
Andean orogenesis has driven the development of very high plant diversity in the Neotropics through its impact on landscape evolution and climate. The analysis of the intraspecific patterns of genetic structure in plants would permit inferring the effects of Andean uplift on the evolution and diversification of Neotropical flora. In this study, using microsatellite markers and Bayesian clustering analyses, we report the presence of four genetic clusters for the palm Oenocarpus bataua var. bataua which are located within four biogeographic regions in northwestern South America: (a) Chocó rain forest, (b) Amotape‐Huancabamba Zone, (c) northwestern Amazonian rain forest, and (d) southwestern Amazonian rain forest. We hypothesize that these clusters developed following three genetic diversification events mainly promoted by Andean orogenic events. Additionally, the distinct current climate dynamics among northwestern and southwestern Amazonia may maintain the genetic diversification detected in the western Amazon basin. Genetic exchange was identified between the clusters, including across the Andes region, discarding the possibility of any cluster to diversify as a distinct intraspecific variety. We identified a hot spot of genetic diversity in the northern Peruvian Amazon around the locality of Iquitos. We also detected a decrease in diversity with distance from this area in westward and southward direction within the Amazon basin and the eastern Andean foothills. Additionally, we confirmed the existence and divergence of O. bataua var. bataua from var. oligocarpus in northern South America, possibly expanding the distributional range of the latter variety beyond eastern Venezuela, to the central and eastern Andean cordilleras of Colombia. Based on our results, we suggest that Andean orogenesis is the main driver of genetic structuring and diversification in O. bataua within northwestern South America.  相似文献   

6.
We analyzed variations in chloroplast DNA (cpDNA) in the widespread herbaceous species Hosta sieboldiana and Hosta albomarginata across large portions of their geographic ranges in the Japanese archipelago. Our objective was to compare the phylogeographic histories and phylogeographic structures of the two congeneric species in the Japanese archipelago. The location of the study is Japanese archipelago. We sequenced 1380 bp of noncoding cpDNA from 45 populations of H. sieboldiana (= 362) and 55 populations of H. albomarginata (= 436) to assess genetic variations within and among populations across almost the entire distributions of the species in Japan. Extant patterns of geographic structure were analyzed using statistical parsimony networks and spatial analysis of molecular variance (SAMOVA). We also used Monmonier's algorithm to detect genetic barriers between regions. Relationships between the populations were examined using a neighbor‐joining (NJ) method. Four haplotypes were found for H. sieboldiana, whereas eight haplotypes were identified for H. albomarginata. Total genetic haplotype diversity (hT) and within‐population haplotype diversity (hS) for H. sieboldiana were 0.352 and 0.040, respectively, while the values for Halbomarginata were 0.529 and 0.085, respectively. The population differentiations (GST) for H. sieboldiana and Halbomarginata were 0.839 and 0.886, respectively. The SAMOVA analysis revealed two clusters in H. sieboldiana and four clusters in H. albomarginata. Differentiations between and among the clusters were supported by the BARRIER analysis and the NJ tree. We detected differences in the population genetic structure between the two species. We found that H. sieboldiana had lower haplotype diversity than H. albomarginata. These results may be partially explained by the difference in ecological habitats and geographic distributions between the species. Hosta albomarginata is more widely distributed than Hsieboldiana in East Asia including Russia, and this large distribution range would enable more chances to intraspecific gene flow.  相似文献   

7.
Population genetic studies are efficient for inferring the invasion history based on a comparison of native and invasive populations, especially when conducted at species scale. An expected outcome in invasive populations is variability loss, and this is especially true in self‐fertilizing species. We here focus on the self‐fertilizing Pseudosuccinea columella, an invasive hermaphroditic freshwater snail that has greatly expanded its geographic distribution and that acts as intermediate host of Fasciola hepatica, the causative agent of human and veterinary fasciolosis. We evaluated the distribution of genetic diversity at the largest geographic scale analysed to date in this species by surveying 80 populations collected during 16 years from 14 countries, using eight nuclear microsatellites and two mitochondrial genes. As expected, populations from North America, the putative origin area, were strongly structured by selfing and history and harboured much more genetic variability than invasive populations. We found high selfing rates (when it was possible to infer it), none‐to‐low genetic variability and strong population structure in most invasive populations. Strikingly, we found a unique genotype/haplotype in populations from eight invaded regions sampled all over the world. Moreover, snail populations resistant to infection by the parasite are genetically distinct from susceptible populations. Our results are compatible with repeated introductions in South America and flash worldwide invasion by this unique genotype/haplotype. Our study illustrates the population genetic consequences of biological invasion in a highly selfing species at very large geographic scale. We discuss how such a large‐scale flash invasion may affect the spread of fasciolosis.  相似文献   

