首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhanced contractile activity increases cardiac long-chain fatty acid (LCFA) uptake via translocation of CD36 to the sarcolemma, similarly to increase in glucose uptake via GLUT4 translocation. AMP-activated protein kinase (AMPK) is assumed to mediate contraction-induced LCFA utilization. However, which catalytic isoform (AMPKα1 versus AMPKα2) is involved, is unknown. Furthermore, no studies have been performed on the role of LKB1, a kinase with AMPKK activity, on the regulation of cardiac LCFA utilization. Using different mouse models (AMPKα2-kinase-dead, AMPKα2-knockout and LKB1-knockout mice), we tested whether LKB1 and/or AMPK are required for stimulation of LCFA and glucose utilization upon treatment of cardiomyocytes with compounds (oligomycin/AICAR/dipyridamole) which induce CD36 translocation similar to that seen upon contraction. In AMPKα2- kinase-dead cardiomyocytes, the stimulating effects of oligomycin and AICAR on palmitate and deoxyglucose uptake and palmitate oxidation were almost completely lost. Moreover, in AMPKα2- and LKB1-knockout cardiomyocytes, oligomycin-induced LCFA and deoxyglucose uptake were completely abolished. However, the stimulatory effect of dipyridamole on palmitate uptake and oxidation was preserved in AMPKα2-kinase-dead cardiomyocytes. In conclusion, in the heart there is a signaling axis consisting of LKB1 and AMPKα2 which activation results in enhanced LCFA utilization, similarly to enhanced glucose uptake. In addition, an unknown dipyridamole-activated pathway can stimulate cardiac LCFA utilization by activating signaling components downstream of AMPK.  相似文献   

2.
Increased contraction enhances substrate uptake into cardiomyocytes via translocation of the glucose transporter GLUT4 and the long chain fatty acid (LCFA) transporter CD36 from intracellular stores to the sarcolemma. Additionally, contraction activates the signaling enzymes AMP-activated protein kinase (AMPK) and protein kinase D1 (PKD1). Although AMPK has been implicated in contraction-induced GLUT4 and CD36 translocation in cardiomyocytes, the precise role of PKD1 in these processes is not known. To study this, we triggered contractions in cardiomyocytes by electric field stimulation (EFS). First, the role of PKD1 in GLUT4 and CD36 translocation was defined. In PKD1 siRNA-treated cardiomyocytes as well as cardiomyocytes from PKD1 knock-out mice, EFS-induced translocation of GLUT4, but not CD36, was abolished. In AMPK siRNA-treated cardiomyocytes and cardiomyocytes from AMPKα2 knock-out mice, both GLUT4 and CD36 translocation were abrogated. Hence, unlike AMPK, PKD1 is selectively involved in glucose uptake. Second, we analyzed upstream factors in PKD1 activation. Cardiomyocyte contractions enhanced reactive oxygen species (ROS) production. Using ROS scavengers, we found that PKD1 signaling and glucose uptake are more sensitive to changes in intracellular ROS than AMPK signaling or LCFA uptake. Furthermore, silencing of death-activated protein kinase (DAPK) abrogated EFS-induced GLUT4 but not CD36 translocation. Finally, possible links between PKD1 and AMPK signaling were investigated. PKD1 silencing did not affect AMPK activation. Reciprocally, AMPK silencing did not alter PKD1 activation. In conclusion, we present a novel contraction-induced ROS-DAPK-PKD1 pathway in cardiomyocytes. This pathway is activated separately from AMPK and mediates GLUT4 translocation/glucose uptake, but not CD36 translocation/LCFA uptake.  相似文献   

