首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
1. The high S0.5 form of AMP deaminase from avian liver was shown to display a two times lower S0.5 value than the single mammalian enzyme form. 2. Avian enzymes showed several fold higher affinity to the activator (ATP) but lower affinity to inhibitors (GTP and Pi) than the mammalian AMP deaminases. 3. GTP was shown to exert a biphasic: activating and inhibitory effect on all the enzymes tested, the chicken and pigeon enzymes being activated within a much broader range of effector concentration. 4. In the presence of 3 mM ATP the activity of avian enzymes was not affected by high GTP and Pi concentrations, in contrast to AMP diaminase from rat liver which was strongly inhibited by GTP under the same experimental conditions. 5. The differences of the regulatory properties described are discussed in terms of adjustment of avian liver AMP deaminase to a faster adenylates' catabolism and thus urate synthesis.  相似文献   

2.
Adenylate deaminase (AMP aminohydrolase, EC 3.5.4.6) from lugworm (Arenicola cristata) body-wall muscle was partially purified by extraction in KCl solutions and chromatography on phosphocellulose. Enzyme activity was eluted from the column at two salt concentrations. Both forms show co-operative binding of AMP (Hill coefficient, h, 2.85) with s0.5 values of 20 mM and 15.6 mM. ATP and ADP act as positive effectors lowering h to 1.07 and s0.5 to 2mM. The apparent Ka (activation) for ATP was 1.5mM. GTP is an inhibitor with an apparent Ki of 0.12 mM. In vivo the ATP-activated adenylate deaminase is in the active form and may be regulated by changes in GTP concentrations. Adenylate deaminase may act as a primary ammonia-forming enzyme in ammonotelic marine invertebrates with the purine nucleotide cycle.  相似文献   

3.
The kinetic and regulatory properties of purified rat heart AMP deaminase were investigated. In the presence of 100 mM KCl, the enzyme exhibited a slightly sigmoid-shaped plot of reaction rate, vs. substrate concentration, which shifted to a more hyperbolic form when ATP, ADP or GTP were added. ATP was the most potent activator of the enzyme, whereas GTP at low (less than 0.25 mM) concentrations increased the enzyme activity. The activation effect was negligible at higher concentrations of GTP. The calculated value of K0.5 of approx. 3 mM for unactivated enzyme decrased to approx. 0.6 mM and 1.1 mM when 0.5 mM ATP or 1.5 mM ADP were present in the incubation mixture, respectively. The theoretical model (Monod, J., Wyman, J. and Changeux, J.P. (1965) J. Mol. Biol. 12, 88-118) gave a partial explanation of these results.  相似文献   

4.
Regulation of platelet AMP deaminase activity in situ.   总被引:1,自引:0,他引:1       下载免费PDF全文
The regulation of platelet AMP deaminase activity by ATP, GTP and phosphate was studied in human platelets in situ, and in vitro after partial purification. In intact platelets, a similar 50% decrease in cytosolic ATP was induced by either glucose starvation or treatment with H2O2. During starvation, AMP deaminase was in the inhibited state, as ATP consumption was mostly balanced by the accumulation of AMP. During H2O2 treatment, however, the enzyme was in the stimulated state, as the AMP formed was almost completely deaminated to IMP. Cytosolic GTP fell by 40-50% in both starvation and H2O2 treatment. In contrast, intracellular phosphate was 4-5-fold higher in starved than in H2O2-treated cells. These data point to phosphate as the main regulator of AMP deaminase activity in situ. This conclusion was verified by kinetic analysis of partially purified AMP deaminase. At near-physiological concentrations of MgATP, MgGTP and phosphate, the S0.5 (substrate half-saturation constant) for AMP was 0.35 mM. Half-maximal stimulation by MgATP occurred at a concn. between 2 and 3 mM. This stimulation was antagonized by the inhibitory effects of phosphate (IC50 = 2.0 mM) and MgGTP (IC50 = 0.2-0.3 mM), which acted in synergism (IC50 is the concentration causing 50% inhibition). We conclude that the difference in adenylate catabolism between starved and H2O2-treated platelets is due to the distinct phosphate concentrations. During starvation, refeeding and H2O2 treatment, the values of the adenylate charge and the phosphorylation potential were kept closely co-ordinated, which may be effected by AMP deaminase.  相似文献   