8.
Aphid species within the genus Tuberculatus Mordvilko (Hemiptera: Aphididae) exhibit a variety of interactions with ants, ranging from close associations to non‐attendance. A previous study indicated that despite wing possession, ant‐attended Tuberculatus species exhibited low dispersal rates compared with non‐attended species. This study examined if presence or absence of mutualistic interactions and habitat continuity of host plants affected intraspecific genetic diversity and genetic differentiation in mitochondrial DNA cytochrome oxidase I (COI) sequences. Sympatric ant‐attended Tuberculatus quercicola (Matsumura) (Hemiptera: Aphididae) and non‐attended Tuberculatus paiki Hille Ris Lambers (Hemiptera: Aphididae) were collected from the daimyo oak Quercus dentata Thunberg (Fagales: Fagaceae) in Japan and examined for haplotype variability. Seventeen haplotypes were identified in 568 T. quercicola individuals representing 23 populations and seven haplotypes in 425 T. paiki representing 19 populations. Haplotype diversity, which indicates the mean number of differences between all pairs of haplotypes in the sample, and nucleotide diversity were higher in T. quercicola than T. paiki. Analysis of molecular variance (AMOVA) showed higher genetic differentiation among populations within groups of T. quercicola (39.8%) than T. paiki (22.6%). The effects of attendant ant species on genetic differentiation in T. quercicola were not distinguishable from geographic factors. Despite low dispersal rates, host plant habitat continuity might facilitate widespread dispersal of a T. quercicola haplotype in Hokkaido. These results suggested that following T. quercicola colonization, gene flow among populations was limited, resulting in genetic drift within populations. However, frequent T. paiki dispersal is clearly evident by low genetic differentiation among populations within groups, resulting in lower haplotype diversity.  相似文献   

9.
Western North America includes the California Floristic Province and the Pacific Northwest, biologically diverse regions highlighted by a complex topography, geology, climate and history. A number of animals span these regions and show distinctive patterns of dispersal, vicariance and lineage diversification. Examining phylogeographic patterns in the fauna of this area aids in our understanding of the forces that have contributed to the generation and maintenance of regional biodiversity. Here, we investigate the biogeography and population structure of the Northern Alligator Lizard (Elgaria coerulea), a wide‐ranging anguid endemic to western North America. We sequenced two mtDNA fragments (ND2 and ND4) for 181 individuals across the range of the species and analysed these data with phylogenetic approaches to infer population and biogeographic history, and date major divergences within the taxon. We further used Bayesian clustering methods to assess major patterns of population structure and performed ecological niche modelling (ENM) to aid in our interpretation of geographic structure and diversification of E. coerulea lineages. Our phylogeographic examination of E. coerulea uncovered surprising diversity and structure, recovering 10 major lineages, each with substantial geographic substructure. While some divergences within the species are relatively old (Pliocene, 5.3–2.6 mya), most intraspecific variation appears to be of more recent origin (Pleistocene, 2.6 mya‐11,700 ya). Current diversity appears to have arisen in the Sierra Nevada Mountains and spread west and north since the Pliocene. Finally, our ENMs suggest that much of the Coast Ranges in California provided ideal habitat during the Last Glacial Maxima (LGM) that has since contracted dramatically and shifted northwards, whereas significant portions of the Sierra Nevada were unsuitable during the LGM and have since become more suitable. Interestingly, E. coerulea shares a number of genetic boundaries with other sympatric taxa, suggesting common historical events and geomorphological features have shaped the biota of this region.  相似文献   

10.
Using evolutionary theory to predict the dynamics of populations is one of the aims of evolutionary conservation. In endangered species, with geographic range extending over continuous areas, the predictive capacity of evolutionary‐based conservation measures greatly depends on the accurate identification of reproductive units. The endangered European eel (Anguilla anguilla) is a highly migratory fish species with declining population due to a steep recruitment collapse in the beginning of the 1980s. Despite punctual observations of genetic structure, the population is viewed as a single panmictic reproductive unit. To understand the possible origin of the detected structure in this species, we used a combination of mitochondrial and nuclear loci to indirectly evaluate the possible existence of cryptic demes. For that, 403 glass eels from three successive cohorts arriving at a single location were screened for phenotypic and genetic diversity, while controlling for possible geographic variation. Over the 3 years of sampling, we consistently identified three major matrilines which we hypothesized to represent demes. Interestingly, not only we found that population genetic models support the existence of those matriline‐driven demes over a completely panmictic mode of reproduction, but also we found evidence for asymmetric gene flow amongst those demes. We uphold the suggestion that the detection of demes related to those matrilines reflect a fragmented spawning ground, a conceptually plausible consequence of the low abundance that the European eel has been experiencing for three decades. Furthermore, we suggest that this cryptic organization may contribute to the maintenance of the adaptive potential of the species.  相似文献   