3.
Long-chain fatty acids (LCFA) are the major energy substrate for heart and their oxidation is important for achieving maximal cardiac work. However, the mechanism of uptake of LCFA by myocardium has not been clarified. We previously reported that bovine myocardial LCFA transporter has a sequence homology to human CD36. Clinically, total defect of myocardial uptake of radiolabeled long-chain fatty acid analog [123I-BMIPP: Iodine-123 15-(p-iodophenyl)-(R,S)-methylpentadecanoic acid] has been reported in some restricted cases, but the etiology has not been clarified. In the present study, we analyzed CD36 expression and CD36 gene in subjects who showed total lack of myocardial 123I-BMIPP accumulation, and, vice versa, evaluated myocardial 123I-BMIPP uptake in subjects with CD36 deficiency. Four unrelated subjects were evaluated; Two were found to have negative myocardial LCFA accumulation by 123I-BMIPP scintigraphy, after which the expression of CD36 on their platelets and monocytes was analyzed. Remaining two subjects were identified as CD36 deficiency by screening, then 123I-BMIPP scintigraphy was performed. Expression of CD36 on platelets and monocytes was measured by flow cytometric analysis. The molecular defects responsible for CD36 deficiency was detected by allele-specific restriction enzyme analysis. CD36 expression was totally deficient in all 4 subjects on both platelets and monocytes. Two subjects were homozygous for a 478CT mutation. One was heterozygous for the dinucleotide deletion of exon V and single nucleotide insertion of exon X, and remaining one was considered to be heterozygous for the dinucleotide deletion of exon V and an unknown gene abnormality. All cases demonstrated a completely negative accumulation of myocardial LCFA despite of normal myocardial perfusion, which was evaluated by thallium scintigraphy. In addition, all cases demonstrated apparently normal hepatic LCFA accumulation Thus, these findings suggested that CD36 acts as a major myocardial specific LCFA transporter in humans.  相似文献   

4.
5.
The aim of this study was to investigate the molecular mechanisms regulating FA translocase CD36 (FAT/CD36) translocation and FA uptake in skeletal muscle during contractions. In one model, wild-type (WT) and AMP-dependent protein kinase kinase dead (AMPK KD) mice were exercised or extensor digitorum longus (EDL) and soleus (SOL) muscles were contracted, ex vivo. In separate studies, FAT/CD36 translocation and FA uptake in response to muscle contractions were investigated in the perfused rat hindlimb. Exercise induced a similar increase in skeletal muscle cell surface membrane FAT/CD36 content in WT (+34%) and AMPK KD (+37%) mice. In contrast, 5-aminoimidazole-4-carboxamide ribonucleoside only induced an increase in cell surface FAT/CD36 content in WT (+29%) mice. Furthermore, in the perfused rat hindlimb, muscle contraction induced a rapid (1 min, +15%) and sustained (10 min, +24%) FAT/CD36 relocation to cell surface membranes. The increase in cell surface FAT/CD36 protein content with muscle contractions was associated with increased FA uptake, both in EDL and SOL muscle from WT and AMPK KD mice and in the perfused rat hindlimb. This suggests that AMPK is not essential in regulation of FAT/CD36 translocation and FA uptake in skeletal muscle during contractions. However, AMPK could be important in regulation of FAT/CD36 distribution in other physiological situations.  相似文献   

6.
Increasing evidence has implicated the membrane protein CD36 (or fatty acid translocase, FAT) to be involved in high affinity fatty acid uptake. CD36 is expressed in tissues active in fatty acid metabolism, like adipose tissue and skeletal and cardiac muscle, but also in intestine. CD36 is localized in the intestine mainly in the jejunal villi, where it is confined to enterocyte apical membrane.The aim was to determine the role of CD36 in intestinal lipid absorption. Lipid absorption was determined by administering 3H-labeled triolein and 14C-labeled palmitic acid as an olive oil bolus by intragastric gavage and determine appearance of 3H and 14C label in plasma, after blocking lipolysis by i.v. injections of Triton WR 1339. Surprisingly, no differences in plasma appearance of 3H-label or 14C-label were observed in CD36–/– mice compared to wild type controls. These results suggest that CD36 does not play a role in intestinal lipid absorption after an acute lipid load.  相似文献   

7.
Cardiovascular disease is the primary cause of death in obesity and type-2 diabetes mellitus (T2DM). Alterations in substrate metabolism are believed to be involved in the development of both cardiac dysfunction and insulin resistance in these conditions. Under physiological circumstances the heart utilizes predominantly long-chain fatty acids (LCFAs) (60–70%), with the remainder covered by carbohydrates, i.e., glucose (20%) and lactate (10%). The cellular uptake of both LCFA and glucose is regulated by the sarcolemmal amount of specific transport proteins, i.e., fatty acid translocase (FAT)/CD36 and GLUT4, respectively. These transport proteins are not only present at the sarcolemma, but also in intracellular storage compartments. Both an increased workload and the hormone insulin induce translocation of FAT/CD36 and GLUT4 to the sarcolemma. In this review, recent findings on the insulin and contraction signalling pathways involved in substrate uptake and utilization by cardiac myocytes under physiological conditions are discussed. New insights in alterations in substrate uptake and utilization during insulin resistance and its progression towards T2DM suggest a pivotal role for substrate transporters. During the development of obesity towards T2DM alterations in cardiac lipid homeostasis were found to precede alterations in glucose homeostasis. In the early stages of T2DM, relocation of FAT/CD36 to the sarcolemma is associated with the myocardial accumulation of triacylglycerols (TAGs) eventually leading to an impaired insulin-stimulated GLUT4-translocation. These novel insights may result in new strategies for the prevention of development of cardiac dysfunction and insulin resistance in obesity and T2DM.  相似文献   

