首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Great apes are the closest living relatives of humans. Physiological similarities between great apes and humans provide clues to identify which biological features in humans are primitive or derived from great apes. Vitamin A (VA) and carotenoid metabolism have been only partially studied in great apes, and comparisons between great apes and humans are not available. We aimed to investigate VA and carotenoid intake and plasma concentrations in great apes living in captivity, and to compare them to healthy humans. Dietary intakes of humans (n = 20) and, among the great apes, chimpanzees (n = 15) and orangutans (n = 5) were calculated. Plasma retinol (ROH), retinol-binding protein (RBP), retinyl esters, and major carotenoids were analyzed. The great ape diet was higher in VA than in humans, due to high intake of provitamin A carotenoids. Plasma ROH concentrations in great apes were similar to those in humans, but retinyl esters were higher in great apes than in humans. Differences in plasma carotenoid concentrations were observed between great apes and humans. Lutein was the main carotenoid in great apes, while beta-carotene was the main carotenoid for humans. RBP concentrations did not differ between great apes and humans. The molar ratio of ROH to RBP was close to 1.0 in both great apes and humans. In conclusion, great apes show homeostatic ROH regulation, with high but physiological retinyl esters circulating in plasma. Furthermore, great apes show great selectivity in their plasmatic carotenoid concentration, which is not explained by dietary intake.  相似文献   

2.
There are only small genetic differences between humans and the great apes. Yet these differences must be very important. Major known differences include the accumulation of subcutaneous fat, the expansion of breasts and buttocks, the growth of the brain and the connectivity of neurons. All these involve lipid metabolism yet, because fat leaves no fossils, lipids are rarely mentioned in discussions of human evolution. This paper attempts to identify some candidate areas of lipid metabolism which may be important in human evolution. It draws attention to abnormalities in phospholipid metabolism in schizophrenia and suggests that these may have proved important in enhancing brain connectivity in the later stages of evolution of modern humans.  相似文献   

3.
The past two decades have witnessed tremendous advances in noninvasive and postmortem neuroscientific techniques, advances that have made it possible, for the first time, to compare in detail the organization of the human brain to that of other primates. Studies comparing humans to chimpanzees and other great apes reveal that human brain evolution was not merely a matter of enlargement, but involved changes at all levels of organization that have been examined. These include the cellular and laminar organization of cortical areas; the higher order organization of the cortex, as reflected in the expansion of association cortex (in absolute terms, as well as relative to primary areas); the distribution of long-distance cortical connections; and hemispheric asymmetry. Additionally, genetic differences between humans and other primates have proven to be more extensive than previously thought, raising the possibility that human brain evolution involved significant modifications of neurophysiology and cerebral energy metabolism.  相似文献   

4.
Thyroid hormones are essential for vertebrate development. There is a characteristic rise in thyroid hormone levels in blood during critical periods of thyroid hormone-regulated development. Thyroid hormones are lipophilic compounds, which readily partition from an aqueous environment into a lipid environment. Thyroid hormone distributor proteins are required to ensure adequate distribution of thyroid hormones, throughout the aqueous environment of the blood, and to counteract the avid partitioning of thyroid hormones into the lipid environment of cell membranes. In human blood, these proteins are albumin, transthyretin and thyroxine-binding globulin. We analyzed the developmental profile of thyroid hormone distributor proteins in serum from a representative of each order of marsupials (M. eugenii; S.crassicaudata), a reptile (C. porosus), in two species of salmonoid fishes (S. salar; O. tshawytsch), and throughout a calendar year for sea bream (S. aurata). We demonstrated that during development, these animals have a thyroid hormone distributor protein present in their blood which is not present in the adult blood. At least in mammals, this additional protein has higher affinity for thyroid hormones than the thyroid hormone distributor proteins in the blood of the adult. In fish, reptile and polyprotodont marsupial, this protein was transthyretin. In a diprotodont marsupial, it was thyroxine-binding globulin. We propose an hypothesis that an augmented thyroid hormone distributor protein network contributes to the rise in total thyroid hormone levels in the blood during development.  相似文献   

