首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNAi is a powerful tool for gene‐specific knockdown and gene therapy. However, the imprecise expression of siRNA limits the extensive application of RNAi in gene therapy. Here we report the development of a novel controllable siRNA expression vector pMHSP70psil that is initiated by HSP70 promoter. We determined the efficiency of the controllable siRNA system by targeting the gama‐synuclein (SNCG) gene in breast cancer cells MCF‐7. The results show that the controllable siRNA system can be induced to initiate siRNA expression by heat‐induction. The silencing effect of SNCG occurs at a relatively low level (10.1%) at 37°C, while it is significantly increased to 69.4% after heat induction at 43°C. The results also show that the controllable siRNA system inhibits proliferation of cancer cells by heat‐shock. Therefore, this RNAi strategy holds the promise of the high efficiency in gene knockdown at targeted times and locations, avoiding systemic side effects. It provides, for the first time, an approach to control siRNA expression by heat‐shock. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1289–1297, 2013  相似文献   

2.
Through a mechanism known as RNA interference (RNAi), small interfering RNA (siRNA) molecules can target complementary mRNA strands for degradation, thus specifically inhibiting gene expression. The ability of siRNAs to inhibit gene expression offers a mechanism that can be exploited for novel therapeutics. Indeed, over the past decade, at least 21 siRNA therapeutics have been developed for more than a dozen diseases, including various cancers, viruses, and genetic disorders. Like other biological drugs, RNAi-based therapeutics often require a delivery vehicle to transport them to the targeted cells. Thus, the clinical advancement of numerous siRNA drugs has relied on the development of siRNA carriers, including biodegradable nanoparticles, lipids, bacteria, and attenuated viruses. Most therapies permit systemic delivery of the siRNA drug, while others use ex vivo delivery by autologous cell therapy. Advancements in bioengineering and nanotechnology have led to improved control of delivery and release of some siRNA therapeutics. Likewise, progress in molecular biology has allowed for improved design of the siRNA molecules. Here, we provide an overview of siRNA therapeutics in clinical trials, including their clinical progress, the challenges they have encountered, and the future they hold in the treatment of human diseases.  相似文献   

3.
Small interfering RNA (siRNA) holds a great promise for the future of genomic medicine because of its highly sequence-specific gene silencing and universality in therapeutic target. The medical use of siRNA, however, has been severely hampered by the inherent physico-chemical properties of siRNA itself, such as low charge density, high structural stiffness and rapid enzymatic degradation; therefore, the establishment of efficient and safe siRNA delivery methodology is an essential prerequisite, particularly for systemic administration. For an efficient systemic siRNA delivery, it is a critical issue to obtain small and compact siRNA polyplexes with cationic condensing reagents including cationic polymers, because the size and surface properties of the polyplexes are major determinants for achieving desirable in vivo fate. Unfortunately, synthetic siRNA is not easily condensed with cationic polymers due to its intrinsic rigid structure and low spatial charge density. Accordingly, the loose siRNA polyplexes inevitably expose siRNA to the extracellular environment during systemic circulation, resulting in low therapeutic efficiency and poor biodistribution. In this review, we highlight the innovative approaches to increase the size of siRNA via structural modification of the siRNA itself. The attempts include several methodologies such as hybridization, chemical polymerization, and micro- and nano-structurization of siRNA. Due to its increased charge density and flexibility, the structured siRNA can produce highly condensed and homogenous polyplexes compared to the classical monomeric siRNA. As a result, stable and compact siRNA polyplexes can enhance serum stability and target delivery efficiency in vivo with desirable biodistribution. The review specifically aims to provide the recent progress of structural modification of siRNA. In addition, the article also briefly and concisely explains the improved physico-chemical properties of structured siRNA with respect to stability, condensation ability and gene silencing efficiency.  相似文献   

4.
5.
U6 RNA is an abundant small nuclear RNA (snRNA) required for splicing of pre-mRNAs. In mammalian cells, the genes for U1 to U4 snRNAs consist of multigene families ranging from 10 to 100 copies of real genes per haploid genome, and are transcribed by RNA polymerase II. In contrast, results obtained in this study indicate that U6 RNA, which is transcribed by RNA polymerase II and III, may be coded for in mouse cells by only two genes. These two U6 genes are at least 9 kb apart from each other, and the flanking sequences are highly conserved, indicating that the organization of U6 genes is similar to that observed for other mammalian U-snRNA genes.This investigation was supported by Grant GM 38320, awarded by the Department of Health and Human Services, United States Public Health Service.  相似文献   