8.
Evidence is accumulating that the heavily glycosylated integral membrane protein fatty acid translocase (FAT/CD36) is involved in the transport of long-chain fatty acids across the sarcolemma of heart muscle cells. The aim of this study was to analyse the distribution between FAT/CD36 present in cardiac myocytes and endothelial cells. We therefore developed a method to purify FAT/CD36 from total rat heart and isolated cardiomyocytes, and used the proteins as standards in an immunochemical assay. Two steps, chromatography on wheat germ agglutinin-agarose and anion-exchange chromatography on Q-Sepharose fast flow, were sufficient for obtaining the protein in a > 95% pure form. When used to isolate FAT/CD36 from total heart tissue, the FAT/CD36 yield of the method was 9% and the purification factor was 64. Purifying FAT/CD36 from isolated cardiomyocytes yielded the same 88 kDa protein band on SDS-PAGE gels and reactivity of this band on western blots was comparable to that of the FAT/CD36 isolated from total hearts. Quantifying FAT/CD36 contents by western blotting showed that the amounts of FAT/CD36 that are present in isolated cardiomyocytes (10 ± 3 μg/mg protein) and total hearts (14 ± 4 μg/mg protein) are of comparable magnitude. Immunofluorescence labelling showed that at least a part of the FAT/CD36 present in the cardiomyocyte is associated with the sarcolemma. This study established that FAT/CD36 is a relatively abundant protein in the cardiomyocyte. In addition, the further developed purification procedure is the first method for isolating FAT/CD36 from rat heart and cardiomyocyte FAT/CD36.  相似文献   

9.
Protein-mediated LCFA transport across plasma membranes is highly regulated by the fatty acid transporters FAT/CD36 and FABPpm. Physiologic stimuli (insulin stimulation, AMP kinase activation) induce the translocation of one or both transporters to the plasma membrane and increase the rate of LCFA transport. In the hypoxic/ischemic heart, intramyocardial lipid accumulation has been attributed to a reduced rate of fatty acid oxidation. However, since acute hypoxia (15 min) activates AMPK, we examined whether an increased accumulation of intramyocardial lipid during hypoxia was also attributable to an increased rate of LCFA uptake as a result AMPK-induced translocation of FAT/CD36 and FABPpm. In cardiac myocytes, hypoxia (15 min) induced the redistribution of FAT/CD36 from an intracellular pool (LDM) (-25%, P<0.05) to the plasma membranes (PM) (+54%, P<0.05). Hypoxia also induced an increase in FABPpm at the PM (+56%, P<0.05) and a concomitant FABPpm reduction in the LDM (-24%, P<0.05). Similarly, in intact, Langendorff perfused hearts, hypoxia induced the translocation of a both FAT/CD36 and FABPpm to the PM (+66% and +61%, respectively, P<0.05), with a concomitant decline in FAT/CD36 and FABPpm in the LDM (-24% and -23%, respectively, P<0.05). Importantly, the increased plasmalemmal content of these transporters was associated with increases in the initial rates of palmitate uptake into cardiac myocytes (+40%, P<0.05). Acute hypoxia also redirected palmitate into intracellular lipid pools, mainly to PL and TG (+48% and +28%, respectively, P<0.05), while fatty acid oxidation was reduced (-35%, P<0.05). Thus, our data indicate that the increased intracellular lipid accumulation in hypoxic hearts is attributable to both: (a) a reduced rate of fatty acid oxidation and (b) an increased rate of fatty acid transport into the heart, the latter being attributable to a hypoxia-induced translocation of fatty acid transporters.  相似文献   