5.
Thyroxine transport in choroid plexus   总被引:4,自引:0,他引:4  
The role of the choroid plexus in thyroid hormone transport between body and brain, suggested by strong synthesis and secretion of transthyretin in this tissue, was investigated in in vitro and in vivo systems. Rat choroid plexus pieces incubated in vitro were found to accumulate thyroid hormones from surrounding medium in a non-saturable process. At equilibrium, the ratio of thyroid hormone concentration in choroid plexus pieces to that in medium decreased upon increasing the concentration of transthyretin in the medium. Fluorescence quenching of fluorophores located at different depths in liposome membranes showed maximal hormone accumulation in the middle of the phospholipid bilayer. Partition coefficients of thyroxine and triiodothyronine between lipid and aqueous phase were about 20,000. After intravenous injection of 125I-labeled thyroid hormones, choroid plexus and parts of the brain steadily accumulated 125I-thyroxine, but not [125I]triiodothyronine, for many hours. The accumulation of 125I-thyroxine in choroid plexus preceded that in brain. The amount of 125I-thyroxine in non-brain tissues and the [125I]triiodothyronine content of all tissues decreased steadily beginning immediately after injection. A model is proposed for thyroxine transport from the bloodstream into cerebrospinal fluid based on partitioning of thyroxine between choroid plexus and surrounding fluids and binding of thyroxine to transthyretin newly synthesized and secreted by choroid plexus.  相似文献   

6.
The genomic evolution and causes of phenotypic variation among humans and great apes remain largely unknown, although the phylogenetic relationships among them have been extensively explored. Previous studies that focus on differences at the amino acid and nucleotide sequence levels have revealed a high degree of similarity between humans and chimpanzees, suggesting that other types of genomic change may have contributed to the relatively large phenotypic differences between them. For example, the activity of long interspersed element 1 (LINE-1) retrotransposons may impose significant changes on genomic structure and function and, consequently, on phenotype. Here we investigate the relative rates of LINE-1 amplification in the lineages leading to humans, bonobos (Pan paniscus), and chimpanzees (P. troglodytes). Our data indicate that LINE-1 insertions have accumulated at significantly greater rates in bonobos and chimpanzees than in humans, provide insights into the timing of major LINE-1 amplification events during great ape evolution, and identify a Pan-specific LINE-1 subfamily.  相似文献   

7.
8.
Although humans and their closest relative, the chimpanzee are 98.5% identical in their DNA sequences, they differ in morphologic, behavioural and cognitive aspects. Recent studies imply observed differences in transthyretin (TTR) as a unique feature in human evolution. We studied differences in the molecular heterogeneity of plasma TTR between humans and great apes (chimpanzee, bonobo, gorilla, orang-utan) using a mass spectrometry immunoassay. Compared to humans, TTR levels were higher in chimpanzees and lower in orang-utans (both P < 0.05). In all species, four major mass signals were observed. In humans, mass signals were at 13,755 ± 4, 13,875 ± 4 (greatest intensity), 13,935 ± 8 and 14,053 ± 10 Da representing native, S-cysteinylated, S-cysteinglycinylated and glutathionylated TTR, respectively. In chimpanzees and bonobos molecular masses were slightly lower than in humans (7–8 Da), whilst in gorillas and orang-utans masses of TTR adducts were respectively 20 and 100 Da lower (P < 0.05). Peak pattern and relationship to each other was similar in all species. The close relationship between humans and chimpanzees is reflected in the similarity of their post-translational modification of TTR whilst mutations on the amino acid level are indicated. Results represent a proteomic distinction between humans and great apes with the possibility of resulting functional consequences.  相似文献   

9.
R L Hintz 《Hormone research》1990,33(2-4):105-110
Some peptide hormones are associated with specific, high-affinity plasma proteins. The major binding protein (BP) for growth hormone (GH) in humans is a circulating fragment of the GH membrane receptor, consisting of the hydrophilic, extracellular portion of that transmembrane glycoprotein. The circulating levels of GH-BP mirror the levels of GH receptors. There are 4 well-characterized insulin-like growth factor (IGF)-BPs. One IGF-binding component in plasma is a fragment of the extracellular portion of the IGF-II/mannose-6-phosphate receptor, analogous to the GH-BP. The 3 other cloned IGF-BPs form a homologous family of proteins with differences in structure, glycosylation and hormonal control that suggest differences in function. The GH- and IGF-BPs play a major role in the metabolism and biological action of these peptide hormones.  相似文献   

