首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lymphatic system transports interstitial fluid and macromolecules from tissues back to the blood circulation, and plays an important role in the immune response by directing the traffic of lymphocytes and antigen-presenting cells. The lymphatic system also constitutes one of the most important pathways of tumor dissemination. In many human cancers, increased expression of vascular endothelial growth factor-C (VEGF-C) is correlated with regional lymph node metastases. Experimental studies using transgenic mice overexpressing VEGF-C or xenotransplantation of VEGF-C-expressing tumor cells into immunodeficient mice have demonstrated a role for VEGF-C in tumor lymphangiogenesis and the subsequent formation of lymph node metastases. However, there is at present little evidence for lymphangiogenesis in human tumors and the relative importance of preexisting vs. newly formed lymphatics for metastasis in humans remains to be determined. Nonetheless, the striking correlation between the levels of VEGF-C in primary human tumors and lymph node metastases predicts its importance in cancer spread. Aside from promoting lymphangiogenesis, VEGF-C may also activate lymphatics to promote tumor cell chemotaxis, lymphatic intravasation and hence tumor cell dissemination.Work in the authors' laboratories was supported by grants from the Swiss National Science Foundation (no. 3100–064037.00) (to M.S.P), the Speaker's Fund for Biomedical Research (to M.S.) and the Peter Sharp Foundation (to M.S.). Parts of this review will be published in abbreviated form in Thrombosis and Haemostasis  相似文献   

2.
Lymphangiogenesis and its role in cancer   总被引:8,自引:0,他引:8  
In many tumour types, lymphatic vasculature serves as a major route for tumour metastasis. The dissemination of malignant cells to the regional lymph nodes is an early step in the progression of many solid tumours and is an important determinant of prognosis. Lymphangiogenesis (formation of new lymphatic vessels) is thought to be crucial for cancer cells to metastasise to the regional lymph nodes. However research in this important process has been neglected largely due to the lack of molecular markers specific to the lymphatic endothelium. Recently, several specific markers have been identified including LYVE-1, podoplanin and prox-1. Although the biology of lymphangiogeneis, particularly its regulation, is still far from clear, it is now well established that tumours are lymphangiogenic i.e. they could induce the generation of their own lymphatics and metastasise to the regional lymph nodes. It is thought that the interruption of the main signalling pathways involved in this process could help to prevent lymphatic spread of many tumours. Furthermore, understanding the molecular mechanisms in lymphangiogenesis might help to develop new therapeutic strategies against cancer lymphatic spread. Here, we reviewed the literature in regards to the biology of lymphangiogenesis, its molecular regulation, lymphatic markers and the significance in human solid tumours.  相似文献   

3.
Vascular endothelial growth factor C (VEGF-C) is a key mediator of lymphangiogenesis, acting via its receptors VEGF-R2 and VEGF-R3. High expression of VEGF-C in tumors correlates with increased lymphatic vessel density, lymphatic vessel invasion, sentinel lymph node metastasis and poor prognosis. Recently, we found that in a chemically induced skin carcinoma model, increased VEGF-C drainage from the tumor enhanced lymphangiogenesis in the sentinel lymph node and facilitated metastatic spread of cancer cells via the lymphatics. Hence, interference with the VEGF-C/VEGF-R3 axis holds promise to block metastatic spread, as recently shown by use of a neutralizing anti-VEGF-R3 antibody and a soluble VEGF-R3 (VEGF-C/D trap). By antibody phage-display, we have developed a human monoclonal antibody fragment (single-chain Fragment variable, scFv) that binds with high specificity and affinity to the fully processed mature form of human VEGF-C. The scFv binds to an epitope on VEGF-C that is important for receptor binding, since binding of the scFv to VEGF-C dose-dependently inhibits the binding of VEGF-C to VEGF-R2 and VEGF-R3 as shown by BIAcore and ELISA analyses. Interestingly, the variable heavy domain (VH) of the anti-VEGF-C scFv, which contains a mutation typical for camelid heavy chain-only antibodies, is sufficient for binding VEGF-C. This reduced the size of the potentially VEGF-C-blocking antibody fragment to only 14.6 kDa. Anti-VEGF-C VH-based immunoproteins hold promise to block the lymphangiogenic activity of VEGF-C, which would present a significant advance in inhibiting lymphatic-based metastatic spread of certain cancer types.  相似文献   