10.
Fatty acid translocase (FAT)/CD36 has been associated with diverse normal and pathologic processes. These include scavenger receptor functions (uptake of apoptotic cells and modified lipid), lipid metabolism and fatty acid transport, adhesion, angiogenesis, modulation of inflammation, transforming growth factor- activation, atherosclerosis, diabetes and cardiomyopathy. Although CD36 was identified more than 25 years ago, it is only with the advent of recent genetic technology that in vivo evidence has emerged for its physiologic and pathologic relevance. As these in vivo studies are expanded, we will gain further insight into the mechanism(s) by which CD36 transmits a cellular signal, and this will allow the design of specific therapeutics that impact on a particular function of CD36.  相似文献   

11.
The functional role of CD36 protein detected in mitochondrial fractions in long chain fatty acid (LCFA) oxidation is unclear due to conflicting results obtained in Cd36 knockout mice and experiments using sulfo-N-succinimidyl oleate (SSO) for inhibition of CD36 mediated LCFA transport. We investigated effect of SSO on mitochondrial respiration and found that SSO substantially inhibits not only LCFA oxidation, but also oxidation of flavoprotein- and NADH-dependent substrates and generation of mitochondrial membrane potential. Experiments in rat liver, heart and kidney mitochondria demonstrated a direct effect on mitochondrial respiratory chain with the most pronounced inhibition of the complex III (IC50 4 μM SSO). The results presented here show that SSO is a potent and irreversible inhibitor of mitochondrial respiratory chain.  相似文献   

12.
Fatty acid translocase (FAT/CD36) is a membrane receptor that facilitates long-chain fatty acid uptake. To investigate its role in the regulation of long-chain fatty acid composition in muscle tissue, we studied and compared FAT/CD36 gene expression in muscle tissues of commercial broiler chickens and Chinese local Silky fowls. The results from gas chromatography–mass spectrometry analysis of muscle samples demonstrated that Chinese local Silky fowls had significantly higher (P < 0.05) proportions of linoleic acid (LA) and palmitic acid, lower proportions (P < 0.05) of arachidonic acid (AA) and oleic acid than the commercial broiler chickens. The mRNA expression levels of fatty acid (FA) transporters (FA transport protein-1, membrane FA-binding protein, FAT/CD36 and caveolin-1) in the m. ipsilateral pectoralis and biceps femoris were analyzed by Q-PCR, and FAT/CD36 expression levels showed significant differences between these types of chickens (P < 0.01). Interestingly, the levels of FAT/CD36 expression are positively correlated with LA content (r = 0.567, P < 0.01) but negatively correlated with palmitic acid content (r = −0.568, P < 0.01). Further experiments in the stably transfected Chinese hamster oocytes cells with chicken FAT/CD36 cDNA demonstrated that overexpression of FAT/CD36 improves total FA uptake with a significant increase in the proportion of LA and AA, and a decreased proportion of palmitic acid. These results suggest that chicken FAT/CD36 may selectively transport LA and AA, which may lead to the higher LA deposition in muscle tissue.  相似文献   

13.
14.
Mycobacterium tuberculosis (Mtb) signals through Toll-like receptor 2 (TLR2) to regulate antigen presenting cells (APCs). Mtb lipoproteins, including LpqH, LprA, LprG and PhoS1, are TLR2 agonists, but their co-receptor requirements are unknown. We studied Mtb lipoprotein-induced responses in TLR2−/−, TLR1−/−, TLR6−/−, CD14−/− and CD36−/− macrophages. Responses to LprA, LprG, LpqH and PhoS1 were completely dependent on TLR2. LprG, LpqH, and PhoS1 were dependent on TLR1, but LprA did not require TLR1. None of the lipoproteins required TLR6, although a redundant contribution by TLR6 cannot be excluded. CD14 contributed to detection of LprA, LprG and LpqH, whereas CD36 contributed only to detection of LprA. Studies of lung APC subsets revealed lower TLR2 expression by CD11bhigh/CD11clow lung macrophages than CD11blow/CD11chigh alveolar macrophages, which correlated with hyporesponsiveness of lung macrophages to LpqH. Thus, lung APC subsets differ in TLR expression, which may determine differences in responses to Mtb.  相似文献   