11.
Phylogeography of B atrachospermum viride‐brasiliense was investigated using two mitochondrial regions: the cox2‐3 spacer and the barcode region of cox1 gene. Eighty‐seven individuals were analyzed from nine stream segments throughout its distribution in Brazil. Ten cox2‐3 spacer and nine cox1 haplotypes were observed among the individuals studied (87 vs. 43, respectively). Divergences among haplotypes were relatively low (≤2.4% for cox2‐3 and ≤1.8% for cox1). Most locations have a single haplotype, whereas only two locations had two haplotypes for both markers. The haplotype network for cox2‐3 showed a phylogeographic trend from the south towards the southeast with haplotypes from the southeast more closely related. For cox1 a trend from the southeast spreading towards the south and north was revealed, with the southern haplotypes more closely associated. Results clearly indicated that B . viride‐brasiliense represents a single species and the phylogeographic pattern consisted of a closely connected group of haplotypes from southern and southeastern Brazil. Levels of intra‐ and inter‐population variation were similar for the two markers with slightly higher values for cox2‐3. The trend observed in this study is similar to that in other members of Batrachospermales with little variation within a stream segment (one or two haplotypes) and more distant haplotypes showing higher divergences. This pattern could be attributed to the fact that colonization of a site might be rare by a single event with subsequent proliferation of the population. The geographic distribution of B . viride‐brasiliense was interpreted according to the biogeographic models proposed for South America being limited to three morpho‐climatic domains or biogeographic provinces: tropical Atlantic rainforest, sub‐tropical rainforest and cerrado (Brazilian savannah).  相似文献   

12.
The evolutionary influences of historical and contemporary factors on the population connectivity and phylogeographic structure of a brown seaweed, Sargassum ilicifolium, were elucidated using the nuclear ITS2 and mitochondrial COI markers for the collections newly sampled within its distribution range in the northwestern Pacific (NWP). Significant genetic structure at variable levels was identified between populations (pairwise FST) and among populations grouped by geographical proximity (ΦCT among regions). The adjacent groups of populations with moderate structure revealed from AMOVA appeared to have high genetic connectivity. However, a lack of genealogical concordance with the geographic distribution was uncovered for S. ilicifolium from the NWP. Such genetic homogeneity is interpreted as a result of the interaction between postglacial recolonization and dynamic oceanic current regimes in the region. Two separated glacial refugia, the South China Sea and the Okinawa Trough, in the marginal seas of east China were recognized based on the presence of endemic haplotypes and high haplotype diversity in the populations at southern China and northeast of Taiwan. Populations persisting in these refugia may have served as the source for recolonization in the NWP with the rise of sea level during the warmer interglacial periods. The role of oceanic currents in maintaining genetic connectivity of S. ilicifolium in the region was further corroborated by the coherence between the direction of oceanic currents and that of gene flow, especially along the eastern coast of Taiwan. This study underlines the interaction between historical postglacial recolonization and contemporary coastal hydrodynamics in contributing to population connectivity and distribution for this tropical seaweed in the NWP.  相似文献   

13.
Evolutionary transitions from outcrossing to selfing can strongly affect the genetic diversity and structure of species at multiple spatial scales. We investigated the genetic consequences of mating‐system shifts in the North American, Pacific coast dune endemic plant Camissoniopsis cheiranthifolia (Onagraceae) by assaying variation at 13 nuclear (n) and six chloroplast (cp) microsatellite (SSR) loci for 38 populations across the species range. As predicted from the expected reduction in effective population size (Ne) caused by selfing, small‐flowered, predominantly selfing (SF) populations had much lower nSSR diversity (but not cpSSR) than large‐flowered, predominantly outcrossing (LF) populations. The reduction in nSSR diversity was greater than expected from the effects of selfing on Ne alone, but could not be accounted for by indirect effects of selfing on population density. Although selfing should reduce gene flow, SF populations were not more genetically differentiated than LF populations. We detected five clusters of nSSR genotypes and three groups of cpSSR haplotypes across the species range consisting of parapatric groups of populations that usually (but not always) differed in mating system, suggesting that selfing may often initiate ecogeographic isolation. However, lineage‐wide genetic variation was not lower for selfing clusters, failing to support the hypothesis that selection for reproductive assurance spurred the evolution of selfing in this species. Within three populations where LF and SF plants coexist, we detected genetic differentiation among diverged floral phenotypes suggesting that reproductive isolation (probably postzygotic) may help maintain the striking mating‐system differentiation observed across the range of this species.  相似文献   

