首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most analyses on allometry of long bones in terrestrial mammals have focused on dimensional allometry, relating external bone measurements either to each other or to body mass. In this article, an analysis of long bone mass to body mass in 64 different species of mammals, spanning three orders of magnitude in body mass, is presented. As previously reported from analyses on total skeletal mass to body mass in terrestrial vertebrates, the masses of most appendicular bones scale with significant positive allometry. These include the pectoral and pelvic girdles, humerus, radius+ulna, and forelimb. Total hindlimb mass and the masses of individual hindlimb bones (femur, tibia, and metatarsus) scale isometrically. Metapodial mass correlates more poorly with body mass than the girdles or any of the long bones. Metapodial mass probably reflects locomotor behavior to a greater extent than do the long bones. Long bone mass in small mammals (<50 kg) scales with significantly greater positive allometry than bone mass in large (>50 kg) mammals, probably because of the proportionally shorter long bones of large mammals as a means of preserving resistance to bending forces at large body sizes. The positive allometric scaling of the skeleton in terrestrial animals has implications for the maximal size attainable, and it is possible that the largest sauropod dinosaurs approached this limit.  相似文献   

2.
The standard differential scaling of proportions in limb long bones (length against circumference) was applied to a phylogenetically wide sample of the Proboscidea, Elephantidae and the Asian (Elephas maximus) and African (Loxodonta africana) elephants. In order to investigate allometric patterns in proboscideans and terrestrial mammals with parasagittal limb kinematics, the computed slopes between long bone lengths and circumferences (slenderness exponents) were compared with published values for mammals, and studied within a framework of the theoretical models of long bone scaling under gravity and muscle forces. Limb bone allometry in E. maximus and the Elephantidae is congruent with adaptation to bending and/or torsion induced by muscular forces during fast locomotion, as in other mammals, whereas the limb bones in L. africana appear to be adapted for coping with the compressive forces of gravity. Hindlimb bones are therefore more compliant than forelimb bones, and the resultant limb compliance gradient in extinct and extant elephants, contrasting in sign to that of other mammals, is shown to be a new important locomotory constraint preventing elephants from achieving a full‐body aerial phase during fast locomotion. Moreover, the limb bone pattern of African elephants, indicating a noncritical bone stress not increasing with increments in body weight, explains why their mean and maximal body masses are usually above those for Asian elephants. Differences in ecology may be responsible for the subtle differences observed in vivo between African and Asian elephants, but they appear to be more pronounced when revealed via mechanical patterns dictated by limb bone allometry. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 16–29.  相似文献   

3.
Allometric analysis was employed to compare linear dimensions of forelimb and hindlimb bones (humeri, radii, third and fifth metacarpals, third and fifth manual phalanges, femora, and tibiae) of 227 species of bats and 105 species of nonvolant mammals of varying degrees of phylogenetic affinity to bats. After accounting for body size, all forelimb bones are longer in bats than in nonvolant species, with the exception of humeri and radii of a few highly arboreal primates. Hindlimb bones are generally, but not uniformly, shorter in bats than in other mammals. For the humerus, radius, and metacarpals, midshaft diameters are greater in bats than in their comparably sized relatives. Proximal phalangeal midshaft diameters are statistically indistinguishable from those of other mammals, and distal phalanges show significantly reduced outer diameters. The pattern of relative reduction in wing bone diameters along the wing's proximodistal axis parallels the reduction in bone mineralization along the same axis, and a similar pattern of change in cortical thickness from the smallest wall thicknesses among mammals in the humerus and radius to the greatest wall thicknesses among mammals in the phalanges. The combination of altered cross-sectional geometry and mineralization appears significantly to reduce the mass moment of inertia of the bat wing relative to a theoretical condition in which elongated bones preserve primitive mammalian mineralization levels and patterns of scaling of long bone diameters. This intercorrelated suite of skeletal specializations may significantly reduce the inertial power of flight, contributing significant energetic savings to the total energy budgets of the only flying mammals. J. Morphol. 234: 277–294, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Body shape and size are important axes of organismal diversification. The elongate body form has evolved repeatedly in disparate vertebrate clades, and is associated with a variety of maximum body lengths. We used a time‐calibrated phylogeny for 40 species of moray eels to analyse the evolution of elongation and the morphological mechanisms underlying variation in body shape and maximum body length. We find that body elongation in morays evolves independently of elongation of the vertebral column. In contrast, maximum body length evolves by a different mechanism: through region‐specific increases in vertebral number, elongation of individual vertebral centra, and postembryonic somatic growth. We reconstruct an ancestral moray eel and provide evidence for accelerated morphological evolution in three highly elongate species that are associated with a burrowing lifestyle. We compare these patterns with those described for other vertebrates, and show that body shape and body length may evolve independently of each other and (in the case of shape) of the vertebral column. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 861–875.  相似文献   