10.
Despite only approximately 1% difference in genomic DNA sequence, humans and chimpanzees differ considerably in mental and linguistic capabilities, and in susceptibility to some diseases. A recent comparison of gene expression in human and great apes cast some light on the genetic basis of these differences, but more rigorous study is required. Our statistical reanalysis of these microarray data shows that there have indeed been dramatic alterations in the expression of genes in the human brain since the split from chimpanzees, mainly caused by a set of genes with increased (rather than decreased) expression in the human brain.  相似文献   

11.
The purpose of this study is to determine whether histologic skeletal development in chimpanzees (Pan troglodytes) differs from that in humans. Currently, minimal quantitative data are available on the bone histology of great apes. In addition to providing baseline data on juvenile chimpanzee bone histology, the data generated by this study have potential applications for studying the comparative development between chimpanzees and humans and other primates, as well as investigating the evolution of human bone development, differences in development among limb elements, and differences in histology related to locomotor function. The study sample includes thin sections from the femoral, tibial, and fibular midshafts of 13 chimpanzees originally prepared by Kerley ([1966] Tulane Stud. Zool. 13:71-82) as part of a study on skeletal age changes in the chimpanzee. Twelve juveniles, ranging in known age from 2-15.3 years, and one adult, with a known age of 35 years, are represented. For each specimen, numbers of osteons, osteon fragments, and non-Haversian canals were counted, and percent lamellar bone was estimated. Results were compared with data extracted from Kerley ([1965] Am. J. Phys. Anthropol. 23:149-164) on a juvenile human sample. Results indicate that juvenile chimpanzees and humans exhibit similar age-related changes in histologic variables. However, age is not as strong a predictor of variation in microstructural variables in chimpanzees as it is in humans.  相似文献   

12.
Transport of nutrients and hormones through the blood-brain barrier   总被引:2,自引:0,他引:2  
The transport of circulating nutrients (glucose, amino acids, ketone bodies, choline, and purines) through the brain endothelial wall, i.e., the blood-brain barrier (BBB), is an important regulatory step in several substrate-limited pathways of brain metabolism. The in vivo kinetics of nutrient transport has been well characterized in the rat, and the kinetic constants of saturable (Km, Vmax) and nonsaturable (KD) transport through the BBB are now known for more than 30 circulating nutrients. The kinetic constants can be used to gain insight into the important rate-limiting role played by BBB nutrient transport in the regulation of brain metabolism and function. Unlike most nutrients, steroid and thyroid hormones circulate tightly bound to plasma proteins. However, owing to favorable kinetic relationships among brain capillary transit times and rates of hormone dissociation from plasma proteins and hormone diffusion through the brain endothelia, the BBB is able to strip hormones off circulating plasma proteins. With regard to peptide hormone, no specific BBB transport systems for peptides have been identified thus far. However, peptides are able to rapidly distribute into brain interstitial space at the circumventricular organs. In addition, specific receptors for insulin are located on the BBB. The presence of BBB peptide receptors provides a mechanism by which circulating peptides may rapidly influence brain function without the peptide crossing the BBB.  相似文献   

13.
A full genome analysis of differences between the gene expression in the human and chimpanzee brains revealed that the gene for transthyretin, the carrier of thyroid hormones, is differently transcribed in the cerebella of these species. A 7-kbp DNA fragment of chimpanzee was sequenced to identify possible regulatory sequences responsible for the differences in expression. One hundred and thirteen substitutions were found in the chimpanzee sequence in comparison with the human sequence. About 40% of the substitutions were revealed within the repeating elements of the genome; their location and sizes did not differ from those in the corresponding fragments of the human genome, and the nucleotide sequences had a high degree of identity. A comparison of nucleotide sequences of the transthyretin region of human, chimpanzee, and mouse genes revealed substantial differences in the distribution of G + C content along the examined fragment in the human (chimpanzee) and mouse genes and allowed us to localize three sequence tracts with a higher degree of identity in the three species. One of these tracts was located in the promoter region of the gene, and the other two probably determine the specificity of transthyretin gene expression in the liver and brain. One of the conserved tracts of the chimpanzee genome was found to have a single and a triple nucleotide substitution. The triple substitution distinguishes chimpanzees from humans and mice, which have identical sequences of this site. It is likely that these substitutions are responsible for the differences in the expression levels of the transthyretin gene in the human and chimpanzee brains.  相似文献   