14.
Nineteen populations of Clintonia udensis Trautv. & Mey. were examined to quantify genetic diversity and genetic structure by chloroplast DNA microsatellites (cpSSR). Significant cpSSR genetic diversity (PPB = 63.64%) was detected in this species. Tetraploid populations demonstrated approximately the same level of genetic diversity as the diploid ones. A significant differentiation, however, was found between tetraploids and diploids. Most of the sixteen chloroplast haplotypes were limited to a single population. The level of haplotype diversity was high (Hd = 0.915). AMOVA, PCA and Bayesian clustering analysis revealed that there were significant genetic differences among populations. Inter-population genetic distances among population sites correlated significantly with geographic distances. These results indicate that the mixed-mating – breeding system, limited gene flow, environmental stress, and historical factors may be the main factors causing geographical differentiation in the genetic structure of C. udensis.  相似文献   

15.
Across western North America, Mimulus guttatus exists as many local populations adapted to site‐specific environmental challenges. Gene flow between locally adapted populations will affect genetic diversity both within demes and across the larger metapopulation. Here, we analyse 34 whole‐genome sequences from the intensively studied Iron Mountain population (IM) in conjunction with sequences from 22 Mimulus individuals sampled from across western North America. Three striking features of these data address hypotheses about migration and selection in a locally adapted population. First, we find very high levels of intrapopulation polymorphism (synonymous π = 0.033). Variation outside of genes is likely even higher but difficult to estimate because excessive divergence reduces the efficiency of read mapping. Second, IM exhibits a significantly positive genomewide average for Tajima's D. This indicates allele frequencies are typically more intermediate than expected from neutrality, opposite the pattern observed in many other species. Third, IM exhibits a distinctive haplotype structure with a genomewide excess of positive associations between rarer alleles at linked loci. This suggests an important effect of gene flow from other Mimulus populations, although a residual effect of population founding might also contribute. The combination of multiple analyses, including a novel tree‐based analytic method, illustrates how the balance of local selection, limited dispersal and metapopulation dynamics manifests across the genome. The overall genomic pattern of sequence diversity suggests successful gene flow of divergent immigrant genotypes into IM. However, many loci show patterns indicative of local adaptation, particularly at SNPs associated with chromosomal inversions.  相似文献   

16.
Southwest China is an important biodiversity hotspot. The interactions among the complex topography, climate change, and ecological factors in the dry‐hot valley areas in southwest China may have profoundly affected the genetic structure of plant species in this region. In this study, we determined the effects of the Tanaka Line on genetic variation in the wild Bombax ceiba tree in southwest China. We sampled 224 individuals from 17 populations throughout the dry‐hot valley regions. Six polymorphic expressed sequence tag–simple sequence repeat primers were employed to sequence the PCR products using the first‐generation Sanger technique. The analysis based on population genetics suggested that B. ceiba exhibited a high level of gene diversity (HE: 0.2377–0.4775; I: 0.3997–0.7848). The 17 populations were divided into two groups by cluster analysis, which corresponded to geographic characters on each side of the Tanaka Line. In addition, a Mantel test indicated that the phylogeographic structure among the populations could be fitted to the isolation‐by‐distance model (r2 = .2553, < .001). A barrier test indicated that there were obstacles among populations and between the two groups due to complex terrain isolation and geographic heterogeneity. We inferred that the Tanaka Line might have promoted the intraspecific phylogeographic subdivision and divergence of B. ceiba. These results provide new insights into the effects of the Tanaka Line on genetic isolation and population differentiation of plant species in southwest China.  相似文献   