5.
The functional characteristics of prey items (such as hardness and evasiveness) have been linked with cranial morphology and performance in vertebrates. In lizards particularly, species with more robust crania generally feed on harder prey items and possess a greater bite force, whereas those that prey on evasive prey typically have longer snouts. However, the link between dietary niche breadth, morphology, and performance has not been explicitly investigated in lizards. The southern African genus Nucras was used to investigate this link because the species exhibit differing niche breadth values and dietary compositions. A phylogeny for the genus was established using mitochondrial and nuclear markers, and morphological clusters were identified. Dietary data of five Nucras species, as reported previously, were used in correlation analyses between cranial shape (quantified using geometric morphometrics) and dietary niche breadth, and the proportion of hard prey taken and bite force capacity. Dietary niche breadth and the proportion of hard prey eaten were significantly related to cranial shape, although not once phylogeny was accounted for using a phylogenetic generalized least squares regression. The proportion of evasive prey eaten was a significant predictor of forelimb length when phylogeny was taken into account. We conclude that, in Nucras, the percentage of evasive prey taken co‐evolves with forelimb morphology, and dietary niche breadth co‐evolves with cranial shape. However, although head width is correlated with the proportion of hard prey eaten, this appears to be the result of shared ancestry rather than adaptive evolution. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 674–688.  相似文献   

6.
The transverse and sagittal diameters of the long bones were measured in a sample of 53 species of eutherian mammals and 36 species of birds. The scaling of the transverse and sagittal diameters of each bone to body mass was calculated. For each bone the ratio of sagittal/transverse diameter was calculated, as an expression of the cross-sectional shape of the bones. The distributions of the ratios were not significantly different from normality in all the avian bones and in the mammalian femur and tibia. In most cases, the mean of the distribution was significantly different from 1 (circular shape). The analysis shows that changes in the ratio can be caused by selective factors, considering the correlation predicted between the breaking moments and the radii, but at the same time the cross-sectional shape of mammalian and avian long bones may have a phylogenetic basis. Finally, the previous assumption of relationship between bone curvature and stress predictability, is also discussed.  相似文献   

7.
Scale effects on whole limb morphology (i.e. bones together with in situ overlying muscles) are well understood for the neognath forelimb. However, scale effects on neognath gross hindlimb morphology remain largely unexplored. To broaden our understanding of avian whole limb morphology, I investigated the scaling of hindlimb inertial properties in neognath birds, testing empirical scaling relationships against the model of geometric similarity. Inertial property data – mass, moment of inertia, centre of mass distance, and radius of gyration – were collected from 22 neognath species representing a wide range of locomotor specializations. When scaled against body mass, hindlimb inertial properties scale with positive allometry. Thus, in terms of morphology, larger bodied neognaths possess hindlimbs requiring disproportionately more energy to accelerate and decelerate relative to body mass than smaller bodied birds. When scaled against limb length, hindlimb inertial properties scale according to isometry. In the subclade Land Birds (sensu Hackett et al.), hindlimb inertial properties largely scale according to positive allometry. The contrasting results of positive allometry vs. isometry in neognaths are due to how hindlimb length scales against body mass. Negative allometry of hindlimb inertial properties, which would reduce terrestrial locomotion costs, would probably make the hindlimb susceptible to mechanical failure or too diminutive for its many ecological functions. Comparing the scaling relationships of wings and hindlimbs highlights how locomotor costs influence the scaling of limb inertial properties. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 14–31.  相似文献   