15.
Sarcolemmal CD36 facilitates myocardial fatty acid (FA) uptake, which is markedly reduced in CD36-deficient rodents and humans. CD36 also mediates signal transduction events involving a number of cellular pathways. In taste cells and macrophages, CD36 signaling was recently shown to regulate store-responsive Ca2+ flux and activation of Ca2+-dependent phospholipases A2 that cycle polyunsaturated FA into phospholipids. It is unknown whether CD36 deficiency influences myocardial Ca2+ handling and phospholipid metabolism, which could compromise the heart, typically during stresses. Myocardial function was examined in fed or fasted (18–22 h) CD36−/− and WT mice. Echocardiography and telemetry identified conduction anomalies that were associated with the incidence of sudden death in fasted CD36−/− mice. No anomalies or death occurred in WT mice during fasting. Optical imaging of perfused hearts from fasted CD36−/− mice documented prolongation of Ca2+ transients. Consistent with this, knockdown of CD36 in cardiomyocytes delayed clearance of cytosolic Ca2+. Hearts of CD36−/− mice (fed or fasted) had 3-fold higher SERCA2a and 40% lower phospholamban levels. Phospholamban phosphorylation by protein kinase A (PKA) was enhanced after fasting reflecting increased PKA activity and cAMP levels in CD36−/− hearts. Abnormal Ca2+ homeostasis in the CD36−/− myocardium associated with increased lysophospholipid content and a higher proportion of 22:6 FA in phospholipids suggests altered phospholipase A2 activity and changes in membrane dynamics. The data support the role of CD36 in coordinating Ca2+ homeostasis and lipid metabolism and the importance of this role during myocardial adaptation to fasting. Potential relevance of the findings to CD36-deficient humans would need to be determined.  相似文献   

16.
CD36 is a multifunctional immuno-metabolic receptor with many ligands. One of its physiological functions in the heart is the high-affinity uptake of long-chain fatty acids (FAs) from albumin and triglyceride rich lipoproteins. CD36 deletion markedly reduces myocardial FA uptake in rodents and humans. The protein is expressed on endothelial cells and cardiomyocytes and at both sites is likely to contribute to FA uptake by the myocardium. CD36 also transduces intracellular signaling events that influence how the FA is utilized and mediate metabolic effects of FA in the heart. CD36 transduced signaling regulates AMPK activation in a way that adjusts oxidation to FA uptake. It also impacts remodeling of myocardial phospholipids and eicosanoid production, effects exerted via influencing intracellular calcium (iCa2 +) and the activation of phospholipases. Under excessive FA supply CD36 contributes to lipid accumulation, inflammation and dysfunction. However, it is also important for myocardial repair after injury via its contribution to immune cell clearance of apoptotic cells. This review describes recent progress regarding the multiple actions of CD36 in the heart and highlights those areas requiring future investigation. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.  相似文献   

17.
The sense of taste informs the organism about the quality of ingested food. Five basic taste modalities, e.g., sweet, sour, bitter, salty and umami have so far been identified. Recent compelling evidence from rodent and human studies raise the possibility for an additional sixth taste modality devoted to the perception of lipids. Recent studies strongly suggest that lingual CD36, being implicated in the perception of dietary fat, may act as a gustatory lipid sensor. Knocking down of CD36 gene decreases the spontaneous preference for long chain fatty acids (LCFA) in mice subjected to a free choice situation. Lingual CD36, after activation by LCFA, is able to trigger specific signalling mechanisms, e.g., increase in free intracellular calcium concentrations, ([Ca2+]i), phosphorylation of protein-tyrosine kinase (PTK) and release of the neurotransmitters like serotonin and nor-adrenaline into synaptic clefts. This signalling cascade is likely responsible for physiologic responses, induced by the detection of lipids in the oral cavity (i.e., lingual fat preference and cephalic phase of digestion). This review provides recent insights into the molecular mechanisms involved in the oro-sensory perception of lipids.  相似文献   

18.
Cardiac triacylglycerol (TAG) stores buffer the intracellular availability of long chain fatty acid (LCFA) that act as nuclear receptor ligands, substrate for lipotoxic derivatives, and high energy-yield fuel. The kinetic characteristics of TAG turnover and homeostatic mechanisms linking uptake and storage dynamics in hearts have until now remained elusive. This work examines TAG pool dynamics in the intact beating heart, under normal conditions and in response to acute gene expression-induced changes in CD36. Dynamic mode 13C NMR elucidated multiple kinetic processes in 13C-palmitate incorporation into TAG: an initial, saturable exponential component and a slower linear rate. Although previous work indicates the linear component to reflect TAG turnover, we hypothesized the saturable exponential to reflect transport of LCFA across the sarcolemma. Thus, we overexpressed the LCFA transporter CD36 through cardiac-specific adenoviral infection in vivo. Within 72 h, CD36 expression was increased 40% in intact hearts, accelerating the exponential phase relative to PBS-infused hearts. TAG turnover also increased with elevations in adipose triglyceride lipase (ATGL) and a modest increase in diacylglycerol acyltransferase 1 (DGAT1), without a significant expansion of the intracellular lipid pools. The results demonstrate a dynamic system of reciprocal gene regulation that couples saturable LCFA uptake across the sarcolemma to TAG synthesis/lipolysis rates.  相似文献   