5.
The problems of whether the kinetic and regulatory properties of AMP deaminase were modified by formation of a deaminase-myosin complex were investigated with an enzyme preparation from rat skeletal muscle. Results showed that AMP deaminase was activated by binding to myosin. Myosin-bound AMP deaminase showed a sigmoidal activity curve with respect to AMP concentration in the absence of ATP and ADP, but a hyperbolic curve in their presence. Addition of ATP and ADP doubled the V value, but did not affect the Km value. Myosin-bound AMP deaminase also gave a sigmoidal curve in the presence of alkali metal ions, whereas free AMP deaminase gave a hyperbolic curve. GTP abolished the activating effects of both myosin and ATP.  相似文献   

6.
AMP deaminase from normal and diabetic rat hearts was separated on cellulose phosphate and quantitated by HPLC. From soluble fractions three different AMP deaminase activities, according to KCl elution from cellulose phosphate and percent of total activity were: 170 mM (85%), 250 mM (8%) and 330 mM (7%) KCl. The AMP deaminase activity which eluted with 170 mM KCl was resolved to two distinct peaks by HPLC anionic exchange. After 4 weeks of diabetes the heart enzyme profile change to: 170 mM (10%), 250 mM (75%) and 330 mM (15%). Once purified the four activities were kinetically distinct: 170 mM KCl cytosolic, AMP Km = 1.78, stimulated by ATP, GTP, NADP and strongly inhibited by NAD; 170 mM KCl mitochondria AMP Km = 17.9, stimulated by ATP, ADP; 250 mM KCl isozyme, AMP Km = 0.66, stimulated by ADP; and 330 mM KCl isozyme, AMP Km = 0.97, inhibited by ATP, NAD(P).  相似文献   

7.
We examined the kinetic and regulatory properties of the two isoenzymes of red muscle AMP deaminase, forms A and B, corresponding respectively to the single isoenzymes present in the heart and white skeletal muscle. At the optimal pH value, 6.5, both enzymes show hyperbolic substrate-velocity curves and are inhibited by GTP, inducing sigmoid kinetics. An effect similar to that of GTP is exerted on form B by ATP, whereas form A is almost insensitive to this nucleotide. At pH 7.1 both enzymes follow sigmoid kinetics. ATP enhances the sigmoidicity of the substrate-velocity curve of form B, but it stimulates form A, reverting sigmoidal to hyperbolic kinetics shown by the enzyme at optimal pH. At pH 7.1, form A is also less sensitive to the inhibitory action of Pi and GTP. These results suggest that, owing to the presence of form A, AMP deamination occurs in red muscle also at moderate work intensity. A possible role of this process in counteracting the production of adenosine by 5'-nucleotidase is hypothesized.  相似文献   

8.
Chromatography on phosphocellulose column revealed changes in the elution profile of 14 day-old chicken embryo and adult hen skeletal muscle AMP deaminase. In the presence of 5 mM potassium the enzyme from embryo muscle exhibited a sigmoid-shaped plot of the reaction rate versus substrate concentration. The increase of KCl concentration up to 100 mM diminished distinctly sigmoidicity of the plot. Micromolar concentrations of ADP or ATP activated, whereas GTP at the same concentrations inhibited the embryo and hen skeletal muscle AMP deaminase while 5 mM KCl was present in the incubation medium. 100 mM potassium concentration diminished the effect of ADP and ATP but not of GTP. Palmitoyl-CoA inhibited strongly the embryo skeletal muscle adenylate deaminase but had no effect on the activity of the hen enzyme. Alanine inhibited only the adult hen enzyme. The embryo and hen AMP deaminase differed also in the specificity to adenylate analogues and exhibited a different dAMP/AMP ratio. The data presented indicate that kinetic and regulatory properties of the two developmental forms of AMP deaminase are different.  相似文献   