4.
As in the development of many human cancers, in a transgenic mouse model of beta-cell carcinogenesis (Rip1Tag2), expression of neural cell adhesion molecule (NCAM) changes from the 120-kDa isoform in normal tissue to the 140/180-kDa isoforms in tumors. NCAM-deficient RiplTag2 mice, generated by crossing Rip1Tag2 mice with NCAM knockout mice, develop metastases, a tumor stage that is not seen in normal Rip1Tag2 mice. In contrast, overexpression of NCAM 120 in NCAM-deficient Rip1Tag2 mice prevents tumor metastasis. The results indicate that the loss of NCAM-mediated cell adhesion is one rate-limiting step in the actual metastatic dissemination of beta tumor cells.  相似文献   

5.
Lymphatic vasculature in solid tumors may serve as the pathway for metastatic spread of the cancer to the regional lymph nodes and to distant organs. Controversy still exists whether tumors metastasize through existing lymphatics or through newly formed vessels (lymphangiogenesis). The role of lymphangiogenesis in lymphoma spread and proliferation is not clearly established. VEGF-C is the most potent inducer of lymphangiogenesis. LYVE-1 was shown to be a specific marker for lymphatic vessels in normal and tumor tissue. The aim of the present study was the evaluation of lymph node LYVE-1-positive lymphatic sinus density (LSD) and VEGF-C expression in patients with non-Hodgkin's lymphoma (nHL) and in reactive lymph nodes. Sixty paraffin-embedded lymph nodes from newly diagnosed patients with B-cell nHL were evaluated. Twelve lymph node biopsy specimens from adult patients with reactive lymphonodulitis were used as controls. Sections of lymph nodes were stained immunohistochemically for LYVE-1 and VEGF-C. VEGF-C expression in lymph nodes of nHL patients was low and not significantly different from that in the control (p = 0.6). Moreover, VEGF-C expression did not differ significantly between aggressive and indolent lymphomas (p = 0.53). Similarly we did not find differences in LSD in aggressive nHL and in indolent nHL (p=0.49). The mean LSD in reactive lymph nodes was higher than in nHL (p = 0.03). Only in 2 out of 12 reactive lymph nodes LYVE-1-positive vessels were absent. In all groups we demonstrated a strong positive correlation between VEGF-C and LYVE-1-expression (p = 0.0001). Higher LSD in reactive lymph nodes as compared to those of nHL patients suggests that lymphoma proliferation leads to the destruction of the existing lymphatics rather than to lymphangiogenesis within lymph nodes. NHL are not associated with increased expression of VEGF-C nor increased LYVE-1-positive lymphatic sinuses density within lymph nodes.  相似文献   

6.
ABSTRACT: BACKGROUND: Mounting clinical and experimental data suggest that the migration of tumor cells into lymph nodes is greatly facilitated by lymphangiogenesis. Vascular endothelial growth factor (VEGF)-C and D have been identified as lymphangiogenic growth factors and play an important role in tumor lymphangiogenesis. The purpose of this study was to investigate the location of lymphangiogenesis driven by tumor-derived VEGF-C/D in breast cancer, and to determine the role of intratumoral and peritumoral lymphatic vessel density (LVD) in lymphangiogenesis in breast cancer. METHODS: The expression levels of VEGF-C/D were determined by immunohistochemistry, and intratumoral LVD and peritumoral LVD were assessed using immunohistochemistry and the D2-40 antibody in 73 patients with primary breast cancer. The associations of intratumoral LVD and peritumoral LVD with VEGF-C/D expression, clinicopathological features and prognosis were assessed. RESULTS: VEGF-C and D expression were significantly higher in breast cancer than benign disease (P < 0.01). VEGF-C (P < 0.001) and VEGF-D (P = 0.005) expression were significantly associated with peritumoral LVD, but not intratumoral LVD. Intratumoral LVD was associated with tumor size (P = 0.01). Peritumoral LVD was significantly associated with lymph node metastasis (LNM; P = 0.005), lymphatic vessel invasion (LVI; P = 0.017) and late tumor,node,metastasis(TNM) stage (P = 0.011). Moreover, peritumoral LVD was an independent risk factor for axillary lymph node metastasis, overall survival and disease-free survival in multivariate analysis. CONCLUSIONS: This study suggests that tumor-derived VEGF-C/D induce peritumoral lymphangiogenesis, which may be one mechanism that leads to lymphatic invasion and metastatic spread. Peritumoral LVD has potential as an independent prognostic factor in breast cancer patients.  相似文献   