8.
The small size and apparent external morphological similarity of the minute salamanders of the genus Thorius have long hindered evolutionary studies of the group. We estimate gene and species trees within the genus using mitochondrial and nuclear DNA from nearly all named and many candidate species and find three main clades. We use this phylogenetic hypothesis to examine patterns of morphological evolution and species coexistence across central and southern Mexico and to test alternative hypotheses of lineage divergence with and without ecomorphological divergence. Sympatric species differ in body size more than expected after accounting for phylogenetic relationship, and morphological traits show no significant phylogenetic signal. Sympatric species tend to differ in a combination of body size, presence or absence of maxillary teeth, and relative limb or tail length, even when they are close relatives. Sister species of Thorius tend to occupy climatically similar environments, which suggests that divergence across climatic gradients does not drive species formation in the genus. Rather than being an example of cryptic species formation, Thorius more closely resembles an adaptive radiation, with ecomorphological divergence that is bounded by organism‐level constraints. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 622–643.  相似文献   

9.
Morphological convergence is a central concept in evolutionary biology, but convergent patterns remain under‐studied in nonvertebrate organisms. Some scallop species exhibit long‐distance swimming, a behaviour whose biomechanical requirements probably generate similar selective regimes. We tested the hypothesis that shell shape similarity in long‐distance swimming species is a result of convergent evolution. Using landmark‐based geometric morphometrics, we quantified shell shape in seven species representing major behavioural habits. All species displayed distinct shell shapes, with the exception of the two long‐distance swimmers, whose shells were indistinguishable. These species also displayed reduced morphological variance relative to other taxa. Finally, a phylogenetic simulation revealed that these species were more similar in their shell shape than was expected under Brownian motion, the model of character evolution that best described changes in shell shape. Together, these findings reveal that convergent evolution of shell shape occurs in scallops, and suggest that selection for shell shape and behaviour may be important in the diversification of the group. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 571–584.  相似文献   

10.
Many mammals dig, either during foraging to access subsurface food resources, or in creating burrows for shelter. Digging requires large forces produced by muscles and transmitted to the soil via the skeletal system; thus fossorial mammals tend to have characteristic modifications of the musculoskeletal system that reflect their digging ability. Bandicoots (Marsupialia: Peramelidae) scratch-dig mainly to source food, searching for subterranean food items including invertebrates, seeds, and fungi. They have musculoskeletal features for digging, including shortened, robust forelimb bones, large muscles, and enlarged muscle attachment areas. Here, we compared changes in the ontogenetic development of muscles associated with digging in the Quenda (Isoodon fusciventer). We measured muscle mass (m m), pennation angle, and fiber length (FL) to calculate physiological cross-sectional area (PCSA; a proxy of maximum isometric force) as well as estimate the maximum isometric force (Fmax) for 34 individuals ranging in body size from 124 to 2,390 g. Males grow larger than females in this bandicoot species, however, we found negligible sex differences in mass-specific m m, PCSA or FL for our sample. Majority of the forelimb muscles PCSA showed a positive allometric relationship with total body mass, while m m and FL in the majority of forelimb muscles showed isometry. Mechanical similarity was tested, and two thirds of forelimb muscles maximum isometric forces (Fmax) scaled with isometry; therefore the forelimb is primarily mechanical similar throughout ontogeny. PCSA showed a significant difference between scaling slopes between main movers in the power stroke, and main movers of the recovery stroke of scratch-digging. This suggests that some forelimb muscles grow with positive allometry, specially these associated with the power stroke of digging. Intraspecific variation in PCSA is rarely considered in the literature, and thus this is an important study quantifying changes in muscle architectural properties with growth in a mammalian model of scratch-digging.  相似文献   