6.
7.
8.
9.
10.
应用RNA干扰技术抑制哺乳动物体内基因表达   总被引:3,自引:0,他引:3  
  相似文献   

11.
Recently, small interfering RNAs (siRNAs) have become a powerful and widely used tool for the analysis of gene function in mammalian cells. Here we report that the microinjection of an siRNA expression vector into the nucleus is an efficient and powerful method of specific gene silencing in pre-implantation mouse embryos. We used this method to examine the expression of two genes EGFP and Oct4. Vectors encoding siRNAs targeted against EGFP or Oct4 were injected into the pronucleus or nucleus of zygotes, which were then cultured until the blastocyst stage. When the effects of RNAi were examined in blastocyst stage eggs, there was robust inhibition of the gene product in a concentration-dependent manner at both the mRNA and the protein level. The expression of other endogenous genes was not affected, showing the specificity of the vector-mediated RNAi. In addition, this method was effective for inhibiting maternally expressed mRNA. To demonstrate that RNAi of Oct4 induced a similar phenotype to that of Oct4-null embryos, the blastocysts were further cultured in ES medium. After the fourth day of culture, the embryos either had outgrown only a layer of trophoblast cells or showed developmental arrest at the blastocyst stage (>90%). Moreover, concomitant with Oct4 suppression at the blastocyst stage, we observed inhibition of Fgf4, a gene that is known to be induced downstream of Oct4 expression. Taken together, these results demonstrate that the use of siRNA expression vector is a powerful way to achieve gene silencing in the pre-implantation stage embryo.  相似文献   

12.
13.
14.
15.
16.
17.
BACKGROUND: RNA interference (RNAi) is a powerful and widely used gene silencing strategy for studying gene function in mammalian cells. Transient or constitutive expression of either small interfering RNA (siRNA) or short hairpin RNA (shRNA) results in temporal or persistent inhibition of gene expression, respectively. A tightly regulated and reversibly inducible RNAi-mediated gene silencing approach could conditionally control gene expression in a temporal or spatial manner that provides an extremely useful tool for studying gene function involved in cell growth, survival and development. MATERIAL AND METHODS: In this study, we have developed a lactose analog isopropyl thiogalactose (IPTG)-responsive lac repressor-operator-controlled RNA polymerase III (Pol III)-dependent human RNase P RNA (H1) promoter-driven inducible siRNA expression system. To demonstrate its tight regulation, efficient induction and reversible inhibition, we have used this system to conditionally control the expression of firefly luciferase and human tumor suppressor protein p53 in both transient transfection cells and established stable clones. RESULTS: The results showed that this inducible siRNA expression system could efficiently induce conditional inhibition of these two genes in a dose- and time-dependent manner by administration of the inducing agent IPTG as well as being fully reverted after withdrawal of IPTG. In particular, this system could conditionally inhibit the expression of both the genes in not only established stable clones but also transient transfection cells, which should greatly increase its usefulness and convenience. CONCLUSIONS: The results presented in this study clearly indicate that this inducible siRNA expression system could efficiently, conditionally and reversibly inhibit gene expression with only very low or undetectable background silencing effects under non-inducing condition. Thus, this inducible siRNA expression system provides an ideal genetic switcher allowing the inducible and reversible control of specific gene activity in mammalian cells.  相似文献   

18.
短双链RNA对鸡胚盘细胞外源绿荧光蛋白基因表达的影响   总被引:5,自引:0,他引:5  
RNA干扰 (RNAinterference,RNAi)作为一种特异性沉默基因表达的方法 ,正在成为研究基因功能、胚胎发育及病毒性疾病治疗的重要工具。为了了解RNA干扰在禽类中的作用情况 ,实验将体外转录合成的绿荧光蛋白短双链干扰RNA (siGFP)和 3 磷酸甘油醛脱氢酶短双链干扰RNA (siGAPDH )分别同绿荧光蛋白(Greenfluorescentprotein ,GFP)表达载体 (pEGFP C1Vector)用脂质体转染试剂LipofectamineTM2 0 0 0共转染鸡胚盘细胞 ,并于转染后 36h在荧光显微镜下观察转染和干扰效果。对细胞绿荧光蛋白表达率的方差分析结果显示 ,不同处理组间差异达极显著水准 ,其中GFP组和GFP siGAPDH组均同GFP siGFP组差异极显著 ,GFP组同GFP siGAPDH组差异不显著。实验结果说明 ,siGFP能特异、有效地敲低细胞绿荧光蛋白的表达。同线虫、真菌、拟南芥、水螅、锥虫、涡虫、果蝇、斑马鱼、小鼠等其它生物体一样 ,鸡胚盘细胞中也存在短双链干扰RNA (siRNA)特异性沉默基因表达的RNA干扰机制  相似文献   

19.
siRNA在治疗学中的应用   总被引:3,自引:0,他引:3  
Mei L  Li XJ 《生理科学进展》2006,37(4):347-352
小干扰RNA(small interfering RNA,siRNA)是外源性双链RNA(double strand RNA,dsRNA)的加工产物,在细胞内能介导RNA干扰(RNA interference,RNAi)效应,识别特异性mRNA,沉默同源基因表达。其特异性和高效性显示出很高的实用价值,siRNA已成为许多疾病潜在的治疗手段。对于siRNA的应用,尽管还需要在减少非特异反应,发掘高效递药载体,应对新的基因变异等方面进行深入研究,但其可望在抗病毒、神经系统疾病和肿瘤治疗等许多领域发挥治疗作用。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号