7.
Lymphangiogenic cytokines such as vascular endothelial growth factor-C (VEGF-C) are critically required for lymphatic regeneration; however, in some circumstances, lymphatic function is impaired despite normal or elevated levels of these cytokines. The recent identification of anti-lymphangiogenic molecules such as interferon-γ (IFN-γ), transforming growth factor-β1, and endostatin has led us to hypothesize that impaired lymphatic function may represent a dysregulated balance in the expression of pro/anti-lymphangiogenic stimuli. We observed that nude mice have significantly improved lymphatic function compared with wild-type mice in a tail model of lymphedema. We show that gradients of lymphatic fluid stasis regulate the expression of lymphangiogenic cytokines (VEGF-A, VEGF-C, and hepatocyte growth factor) and that paradoxically the expression of these molecules is increased in wild-type mice. More importantly, we show that as a consequence of T-cell-mediated inflammation, these same gradients also regulate expression patterns of anti-lymphangiogenic molecules corresponding temporally and spatially with impaired lymphatic function in wild-type mice. We show that neutralization of IFN-γ significantly increases inflammatory lymph node lymphangiogenesis independently of changes in VEGF-A or VEGF-C expression, suggesting that alterations in the balance of pro- and anti-lymphangiogenic cytokine expression can regulate lymphatic vessel formation. In conclusion, we show that gradients of lymphatic fluid stasis regulate not only the expression of pro-lymphangiogenic cytokines but also potent suppressors of lymphangiogenesis as a consequence of T-cell inflammation and that modulation of the balance between these stimuli can regulate lymphatic function.  相似文献   

8.
Vascular endothelial growth factor receptor-3 (VEGFR-3) has an essential role in the development of embryonic blood vessels; however, after midgestation its expression becomes restricted mainly to the developing lymphatic vessels. The VEGFR-3 ligand VEGF-C stimulates lymphangiogenesis in transgenic mice and in chick chorioallantoic membrane. As VEGF-C also binds VEGFR-2, which is expressed in lymphatic endothelia, it is not clear which receptors are responsible for the lymphangiogenic effects of VEGF-C. VEGF-D, which binds to the same receptors, has been reported to induce angiogenesis, but its lymphangiogenic potential is not known. In order to define the lymphangiogenic signalling pathway we have created transgenic mice overexpressing a VEGFR-3-specific mutant of VEGF-C (VEGF-C156S) or VEGF-D in epidermal keratinocytes under the keratin 14 promoter. Both transgenes induced the growth of lymphatic vessels in the skin, whereas the blood vessel architecture was not affected. Evidence was also obtained that these growth factors act in a paracrine manner in vivo. These results demonstrate that stimulation of the VEGFR-3 signal transduction pathway is sufficient to induce specifically lymphangiogenesis in vivo.  相似文献   

9.
Embryonic lymphangiogenesis   总被引:6,自引:0,他引:6  
  相似文献   

10.
It is well established that lung tumors induce the formation of lymphatic vessels. However, the molecular mechanisms controlling tumor lymphangiogenesis in lung cancer have not been fully delineated. In the present study, we identify a panel of non-small cell lung cancer (NSCLC) cell lines that induce lymphangiogenesis and use genome-wide mRNA expression to characterize the molecular mechanisms regulating tumor lymphangiogenesis. We show that Calu-1, H1993, HCC461, HCC827, and H2122 NSCLC cell lines form tumors that induce lymphangiogenesis whereas Calu-3, H1155, H1975, and H2073 NSCLC cell lines form tumors that do not induce lymphangiogenesis. By analyzing genome-wide mRNA expression data, we identify a 17-gene expression signature that distinguishes lymphangiogenic from non-lymphangiogenic NSCLC cell lines. Importantly, VEGF-C is the only lymphatic growth factor in this expression signature and is approximately 50-fold higher in the lymphangiogenic group than in the non-lymphangiogenic group. We show that forced expression of VEGF-C by H1975 cells induces lymphangiogenesis and that knockdown of VEGF-C in H1993 cells inhibits lymphangiogenesis. Additionally, we demonstrate that the triple angiokinase inhibitor, nintedanib (small molecule that blocks all FGFRs, PDGFRs, and VEGFRs), suppresses tumor lymphangiogenesis in H1993 tumors. Together, these data suggest that VEGF-C is the dominant driver of tumor lymphangiogenesis in NSCLC and reveal a specific therapy that could potentially block tumor lymphangiogenesis in NSCLC patients.  相似文献   