11.
《Journal of morphology》2017,278(11):1517-1535
The distal forelimb (autopodium) of quadrupedal mammals is a key morphological unit involved in locomotion, body support, and interaction with the substrate. The manus of the tapir (Perissodactyla: Tapirus ) is unique within modern perissodactyls, as it retains the plesiomorphic tetradactyl (four‐toed) condition also exhibited by basal equids and rhinoceroses. Tapirs are known to exhibit anatomical mesaxonic symmetry in the manus, although interspecific differences and biomechanical mesaxony have yet to be rigorously tested. Here, we investigate variation in the manus morphology of four modern tapir species (Tapirus indicus , Tapirus bairdii , Tapirus pinchaque , and Tapirus terrestris ) using a geometric morphometric approach. Autopodial bones were laser scanned to capture surface shape and morphology was quantified using 3D‐landmark analysis. Landmarks were aligned using Generalised Procrustes Analysis, with discriminant function and partial least square analyses performed on aligned coordinate data to identify features that significantly separate tapir species. Overall, our results support the previously held hypothesis that T. indicus is morphologically separate from neotropical tapirs; however, previous conclusions regarding function from morphological differences are shown to require reassessment. We find evidence indicating that T. bairdii exhibits reduced reliance on the lateral fifth digit compared to other tapirs. Morphometric assessment of the metacarpophalangeal joint and the morphology of the distal facets of the lunate lend evidence toward high loading on the lateral digits of both the large T. indicus (large body mass) and the small, long limbed T. pinchaque (ground impact). Our results support other recent studies on T. pinchaque , suggesting subtle but important adaptations to a compliant but inclined habitat. In conclusion, we demonstrate further evidence that the modern tapir forelimb is a variable locomotor unit with a range of interspecific features tailored to habitual and biomechanical needs of each species.  相似文献   

12.
To explore the relationship between morphological change and species diversification, we reconstructed the evolutionary changes in skull size, skull shape, and body elongation in a monophyletic group of eight species that make up salamander genus Triturus. Their well‐studied phylogenetic relationships and the marked difference in ecological preferences among five species groups makes this genus an excellent model system for the study of morphological evolution. The study involved three‐dimensional imagery of the skull and the number of trunk vertebrae, in material that represents the morphological, spatial, and molecular diversity of the genus. Morphological change largely followed the pattern of descent. The reconstruction of ancestral skull shape indicated that morphological change was mostly confined to two episodes, corresponding to the ancestral lineage that all crested newts have in common and the Triturus dobrogicus lineage. When corrected for common descent, evolution of skull shape was correlated to change in skull size. Also, skull size and shape, as well as body shape, as inferred from the number of trunk vertebrae, were correlated, indicating a marked impact of species' ecological preferences on morphological evolution, accompanied by a series of niche shifts, with the most pronounced one in the T. dobrogicus lineage. The presence of phylogenetic signal and correlated evolutionary changes in skull and body shape suggested complex interplay of niche shifts, natural selection, and constraints by a common developmental system. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 243–255.  相似文献   

13.
The morphological differences in female genitalia within and between species are little studied and poorly understood, yet understanding patterns of variation in female genitalia can provide insights into mechanisms of genital evolution. The present study aimed to explore the patterns of intraspecific and interspecific variation in female genitalia in two sister taxa of watersnake (Nerodia sipedon and Nerodia fasciata) that have similar genital shape. We used a geometric morphometric (GM) approach to study variation in shape of the vagina between and within two sister species. We examined genital shape in female watersnakes ranging from small, sexually immature females to large reproductive females that had recently given birth. We found that shape variation of genitalia is strongly correlated with body size, where larger but not smaller females have a bifurcation in the vagina. However, we also found significant shape variation in the structure of the vagina between the two species, where N. fasciata has narrower genitalia with more prominent bifurcation, whereas N. sipedon has wider genitalia with less marked bifurcation. Using GM allowed us to detect significant differences in genital shape that were not apparent upon visual examination alone, suggesting that shape variation in female genitalia may be greater than previously assumed. Additional study of morphological differences in male reproductive organs for these species would help to determine whether there has been genital co‐evolution, and potentially mechanical reproductive isolation, in these two closely‐related and occasionally sympatric species. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111, 183–191.  相似文献   