14.
Modern humans are characterized by their large, complex, and specialized brain. Human brain evolution can be addressed through direct evidence provided by fossil hominid endocasts (i.e. paleoneurology), or through indirect evidence of extant species comparative neurology. Here we use the second approach, providing an extant comparative framework for hominid paleoneurological studies. We explore endocranial size and shape differences among great apes and humans, as well as between sexes. We virtually extracted 72 endocasts, sampling all extant great ape species and modern humans, and digitized 37 landmarks on each for 3D generalized Procrustes analysis. All species can be differentiated by their endocranial shape. Among great apes, endocranial shapes vary from short (orangutans) to long (gorillas), perhaps in relation to different facial orientations. Endocranial shape differences among African apes are partly allometric. Major endocranial traits distinguishing humans from great apes are endocranial globularity, reflecting neurological reorganization, and features linked to structural responses to posture and bipedal locomotion. Human endocasts are also characterized by posterior location of foramina rotunda relative to optic canals, which could be correlated to lesser subnasal prognathism compared to living great apes. Species with larger brains (gorillas and humans) display greater sexual dimorphism in endocranial size, while sexual dimorphism in endocranial shape is restricted to gorillas, differences between males and females being at least partly due to allometry. Our study of endocranial variations in extant great apes and humans provides a new comparative dataset for studies of fossil hominid endocasts.  相似文献   

15.
A full genome analysis of differences between the gene expression in the human and chimpanzee brains revealed that the gene for transthyretin, the carrier of thyroid hormones, is differently transcribed in the cerebella of these species. A 7-kbp DNA fragment of chimpanzee was sequenced to identify possible regulatory sequences responsible for the differences in expression. One hundred and thirteen substitutions were found in the chimpanzee sequence in comparison with the human sequence. About 40% of the substitutions were revealed within the repeating elements of the genome; their location and sizes did not differ from those in the corresponding fragments of the human genome, and the nucleotide sequences had a high degree of identity. A comparison of nucleotide sequences of the transthyretin region of human, chimpanzee, and mouse genes revealed substantial differences in the distribution of G + C content along the examined fragment in the human (chimpanzee) and mouse genes and allowed us to localize three sequence tracts with a higher degree of identity in the three species. One of these tracts is located in the promoter region of the gene, and the other two probably determine the specificity of transthyretin gene expression in the liver and brain. One of the conserved tracts of the chimpanzee genome was found to have a single and a triple nucleotide substitution. The triple substitution distinguishes chimpanzees from humans and mice, which have identical sequences of this site. It is likely that these substitutions are responsible for the differences in the expression levels of the transthyretin gene in the human and chimpanzee brains.  相似文献   

16.
DNA methylation is an epigenetic modification involved in regulatory processes such as cell differentiation during development, X-chromosome inactivation, genomic imprinting and susceptibility to complex disease. However, the dynamics of DNA methylation changes between humans and their closest relatives are still poorly understood. We performed a comparative analysis of CpG methylation patterns between 9 humans and 23 primate samples including all species of great apes (chimpanzee, bonobo, gorilla and orangutan) using Illumina Methylation450 bead arrays. Our analysis identified ∼800 genes with significantly altered methylation patterns among the great apes, including ∼170 genes with a methylation pattern unique to human. Some of these are known to be involved in developmental and neurological features, suggesting that epigenetic changes have been frequent during recent human and primate evolution. We identified a significant positive relationship between the rate of coding variation and alterations of methylation at the promoter level, indicative of co-occurrence between evolution of protein sequence and gene regulation. In contrast, and supporting the idea that many phenotypic differences between humans and great apes are not due to amino acid differences, our analysis also identified 184 genes that are perfectly conserved at protein level between human and chimpanzee, yet show significant epigenetic differences between these two species. We conclude that epigenetic alterations are an important force during primate evolution and have been under-explored in evolutionary comparative genomics.  相似文献   