11.
The presence of lymph node metastasis (LNM) is an important factor in clinical evaluation of esophageal cancer patients. Biological markers able to support detection of metastatic lymph nodes are sought after. Interleukin-8 (IL-8) is overexpressed by many cancers and involved in cancer dissemination. We investigated the relationship between circulating IL-8 and clinicopathological features of esophageal squamous cell carcinoma (ESCC), and evaluated the diagnostic potential of IL-8, with reference to the key angiogenic and lymphangiogenic factors: vascular endothelial growth factors A and C (VEGF-A and VEGF-C). We found elevated IL-8 levels in ESCC patients, correlated with tumor size and cancer dissemination, especially LNM. Circulating IL-8 correlated with lymphangiogenic VEGF-C rather then angiogenic VEGF-A. The association weakened in metastatic cancers, suggesting divergent mechanism of IL-8 involvement in the dissemination process. The cytokine levels correlated with platelets and neutrophils, pointing at these cells as possible sources of circulating IL-8. We demonstrated IL-8 that positively correlated with inflammation status of ESCC patients. Circulating IL-8 was a better indicator of ESCC dissemination than VEGF-A or VEGF-C. Yet, the detection rates were not satisfactory enough to allow for the recommendation of IL-8 determination as an adjunct to the clinical evaluation of lymph node involvement in ESCC patients.  相似文献   

12.
Tumor expression of the lymphangiogenic factor VEGF-C is correlated with metastasis and poor prognosis, and although VEGF-C enhances transport to the draining lymph node (dLN) and antigen exposure to the adaptive immune system, its role in tumor immunity remains unexplored. Here, we demonstrate that VEGF-C promotes immune tolerance in murine melanoma. In B16 F10 melanomas expressing a foreign antigen (OVA), VEGF-C protected tumors against preexisting antitumor immunity and promoted local deletion of OVA-specific CD8(+) T cells. Naive OVA-specific CD8(+) T cells, transferred into tumor-bearing mice, were dysfunctionally activated and apoptotic. Lymphatic endothelial cells (LECs) in dLNs cross-presented OVA, and naive LECs scavenge and cross-present OVA in vitro. Cross-presenting LECs drove the proliferation and apoptosis of OVA-specific CD8(+) T cells ex vivo. Our findings introduce a tumor-promoting role for lymphatics in the tumor and dLN and suggest that lymphatic endothelium in the local microenvironment may be a target for immunomodulation.  相似文献   

13.
Malignant melanomas of the skin primarily metastasize to lymph nodes, and the detection of sentinel lymph node metastases serves as an important prognostic parameter. There is now compelling evidence that melanomas can induce lymphangiogenesis (growth of lymphatic vessels), mainly at the tumor-stroma interface, and that the level of tumor lymphangiogenesis is correlated with the incidence of sentinel lymph node metastases and with disease-free survival. Thus, tumor lymphangiogenesis can serve as a novel prognostic predictor in melanoma. Vascular endothelial growth factor (VEGF)-C, released by melanoma cells and by tumor-associated macrophages, likely represents the major lymphangiogenic factor in melanoma, although other members of the VEGF family might also be involved. The recent discovery that tumors can induce a premetastatic niche, by inducing lymphatic vessel growth in sentinel lymph nodes even before metastasis, and that lymph node lymphangiogenesis enhances metastatic spread, indicates that activated lymphatic vessels represent novel targets for the detection and/or therapy of melanoma metastases.  相似文献   