14.
The stomach contents of an adult Mediterranean Monk Seal (Monachus monachus) found stranded on the Turkish eastern Mediterranean coast near Antalya in May 2013 were analysed. In total, 69 individual food items were counted and nine taxa were identified to species or family level. Of the identified taxa, Sparidae was the most highly represented family of prey fish, and one cephalopod species, Octopus vulgaris, was found. Ariosoma balearicum and Argyrosomus regius were encountered for the first time in the diet of a Monk Seal in the Mediterranean. Several body parts (three heads, six forelimbs, neck bones and fractured upper forelimb bones) of Green Turtles (Chelonia mydas) were also identified, which is the first record of this species in the Monk Seal’s diet.  相似文献   

15.
The cross-sectional properties of mammalian limb bones provide an important source of information about their loading history and locomotor adaptations. It has been suggested, for instance, that the cross-sectional strength of primate limb bones differs from that of other mammals as a consequence of living in a complex arboreal environment (Kimura, 1991, 1995). In order to test this hypothesis more rigorously, we have investigated cross-sectional properties in samples of humeri and femora of 71 primate species, 30 carnivorans and 59 rodents. Primates differ from carnivorans and rodents in having limb bones with greater cross-sectional strength than mammals of similar mass. This might imply that primates have stronger bones than carnivorans and rodents. However, primates also have longer proximal limb bones than other mammals. When cross-sectional dimensions are regressed against bone length, primates appear to have more gracile bones than other mammals. These two seemingly contradictory findings can be reconciled by recognizing that most limb bones experience bending as a predominant loading regime. After regressing cross-sectional strength against the product of body mass and bone length, a product which should be proportional to the bending moments applied to the limb, primates are found to overlap considerably with carnivorans and rodents. Consequently, primate humeri and femora are similar to those of nonprimates in their resistance to bending. Comparisons between arboreal and terrestrial species within the orders show that the bones of arboreal carnivorans have greater cross-sectional properties than those of terrestrial carnivorans, thus supporting Kimura's general notion. However, no differences were found between arboreal and terrestrial rodents. Among primates, the only significant difference was in humeral bending rigidity, which is higher in the terrestrial species. In summary, arboreal and terrestrial species do not show consistent differences in long bone reinforcement, and Kimura's conclusions must be modified to take into account the interaction of bone length and cross-sectional geometry.  相似文献   

16.
An assessment of the anatomical costs of extremely long proboscid mouthparts can contribute to the understanding of the evolution of form and function in the context of insect feeding behaviour. An integrative analysis of expenses relating to an exceptionally long proboscis in butterflies includes all organs involved in fluid feeding, such as the proboscis plus its musculature, sensilla, and food canal, as well as organs for proboscis movements and the suction pump for fluid uptake. In the present study, we report a morphometric comparison of derived long‐tongued (proboscis approximately twice as long as the body) and short‐tongued Riodinidae (proboscis half as long as the body), which reveals the non‐linear scaling relationships of an extremely long proboscis. We found no elongation of the tip region, low numbers of proboscis sensilla, short sensilla styloconica, and no increase of galeal musculature in relation to galeal volume, but a larger food canal, as well as larger head musculature in relation to the head capsule. The results indicate the relatively low extra expense on the proboscis musculature and sensilla equipment but significant anatomical costs, such as reinforced haemolymph and suction pump musculature, as well as thick cuticular proboscis walls, which are functionally related to feeding performance in species possessing an extremely long proboscis. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 291–304.  相似文献   

17.
The Palaearctic genus Arvicola includes two species: the south‐western water vole A. sapidus, and the northern water vole A. terrestris. The latter has semiaquatic and/or subterranean populations, while populations of A. sapidus are always semiaquatic. According to the current phylogenetic and palaeontological data, adaptation to semiaquatic life is plesiomorphic for the genus Arvicola. We studied the ontogenetic allometry of skull and long bones of the semiaquatic A. sapidus, a semiaquatic population of A. terrestris (A. t. italicus), and two fossorial populations of A. terrestris (A. t. scherman and A. t. monticola). Animals from fossorial populations were smaller than were those from semiaquatic populations. We found that most of the ontogenetic allometric exponents of characters linked to digging in the skull and in the long bones were significantly higher in A. t. monticola, a fossorial clade, than they were in the semiaquatic populations. On the other hand, there may have been an evolutionary lag between invasion of the hypogeic habitat and the acquisition of fossorial adaptations in A. t. scherman. We showed statistically that the morphological differences linked to the invasion of a hypogeic habitat are already present in juvenile animals and, according to these results, suggest that these morphological differences are the direct expression of genetic changes rather than the outcome of epigenetic factors of mechanical origin. Moreover, we tried to ascertain whether the apomorphic shape of the skull and long bones in the fossorial populations of A. terrestris (compared with the primitive condition that would have been retained by the semiaquatic A. sapidus) are the outcome of a heterochronic process. Optimization by squared change parsimony supported the hypothesis of an apomorphic reduction of body size linked to the invasion of the subterranean habitat. The comparison of the ontogenetic trajectories of both skull shape and long bone shape suggested that a heterochronic process was involved in this morphological transformation. By using the ‘clock model’ method, this mechanism was identified as ‘accelerated dwarfism’ affecting both the skull and long bones. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 87 , 381–391.  相似文献   