17.
The olfactory receptor (OR) genes constitute the largest gene family in mammalian genomes. Humans have >1,000 OR genes, of which only ~40% have an intact coding region and are therefore putatively functional. In contrast, the fraction of intact OR genes in the genomes of the great apes is significantly greater (68%–72%), suggesting that selective pressures on the OR repertoire vary among these species. We have examined the evolutionary forces that shaped the OR gene family in humans and chimpanzees by resequencing 20 OR genes in 16 humans, 16 chimpanzees, and one orangutan. We compared the variation at the OR genes with that at intergenic regions. In both humans and chimpanzees, OR pseudogenes seem to evolve neutrally. In chimpanzees, patterns of variability are consistent with purifying selection acting on intact OR genes, whereas, in humans, there is suggestive evidence for positive selection acting on intact OR genes. These observations are likely due to differences in lifestyle, between humans and great apes, that have led to distinct sensory needs.  相似文献   

18.
19.
The morphology of the talus prescribes relative positions and movements of the calcaneus and navicular with respect to the tibia, hence determining the overall geometry, mobility and function of the foot that mechanically interacts with environments. Clarifying the variations of the articular surface orientations of the talus in humans and extant great apes is therefore of importance in understanding the evolution of bipedal locomotion in the human lineage. The aim of this study is to clarify the three-dimensional orientations of three articular surfaces of the talus (superior, posterior calcaneal and navicular articular surfaces) by means of the newly proposed surface approximation method. Thirty-two tali in humans, chimpanzees, gorillas and orangutans were scanned using a three-dimensional noncontact digitizer, and the articular surfaces were then approximated using a paraboloid or a plane to calculate the orientations of the surfaces with respect to the body of the talus. The results quantitatively demonstrated that the superior articular surfaces in humans were relatively more parallel with the horizontal plane of the talar body, while those in apes were more medially oriented. Furthermore, the cylindrical axis defined by the shape of the posterior calcaneal articular surface was directed less anteroposteriorly in humans than in apes, in contrast to the fact that the subtalar axis is more anteroposteriorly oriented in humans. It was also demonstrated that the navicular articular surface in humans was more plantarly oriented and axially twisted. These specialized features of the human talus seem to be functionally linked to obligate bipedal locomotion. The talar morphological differences among the great apes were prominent in the mediolateral and rotational orientations of the navicular articular surfaces, possibly reflecting the degree of arboreality among the great apes.  相似文献   

20.
The use and control of fire are uniquely human traits thought to have come about fairly late in the evolution of our lineage, and they are hypothesized to correlate with an increase in intellectual complexity. Given the relatively sophisticated cognitive abilities yet small brain size of living apes compared to humans and even early hominins, observations of wild chimpanzees' reactions to naturally occurring fire can help inform hypotheses about the likely responses of early hominins to fire. We use data on the behavior of savanna chimpanzees (Pan troglodytes verus) at Fongoli, Senegal during two encounters with wildfires to illuminate the similarities between great apes and humans regarding their reaction to fire. Chimpanzees' close relatedness to our lineage makes them phylogenetically relevant to the study of hominid evolution, and the open, hot and dry environment at Fongoli, similar to the savanna mosaic thought to characterize much of hominid evolution, makes these apes ecologically important as a living primate model as well. Chimpanzees at Fongoli calmly monitor wildfires and change their behavior in anticipation of the fire's movement. The ability to conceptualize the “behavior” of fire may be a synapomorphic trait characterizing the human‐chimpanzee clade. If the cognitive underpinnings of fire conceptualization are a primitive hominid trait, hypotheses concerning the origins of the control and use of fire may need revision. We argue that our findings exemplify the importance of using living chimpanzees as models for better understanding human evolution despite recently published suggestions to the contrary. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号