9.
A human placental soluble "high Km" 5'-nucleotidase has been separated from "low Km" 5'-nucleotidase and nonspecific phosphatase by AMP-Sepharose affinity chromatography. The enzyme was purified 8000-fold to a specific activity of 25.6 mumol/min/mg. The subunit molecular mass is 53 kDa, and the native molecular mass is 210 kDa, suggesting a tetrameric structure. Soluble high Km 5'-nucleotidase is most active with IMP and GMP and their deoxy derivatives. IMP is hydrolyzed 15 times faster than AMP. The enzyme has a virtually absolute requirement for magnesium ions and is regulated by them. Purine nucleoside 5'-triphosphates strongly activate the enzyme with the potency order dATP greater than ATP greater than GTP. 2,3-Diphosphoglycerate activates the enzyme as potently as ATP. Three millimolar ATP decreased the Km for IMP from 0.33 to 0.09 mM and increased the Vmax 12-fold. ATP activation was modified by the IMP concentration. At 20 microM IMP the ATP-dependent activation curve was sigmoidal, while at 2 mM IMP it was hyperbolic. The A0.5 values for ATP were 2.26 and 0.70 mM, and the relative maximal velocities were 32.9 and 126.0 nmol/min, respectively. Inorganic phosphate shifts the hyperbolic substrate velocity relationship for IMP to a sigmoidal one. With physiological concentrations of cofactors (3 mM ATP, 1-4 mM Pi, 150 mM KCl) at pH 7.4, the enzyme is 25-35 times more active toward 100 microM IMP than 100 microM AMP. These data show that: (a) soluble human placental high Km 5'-nucleotidase coexists in human placenta with the low Km enzyme; (b) under physiological conditions the enzyme favors the hydrolysis of IMP and is critically regulated by IMP, ATP, and Pi levels; and (c) kinetic properties of ATP and IMP are each modified by the other compound suggesting complex interaction of the associated binding sites.  相似文献   

10.
Eukaryotes have been proposed to depend on AMP deaminase as a primary step in the regulation of intracellular adenine nucleotide pools. This report describes 1) the role of AMP deaminase in adenylate metabolism in yeast cell extracts, 2) a method for large scale purification of the enzyme, 3) the kinetic properties of native and proteolyzed enzymes, 4) the kinetic reaction mechanism, and 5) regulatory interactions with ATP, GTP, MgATP, ADP, and PO4. Allosteric regulation of yeast AMP deaminase is of physiological significance, since expression of the gene is constitutive (Meyer, S. L., Kvalnes-Krick, K. L., and Schramm, V. L. (1989) Biochemistry 28, 8734-8743). The metabolism of ATP in cell-free extracts of yeast demonstrates that AMP deaminase is the sole pathway of AMP catabolism in these extracts. Purification of the enzyme from bakers' yeast yields a proteolytically cleaved enzyme, Mr 86,000, which is missing 192 amino acids from the N-terminal region. Extracts of Escherichia coli containing a plasmid with the gene for yeast AMP deaminase contained only the unproteolyzed enzyme, Mr 100,000. The unproteolyzed enzyme is highly unstable during purification. Substrate saturation plots for proteolyzed AMP deaminase are sigmoidal. In the presence of ATP, the allosteric activator, the enzyme exhibits normal saturation kinetics. ATP activates the proteolyzed AMP deaminase by increasing the affinity for AMP from 1.3 to 0.2 mM without affecting VM. Activation by ATP is more efficient than MgATP, with half-maximum activation constants of 6 and 80 microM, respectively. The kinetic properties of the proteolyzed and unproteolyzed AMP deaminase are similar. Thus, the N-terminal region is not required for catalysis or allosteric activation. AMP deaminase is competitively inhibited by GTP and PO4 with respect to AMP. The inhibition constants for these inhibitors decrease in the presence of ATP. ATP, therefore, tightens the binding of GTP, PO4, and AMP. The products of the reaction, NH3 and IMP, are competitive inhibitors against substrate, consistent with a rapid equilibrium random kinetic mechanism. Kinetic dissociation constants are reported for the binary and ternary substrate and product complexes and the allosteric modulators.  相似文献   