18.
An elongate body with reduced or absent limbs has evolved independently in many ectothermic vertebrate lineages. While much effort has been spent examining the morphological pathways to elongation in these clades, quantitative investigations into the evolution of elongation in endothermic clades are lacking. We quantified body shape in 61 musteloid mammals (red panda, skunks, raccoons, and weasels) using the head‐body elongation ratio. We also examined the morphological changes that may underlie the evolution toward more extreme body plans. We found that a mustelid clade comprised of the subfamilies Helictidinae, Guloninae, Ictonychinae, Mustelinae, and Lutrinae exhibited an evolutionary transition toward more elongate bodies. Furthermore, we discovered that elongation of the body is associated with the evolution of other key traits such as a reduction in body size and a reduction in forelimb length but not hindlimb length. This relationship between body elongation and forelimb length has not previously been quantitatively established for mammals but is consistent with trends exhibited by ectothermic vertebrates and suggests a common pattern of trait covariance associated with body shape evolution. This study provides the framework for documenting body shapes across a wider range of mammalian clades to better understand the morphological changes influencing shape disparity across all vertebrates.  相似文献   

19.
Postcranial limb bones were compared among primates of different locomotor types. Seventy-one primate species, in which all families of primates were included, were grouped into nine locomotor types. Osteometrical data on long bones and data on the cross-sectional geometry of the humerus and the femur were studied by means of allometric analysis and principal component analysis. Relatively robust forelimb bones were observed in the primate group which adopted the relatively terrestrial locomotor type compared with the group that adopted the arboreal locomotor type. The difference resembled the previously reported comparison between terrestrial and arboreal groups among all quadrupedal mammals. The degree of arboreality in daily life is connected with the degree of hindlimb dominance, or the ratio of force applied to the fore- and hindlimb in positional behaviour and also with the shape, size and robusticity of limb bones.  相似文献   

20.
The evolution of body size, the paired phenomena of giantism and dwarfism, has long been studied by biologists and paleontologists. However, detailed investigations devoted to the study of the evolution of ontogenetic patterns shaping giant species are scarce. The damselfishes of the genus Dascyllus appear as an excellent model for such a study. Their well understood phylogeny reveals that large‐bodied species have evolved in two different clades. Geometric morphometric methods were used to compare the ontogenetic trajectories of the neurocranium and the mandible in both small‐bodied (Dascyllus aruanus and Dascyllus carneus; maximum size: 50–65 mm standard length) and giant (Dascyllus trimaculatus and Dascyllus flavicaudus; maximum size: 90–110 mm standard length) Dascyllus species. At their respective maximum body size, the neurocranium of the giant species is significantly shorter and have a higher supraoccipital crest relative to the small‐bodied species, whereas mandible shape variation is more limited and is not related to the ‘giant’ trait. The hypothesis of ontogenetic scaling whereby the giant species evolved by extending the allometric trajectory of the small‐bodied ones (i.e. hypermorphosis) is rejected. Instead, the allometric trajectories vary among species by lateral transpositions. The rate of shape changes and the type of lateral transposition also differ according to the skeletal unit among Dascyllus species. Differences seen between the two giant species in the present study demonstrate that giant species may appear by varied alterations of the ancestor allometric pattern. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 99–117.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号