19.
Excess dietary long-chain fatty acid (LCFA) intake results in ectopic lipid accumulation and insulin resistance. Since medium-chain fatty acids (MCFA) are preferentially oxidized over LCFA, we hypothesized that diets rich in MCFA result in a lower ectopic lipid accumulation and insulin resistance compared to diets rich in LCFA. Feeding mice high-fat (HF) (45% kcal fat) diets for 8 weeks rich in triacylglycerols composed of MCFA (HFMCT) or LCFA (HFLCT) revealed a lower body weight gain in the HFMCT-fed mice. Indirect calorimetry revealed higher fat oxidation on HFMCT compared to HFLCT (0.011.0±0.0007 vs. 0.0096±0.0015 kcal/g body weight per hour, P<.05). In line with this, neutral lipid immunohistochemistry revealed significantly lower lipid storage in skeletal muscle (0.05±0.08 vs. 0.30±0.23 area%, P <.05) and in liver (0.9±0.4 vs. 6.4±0.8 area%, P<.05) after HFMCT vs. HFLCT, while ectopic fat storage in low fat (LF) was very low. Hyperinsulinemic euglycemic clamps revealed that the HFMCT and HFLCT resulted in severe whole body insulin resistance (glucose infusion rate: 53.1±6.8, 50.8±15.3 vs. 124.6±25.4 μmol min−1 kg−1, P<.001 in HFMCT, HFLCT and LF-fed mice, respectively). However, under hyperinsulinemic conditions, HFMCT revealed a lower endogenous glucose output (22.6±8.0 vs. 34.7±8.5 μmol min−1 kg−1, P<.05) and a lower peripheral glucose disappearance (75.7±7.8 vs. 93.4±12.4 μmol min−1 kg−1, P<.03) compared to HFLCT-fed mice. In conclusion, both HF diets induced whole body insulin resistance compared to LF. However, the HFMCT gained less weight, had less ectopic lipid accumulation, while peripheral insulin resistance was more pronounced compared to HFLCT. This suggests that HF-diets rich in medium- versus long-chain triacylglycerols induce insulin resistance via distinct mechanisms.  相似文献   

20.
Chromium picolinate (CrPic) has been indicated to activate glucose transporter 4 (GLUT4) trafficking to the plasma membrane (PM) to enhance glucose uptake in 3T3-L1 adipocytes. In skeletal and heart muscle cells, insulin directs the intracellular trafficking of the fatty acid translocase/CD36 to induce the uptake of cellular long-chain fatty acid (LCFA). The current study describes the effects of CrPic and insulin on the translocation of CD36 from intracellular storage pools to the PM in 3T3-L1 adipocytes in comparison with that of GLUT4. Immunofluorescence microscopy and immunoblotting revealed that both CD36 and GLUT4 were expressed and primarily located intracellularly in 3T3-L1 adipocytes. Upon insulin or CrPic stimulation, PM expression of CD36 increased in a similar manner as that for GLUT4; the CrPic-stimulated PM expression was less strong than that of insulin. The increase in PM localization for these two proteins by insulin paralleled LCFA ([1-14C]palmitate) or [3H]deoxyglucose uptake in 3T3-L1 adipocytes. The induction of the PM expression of GLUT4, but not CD36, or substrate uptake by insulin and CrPic appears to be additive in adipocytes. Furthermore, wortmannin completely inhibited the insulin-stimulated translocation of GLUT4 or CD36 and prevented the increased uptake of glucose or LCFA in these cells. Taken together, for the first time, these findings suggest that both insulin and CrPic induce CD36 translocation to the PM in 3T3-L1 adipocytes and that their translocation-inducing effects are not additive. The signaling pathway inducing the translocations is different, apparently resulting in a differential activity of CD36.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号