11.
Two molecular forms of AMP deaminase have been revealed by phosphocellulose column chromatography in the liver of uricotelic lizard. The calculated S0.5 value of the purified lizard liver AMP deaminase was 2.5 +/- 0.1 for the form I and 3.6 +/- 0.4 for the form II. Both forms of the enzyme were activated by ATP and ADP but the form II to a much higher extent. GTP activated only the form II and inorganic phosphate inhibited both forms. The occurrence of multiple forms of liver AMP deaminase in uricotelic species, as well as its difference from the mammalian enzyme regulation by GTP is suggested to be connected with the uricotelism in these animals.  相似文献   

12.
1. The hepatic concentration of several nucleotides and metabolites was measured during the first few minutes after an intravenous load of fructose to mice. The first changes, observed at 30s, were a decrease in the concentration of Pi and a simultaneous accumulation of fructose 1-phosphate. The decrease in the concentrations of ATP and GTP proceeded more slowly. An increase in the concentration of IMP was detected only after 1 min and could therefore not be considered to be the cause of the accumulation of fructose 1-phosphate. 2. To explain the temporary burst of adenine nucleotide breakdown that occurs after a load of fructose, the kinetics of AMP deaminase (EC 3.5.4.6) from rat liver were reinvestigated at physiological (0.2 mM) concentration of substrate. For this purpose, a new radiochemical-assay procedure was developed. At 0.2mM-AMP a low activity could be measured, which was more than 90% inhibited by 5mM-Pi. ATP (3MM) increased the enzyme activity over 200-fold. Pi alone did not influence the ATP-activated enzyme, but 0.5mM-GTP caused a 60% inhibition. The combined effect of both inhibitors at their physiological concentrations reached 95%. 3. It is proposed that the rapid degradation of adenine nucleotides that occurs after a load of fructose is caused by a decrease in the concentration of both inhibitors, Pi and GTP, soon counteracted by the decrease in the concentration of ATP. 4. Some of the kinetic parameters of liver AMP deaminase were computed in terms of the concerted transition theory of Monod, Wyman & Changeux (1965) (J. Mol. Biol. 12, 88-118).  相似文献   

13.
Adenylate deaminase from rat skeletal muscle has been studied with the objective of understanding how the activity of the enzyme is regulated in vivo. ATP and GTP inhibit the enzyme at low concentrations in the presence of 150 mM KCl. The ATP inhibition is reversed as the ATP concentration is raised to physiological levels. The GTP inhibition is reversed as the GTP concentration is raised to unphysiologically high levels. In the presence of physiological concentrations of ATP, the GTP inhibition is also greatly diminished, but inhibition by orthophosphate remains strong. The apparent affinities of the enzyme for GTP, ATP, and orthophosphate are reduced as the pH is decreased from 7.0 to 6.2. ADP also reduces the apparent affinities of the enzyme for the inhibitors. The regulatory effects of GTP, ATP, and ADP are produced primarily by their unchelated forms. Comparison of the kinetic behavior of the enzyme in vitro with metabolite concentrations in vivo indicates that the major variables that regulate the activity of adenylate deaminase of muscle in vivo are the concentrations of AMP, ADP, orthophosphate, and H+.  相似文献   