14.
Lysophosphatidic acid (LPA) is a bioactive lipid growth factor which is present in high levels in serum and platelets. LPA binds to its specific G-protein-coupled receptors, including LPA1 to LPA6, thereby regulating various physiological functions, including cancer growth, angiogenesis, and lymphangiogenesis. Our previous study showed that LPA promotes the expression of the lymphangiogenic factor vascular endothelial growth factor (VEGF)-C in prostate cancer (PCa) cells. Interestingly, LPA has been shown to regulate the expression of calreticulin (CRT), a multifunctional chaperone protein, but the roles of CRT in PCa progression remain unclear. Here we investigated the involvement of CRT in LPA-mediated VEGF-C expression and lymphangiogenesis in PCa. Knockdown of CRT significantly reduced LPA-induced VEGF-C expression in PC-3 cells. Moreover, LPA promoted CRT expression through LPA receptors LPA1 and LPA3, reactive oxygen species (ROS) production, and phosphorylation of eukaryotic translation initiation factor 2α (eIF2α). Tumor-xenografted mouse experiments further showed that CRT knockdown suppressed tumor growth and lymphangiogenesis. Notably, clinical evidence indicated that the LPA-producing enzyme autotaxin (ATX) is related to CRT and that CRT level is highly associated with lymphatic vessel density and VEGF-C expression. Interestingly, the pharmacological antagonist of LPA receptors significantly reduced the lymphatic vessel density in tumor and lymph node metastasis in tumor-bearing nude mice. Together, our results demonstrated that CRT is critical in PCa progression through the mediation of LPA-induced VEGF-C expression, implying that targeting the LPA signaling axis is a potential therapeutic strategy for PCa.  相似文献   

15.
Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis   总被引:216,自引:0,他引:216  
Metastasis of breast cancer occurs primarily through the lymphatic system, and the extent of lymph node involvement is a key prognostic factor for the disease. Whereas the significance of angiogenesis for tumor progression has been well documented, the ability of tumor cells to induce the growth of lymphatic vessels (lymphangiogenesis) and the presence of intratumoral lymphatic vessels have been controversial. Using a novel marker for lymphatic endothelium, LYVE-1, we demonstrate here the occurrence of intratumoral lymphangiogenesis within human breast cancers after orthotopic transplantation onto nude mice. Vascular endothelial growth factor (VEGF)-C overexpression in breast cancer cells potently increased intratumoral lymphangiogenesis, resulting in significantly enhanced metastasis to regional lymph nodes and to lungs. The degree of tumor lymphangiogenesis was highly correlated with the extent of lymph node and lung metastases. These results establish the occurrence and biological significance of intratumoral lymphangiogenesis in breast cancer and identify VEGF-C as a molecular link between tumor lymphangiogenesis and metastasis.  相似文献   

16.
The vascular endothelial growth factor (VEGF) family of secreted proteins and their receptors are major regulators of blood vessel development (hemangiogenesis) and lymphatic vessel development (lymphangiogenesis). VEGF acts through a complex system of receptor tyrosine kinases, which can be membrane bound or soluble. New data concerning the receptor system are still emerging, thus contributing to the complexity of the system. Very recently a soluble form of VEGFR-2, termed sVEGFR-2, which is a result of alternative splicing, has been discovered. Earlier, it has been shown that a secreted/soluble form of VEGFR-1, termed sVEGFR-1, is produced by alternative splicing and exerts an antihemangiogenic effect by binding VEGF-A. The newly discovered spliced variant of sVEGFR-2 binds the lymphangiogenic growth factor VEGF-C and thus inhibits VEGF-C-induced activation of VEGFR-3, consequently inhibiting lymphatic endothelial cell proliferation. Its inactivation in murine embryos permits hyperplasia of dermal lymphatics and invasion of lymphatics into the cornea. Tumor lymphangiogenesis seems to influence the metastatic behavior of malignant cells. A correlation has been found between the downregulation of sVEGFR-2 and the malignant progression of neuroblastoma, which is characterized by lymphogenic metastases in progressed stages. Data show that lymphangiogenesis is regulated by both activators and inhibitors, and its balance is crucial in health and disease.  相似文献   

17.
Tumor-induced lymphangiogenesis: a target for cancer therapy?   总被引:9,自引:0,他引:9  
Recent advances in understanding the biology of lymphangiogenesis, the new growth of lymphatic vessels, have cast new light on the molecular basis of metastasis to regional lymph nodes. The receptor tyrosine kinase VEGFR-3 is virtually exclusively expressed on lymphatic but not blood endothelium in the adult, and activation of VEGFR-3 by its ligands VEGF-C and VEGF-D is sufficient to induce lymphangiogenesis. Correlative studies with human tumors and functional studies using animal tumor models show that increased levels of VEGF-C or VEGF-D in tumors lead to enhanced numbers of lymphatic vessels in the vicinity of tumors, which in turn promotes metastasis to regional lymph nodes by providing a greater number of entry sites into the lymphatic system for invading tumor cells. These findings have prompted studies to investigate whether inhibitors of VEGFR-3 activation might represent novel therapeutic agents for the suppression of metastasis. However, a number of points regarding the therapeutic potential of anti-lymphangiogenic treatments in the context of cancer remain to be addressed. The spectrum and relative importance of molecules that induce lymphangiogenesis and the regulation of their expression during tumor progression, the reversibility of tumor-induced lymphangiogenesis, and possible side-effects of anti-lymphangiogenesis-based therapies all need to be investigated. Most importantly, the extent to which lymph node metastases contribute to the formation of metastases in other organs remains to be elucidated. These aspects are the focus of this review, and their investigation should serve as a roadmap to possible translational application.  相似文献   