17.
The Eastern Afromontane Biodiversity Hotspot is known for microendemism and exceptional population genetic structure. The region's landscape heterogeneity is thought to limit gene flow between fragmented populations and create opportunities for regional adaptation, but the processes involved are poorly understood. Using a combination of phylogeographic analyses and circuit theory, I investigate how characteristics of landscape heterogeneity including regional distributions of slope, rivers and streams, habitat and hydrological basins (drainages) impact genetic distance among populations of the endemic spotted reed frog (Hyperolius substriatus), identifying corridors of connectivity as well as barriers to dispersal. Results show that genetic distance among populations is most strongly correlated to regional and local hydrologic structure and the distribution of suitable habitat corridors, not isolation by distance. Contrary to expectations, phylogeographic structure is not coincident with the two montane systems, but instead corresponds to the split between the region's two major hydrological basins (Zambezi and East Central Coastal). This results in a paraphyletic relationship for the Malawian Highlands populations with respect to the Eastern Arc Mountains and implies that the northern Malawian Highlands are the diversity centre for H. substriatus. Although the Malawian Highlands collectively hold the greatest genetic diversity, individual populations have lower diversity than their Eastern Arc counterparts, with an overall pattern of decreasing population diversity from north to south. Through the study of intraspecific differentiation across a mosaic of ecosystem and geographic heterogeneity, we gain insight into the processes of diversification and a broader understanding of the role of landscape in evolution.  相似文献   

18.
We characterised the phylogeographic patterns displayed by five species of bumblebees with largely overlapping ranges in Eurasia, but different levels of range fragmentation, range size and food specialization. Genetic variation across the range of each species was explored by using sequence variation of a total of 368 specimens at one mitochondrial and two nuclear DNA fragments (total of ~2380 bp). Comparing patterns of genetic variation across species allowed us to investigate whether diet specialization, relative range size and/or fragmentation, impact phylogeographic patterns in bumblebees. As expected, stronger fragmentations of the species range are associated with a stronger overall geographic differentiation. Furthermore, diet specialization appears to increase population structure at the landscape level, presumably due to the less widespread and more heterogeneously distributed food resources. Conversely, no clear association was highlighted between diet specialization or overall range size and genetic diversity. Surprisingly, the two generalist and co‐distributed species investigated, B. pratorum and B. hortorum, displayed widely divergent patterns in terms of genetic diversity and population structure. We suggest these differences are best explained by contrasting responses to past climate changes, possibly involving different glacial refuges. Overall, our results are compatible with a combined impact of two interacting parameters on intraspecific genetic variation: environment disturbances (presumably related to past climate changes) and features specific to the organism, such as diet specialization. They thus further highlight the challenge of dissociating both parameters in phylogeographic studies.  相似文献   

19.
The aquatic lineage consisting of the sister taxa Oxalis dines and O. disticha is confined to a few small vernal pools in the semi-arid Greater Cape Floristic Region of South Africa. All known populations are at risk of extinction due to anthropogenically induced disturbance. To identify priority sites for focused conservation management, the chloroplast intergenic spacer regions psbA-trnH and trnS-trnG were used to determine population structure and genetic diversity in this lineage across its distribution range. Population viability was assessed using flower morph ratios as surrogate for sexual health. Fourteen and four haplotypes were identified from O. disticha and O. dines populations, respectively. Analyses of Molecular Variance indicated an extremely high level of interpopulation differentiation across the entire aquatic lineage as well as within O. disticha and O. dines. Fifty percent of the eighteen haplotypes were confined to single pools, and 84% of populations contained only a single haplotype, even though pool interspacing distance for O. disticha was often less than 5 km. Almost half of O. disticha haplotype diversity was restricted to very small populations. Two O. dines haplotypes were restricted to small populations, with one of these presenting a divergent haplotype sister to the remainder of the aquatic lineage. Flower morph frequency ratio analyses suggested that most populations were reproductively healthy. Low haplotypic diversity within local populations and differentiation between populations are consistent with very low seed-level gene flow and sporadic founder effects. Conservation efforts should be focussed on preserving as many pools as possible with small, genetically distinct populations representing a main concern.  相似文献   

20.
This study was a first analysis of paternal genetic diversity for extensive Asian domestic goats using SRY gene sequences. Sequencing comparison of the SRY 3′‐untranslated region among 210 Asian goats revealed four haplotypes (Y1A, Y1B, Y2A and Y2B) derived from four variable sites including a novel substitution detected in this study. In Asian goats, the predominant haplotype was Y1A (62%) and second most common was Y2B (30%). Interestingly, the Y2B was a unique East Asian Y chromosomal variant, which differentiates eastern and western Eurasian goats. The SRY geographic distribution in Myanmar and Cambodia indicated predominant the haplotype Y1A in plains areas and a high frequency of Y2B in mountain areas. The results suggest recent genetic infiltration of modern breeds into South‐East Asian goats and an ancestral SRY Y2B haplotype in Asian native goats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号