14.
1. The kinetic properties of the 5'-nucleotidase (EC 3.1.3.5) present in the cytosol of rat liver were investigated in relation to the conversion of adenine nucleotides into uric acid, with particular reference to the stimulation of this process by fructose. The enzyme was assayed by the release of Pi and by a new and more sensitive radiochemical procedure. 2. When IMP was used as substrate, the partially purified enzyme displayed almost hyperbolic kinetics (h = 1.1) with S0.5 = 1.2 mM. Similar kinetics were observed with GMP and other nucleoside 5'-monophosphates, except AMP. 3. Vmax. of the enzyme for AMP was about the same as for IMP, but the kinetics were sigmoidal (h = 1.6) with S 0.5 = 10 mM. 4. The hydrolysis of IMP was inhibited competitively by GMP. IMP, at concentrations up to 0.5 mM, had a paradoxical stimulatory action on the hydrolysis of 2-5 mM-AMP and was inhibitory at higher concentrations. 5. The activity of the enzyme towards AMP and IMP was stimulated by ATP and GTP, and inhibited by Pi. Activators and inhibitor approximately cancelled each others' effects. At pH 7.4, the enzymic activity with 0.2 mM-AMP was undetectable under physiological conditions. 6. It is concluded that, in the liver cell, AMP is not hydrolysed by the soluble 5'-nucleotidase, but that its degradation requires prior deamination to IMP.  相似文献   

15.
1. Phosphocellulose column chromatography under double gradient conditions (phosphate and KCl) revealed two forms of AMP deaminase in rat heart and brain and a single form in the liver and skeletal muscle. 2. Kinetically all purified AMP deaminases were classified into two categories: those, which elute from the column at lower KCl and Pi concentrations, display low S0.5 value are only moderately affected by MgATP, MgGTP and Pi; and those which elute at higher KCl and Pi concentrations, display high S0.5 values and are strongly regulated by allosteric effectors. 3. Physiological significance of the occurrence of two kinetic forms of AMP deaminase in some tissues is discussed.  相似文献   

16.
The allosteric properties of AMP deaminase [EC 3.5.4.6] from chicken erythrocytes have been qualitatively and quantitatively accounted for by the concerted transition theory of Monod et al., on the assumption that this enzyme has different numbers of binding sites for each ligand. Theoretical curves yield a satisfactory fit for all experimental saturation functions with respect to activation by alkali metals and inhibition by Pi, assuming that the numbers of binding sites for AMP, alkali metals, and Pi are 4, 2, and 4, respectively. The enzyme was inhibited by concentrations of ATP and GTP below 0.1 and 0.25 mM, respectively, whereas activation of the enzyme was observed at ATP and GTP concentrations above 0.4 and 1.5 mM, respectively. These unusual kinetics with respect to ATP and GTP could be also accounted for by assuming 2 inhibitory and 4 activating sites for each ligand.  相似文献   

17.
AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) was found in extract of baker's yeast (Saccharomyces cerevisiae), and was purified to electrophoretic homogeneity using phosphocellulose adsorption chromatography and affinity elution by ATP. The enzyme shows cooperative binding of AMP (Hill coefficient, nH, 1.7) with an s0.5 value of 2.6 mM in the absence or presence of alkali metals. ATP acts as a positive effector, lowering nH to 1.0 and s0.5 to 0.02 mM. P1 inhibits the enzyme in an allosteric manner: s0.5 and nH values increase with increase in Pi concentration. In the physiological range of adenylate energy charge in yeast cells (0.5 to 0.9), the AMP deaminase activity increases sharply with decreasing energy charge, and the decrease in the size of adenylate pool causes a marked decrease in the rate of the deaminase reaction. AMP deaminase may act as a part of the system that protects against wide excursions of energy charge and adenylate pool size in yeast cells. These suggestions, based on the properties of the enzyme observed in vitro, are consistent with the results of experiments on baker's yeast in vivo reported by other workers.  相似文献   