18.
For the first time, we could detect lymph vessels in neuroblastoma (NB) by immunohistochemistry with the antibody D2_40. Furthermore, we demonstrate expression of the lymphangiogenic factors VEGF-C and VEGF-D and their receptors VEGFR-2 and VEGFR-3 in NB in vitro and in vivo by RT-PCR. However, addition of recombinant human VEGF-C or -D results in the absence of autocrine growth stimulus in NB cells. Treatment of NB cells with retinoic acid did not lead to a change in VEGF-C or VEGF-D mRNA expression. Incubation of the NB cells Lan-5 with 5-Aza-2'-deoxycytidine led to the up-regulation of VEGF-C mRNA expression, suggesting that the promotor of VEGF-C is methylated. Finally, VEGF-C mRNA expression could be effectively down-regulated by transfection with a specific siRNA in the NB cells Kelly. We conclude that lymphangiogenesis is involved in NB biology and that siRNA directed against VEGF-C may have a future role in anti-lymphangiogenic strategies in NB.  相似文献   

19.
BACKGROUND: Vascular endothelial growth factor (VEGF)-C is implicated in lymphangiogenesis, however the exact role of VEGF-C in promoting lymphatic spread of cancer cells remains largely unknown. METHODS: The expression of VEGF-C was immunohistochemically determined in 97 endoscopic biopsy specimens from 46 patients with submucosal gastric carcinoma (SGC). Nodal metastases including micrometastasis and isolated tumor cells (ITC) were evaluated by immunohistochemical staining for cytokeratin in 1650 lymph nodes, and tumor cells in these metastatic nodes were also examined for VEGF-C expression. RESULTS: In biopsy samples, VEGF-C was positively detected in 21 (47%) patients. Metastases were identified in 46 (2.8%) nodes from 15 (33%) patients. Metastases were detected in 39 nodes by hematoxylin-eosin (H&E) staining and in additional 7 nodes as ITC by immunohistochemical staining. The rate of lymph node metastases was significantly correlated with VEGF-C expression in biopsy samples (p < 0.05). The positive and negative predictive values of VEGF-C in biopsy specimens for nodal metastasis were 44 %(10/21) and 80% (20/25), respectively. Among the 46 metastatic nodes, tumor cells in 29 (63%) nodes positive patients expressed VEGF-C, whereas those in 17 (37%) nodes did not. VEGF-C expression was high in macronodular foci in medullary areas, whereas more than half of ITC or micrometastasis located in peripheral sinus lacked the expression of VEGF-C. CONCLUSIONS: Despite the significant correlation, immunodetcetion of VEGF-C in endoscopic biopsy specimens could not accurately predict the nodal status, and thus cannot be applied for the decision of the treatment for SGC. VEGF-C may not be essential for lymphatic transport, but rather important to develop the macronodular lesion in metastatic nodes.  相似文献   

20.
It has been shown in many clinical studies that the level of vascular endothelial growth factor-C (VEGF-C) positively correlates with lymph node metastasis. Nevertheless, beyond the canonical role of VEGF-C in stimulating lymphangiogenesis and thus promoting lymph node/distant metastasis, emerging evidence indicates that expression of VEGF-C contributes to various aspects of carcinogenicity via autocrine regulation. The newly identified functions of VEGF-C include but are not limited to proliferation, migration, invasion, and chemo-resistance. Besides tumor cell autocrine regulation, VEGF-C can also modulate the immune system such that tumor cells more easily escape immune surveillance. Therefore, understanding the functional roles and regulatory mechanisms related to the VEGF-C axis may lead to alternative strategies for cancer treatment. This mini-review will focus on summarizing recent discoveries regarding the unconventional functions of VEGF-C in cancer progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号