18.
The properties of piglet cardiac AMP deaminase were determined and its regulation by pH, phosphate, nucleotides and phosphorylation is described. AMP deaminase purified from the ventricles of newborn piglet hearts displayed hyperbolic kinetics with a Km of 2 mM for 5-AMP. The enzyme had a pH optimum of 7.0 and was strongly inhibited by inorganic phosphate. ATP decreased the Km of the native enzyme 3-fold, but did not significantly block the inhibitory effects of phosphate. Kinetic parameters were not significantly altered in the presence of adenosine, cyclic AMP and NAD+, whereas, the Km was decreased by 50% in the presence of NADH. Piglet cardiac AMP deaminase was phosphorylated by protein kinase C, resulting in a 2-fold increase in Vmax with no change in Km. However, incubation with cAMP-dependent protein kinase did not affect enzyme kinetics. The 80-85 kD protein subunit of piglet cardiac AMP deaminase immunoreacted with antisera raised against human erythrocyte AMP deaminase, rabbit heart AMP deaminase and human recombinant AMP deaminase 3 (isoform E). These results are discussed in relation to in situ AMP deaminase activity in neonatal piglet heart myocytes.  相似文献   

19.
Yeast AMP deaminase is allosterically activated by ATP and MgATP and inhibited by GTP and PO4. The tetrameric enzyme binds 2 mol each of ATP, GTP, and PO4/subunit with Kd values of 8.4 +/- 4.0, 4.1 +/- 0.6, and 169 +/- 12 microM, respectively. At 0.7 M KCl, ATP binds to the enzyme, but no longer activates. Titration with coformycin 5'-monophosphate, a slow, tight-binding inhibitor, indicates a single catalytic site/subunit. ATP and GTP bind at regulatory sites distinct from the catalytic site and their binding is mutually exclusive. Inorganic phosphate competes poorly with ATP for the ATP sites (Kd = 20.1 +/- 4.1 mM). However, near-saturating ATP reduces the moles of phosphate bound per subunit to 1 PO4, which binds with a Kd = 275 +/- 22 microM. In the presence of ATP, PO4 cannot effectively compete with ATP for the nucleotide triphosphate sites. The PO4 which binds in the presence of ATP is competitive with AMP at the catalytic site since the Kd equals the kinetic inhibition constant for PO4. Initial reaction rate curves are a cooperative function of AMP concentration and activation by ATP is also cooperative. However, no cooperativity is observed in the binding of any of the regulator ligands and ATP binding and kinetic activation by ATP is independent of substrate analog concentration. Cooperativity in initial rate curves results, therefore, from altered rate constants for product formation from each (enzyme.substrate)n species and not from cooperative substrate binding. The traditional cooperative binding models of allosteric regulation do not apply to yeast AMP deaminase, which regulates catalytic activity by kinetic control of product formation. The data are used to estimate the rates of AMP hydrolysis under reported metabolite concentrations in yeast.  相似文献   

20.
Inorganic pyrophosphate and triphosphate inhibit adenylate deaminase from rat skeletal muscle with K1 values of 10 and 1.5 microM, respectively, in the presence of 150 mM KCl at pH 7. They act by reducing the apparent affinity of the enzyme for AMP, with relatively small effects on Vmax. The inhibitions are diminished by H+, the KI values increasing two- to threefold in going from pH 7.0 to 6.2, and are relieved by ADP. These properties are similar to the inhibitions produced by GTP and ATP, indicating that pyrophosphate and triphosphate act like analogues of the nucleoside triphosphates. Neither of these inhibitors shows relief of inhibition at high concentrations as do ATP and GTP. These results suggest that nucleotides interact with the inhibitor site of the enzyme primarily through their phosphate moieties and with the activator site primarily through their nucleoside moieties. As the concentration of KCl is increased from 25 to 300 mM, the apparent affinities of the enzyme for ATP, GTP, orthophosphate, pyrophosphate, and triphosphate are decreased 8-100-fold. The cooperativity of the inhibitions is increased with the Hill coefficient rising from 1.0 to 1.3-1.8, and the maximum inhibition approaches 100%. Maximum activation by ADP is reduced from 1800% at 25 mM KCl to 80% at 200 mM KCl. Experiments with (CH3)4NCl indicate that activation of the enzyme by KCl involves both specific K+ effects and ionic strength effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号