首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
AIMS: To assess the effect of protozoal species on rumen fermentation characteristics in vitro. METHODS AND RESULTS: Entodinium caudatum, Isotricha intestinalis, Metadinium medium, and Eudiplodinium maggii from monofaunated wethers and mixed protozoa from conventional wethers were obtained by centrifugation, re-suspended at their normal densities in rumen fluid supernatants from defaunated or conventional wethers and incubated in vitro. The presence of protozoa increased the concentration of ammonia and altered the volatile fatty acids balance with more acetate and butyrate produced at the expense of propionate. Differences among species were observed, notably in the production of methane, which increased with E. caudatum as compared to other ciliates and to defaunated and mixed protozoa treatments (P < 0.05). The increased methanogenesis was not correlated to protozoal biomass indicating that the metabolism of this protozoan and/or its influence on the microbial ecosystem was responsible for this effect. CONCLUSIONS: Entodinium caudatum stimulated the production of methane, a negative effect that was reinforced by a concomitant increase in protein degradation. SIGNIFICANCE AND IMPACT OF THE STUDY: Comparison of individual species of protozoa highlighted the particular influence of E. caudatum on rumen fermentation. Its elimination (targeted defaunation) from the rumen could reduce methane production without affecting feed degradation.  相似文献   

2.
Aims: To determine the in‐vitro effect and mode of action of tea saponin on the rumen microbial community and methane production. Methods and Results: Saponin extracted from tea seeds was added to (1) an in‐vitro fermentation inoculated with rumen fluid and (2) a pure culture of Methanobrevibacter ruminantium. Methane production and expression of the methyl coenzyme‐M reductase subunit A (mcrA) were monitored in both cultures. Abundance of methanogens, protozoa, rumen fungi and cellulolytic bacteria were quantified using real‐time PCR, and bacterial diversity was observed using denaturing gradient gel electrophoresis. Addition of tea saponin significantly reduced methane production and mcrA gene expression in the ruminal fermentation but not with the pure culture of M. ruminantium. The abundance of protozoa and fungi were significantly decreased 50% and 79% respectively but methanogen numbers were not affected, and Fibrobacter succinogenes increased by 41%. Bacterial diversity was similar in cultures with or without tea saponin. Conclusions: Tea saponin appeared to reduce methane production by inhibiting protozoa and presumably lowering methanogenic activity of protozoal‐associated methanogens. Significance and Impact of the Study: Tea saponin may be useful as a supplement to indirectly inhibit methane production in ruminants without a deleterious effect on rumen function.  相似文献   

3.
The importance of methanogenic bacteria associated with ciliate protozoa was estimated either by removing protozoa from whole rumen fluid (using defaunated rumen fluid to correct for the effects of centrifugation on bacteria) or by isolating the protozoa. Rumen fluid was withdrawn from sheep inoculated with either Polyplastron multivesiculatum , a co-culture of Isotricha prostoma plus Entodinium spp. or a mixed type B fauna of Entodinium, Eudiplodinium and Epidinium spp. Methanogenesis was highest in rumen fluid containing a mixed protozoal population of the following genera: Entodinium, Eudiplodinium and Epidinium , was lower in defaunated rumen fluid and lowest in rumen fluid containing either I. prostoma plus Entodinium or P. multivesiculatum . Methanogenic bacteria associated with rumen ciliates were apparently responsible for between 9 and 25% of methanogenesis in rumen fluid.  相似文献   

4.
SYNOPSIS. Trichomitopsis termopsidis (Cleveland), a cellulolytic hindgut symbiote of the termite Zootermopsis, has been cultivated axenically under anaerobic conditions. The medium consists of cellulose, reduced glutathione, fetal calf serum, yeast extract, and autoclaved rumen fluid or autoclaved rumen bacteria, in a buffered salt solution the composition of which is based on an analysis of Zootermopsis hindgut fluid. The hindgut contents of surface-sterilized termites were inoculated into anaerobic buffer-containing cellulose and serum. Repeated passages yielded mixed cultures of T. termopsidis and termite hindgut bacteria. Flagellates were then inoculated into complete medium containing antibiotics, and after 2 passages, axenic cultures of T. termopsidis were obtained. Various nutritional supplements, including clarified rumen fluid or heat-killed bacteria of several known species failed to support the growth of T. termopsidis when substituted for autoclaved rumen fluid. The flagellates did not grow when any of several carbohydrates were substituted for cellulose. Electron microscopy of flagellates from axenic cultures revealed that cellulose particles and partially digested bacteria were present in food vacuoles. No endosymbiotic bacteria were present in the cytoplasm indicating that T. termopsidis does not depend on living prokaryotes for cellulose digestion. The results suggest that T. termopsidis possesses the enzyme cellulase.  相似文献   

5.
Rumen ciliate protozoa intensively engulf bacteria. However, their ability to utilize murein which is the main polysaccharide of bacterial cell wall has hardly been recognized. The present study concerns the ability of the rumen protozoa Diploplastron affine to digest and ferment murein. The ciliates were isolated from the rumen fluid and grown in vitro or inoculated into the rumen of defaunated sheep. The results of long-term cultivation of protozoa showed a positive correlation between their number and murein content in the culture medium. It was also found that bacteria-free D. affine ciliates incubated with or without murein produced volatile fatty acids at the rate of 12.3 and 8.7 pmol/h per protozoan, respectively, acetic, butyric and propionic acids being the three main acids released to the medium. Enzyme studies performed with the use of protozoan cell extract prepared from bacteria-free ciliates degraded murein at a rate of 25 U/mg protein per h; two mureinolytic enzymes were identified by zymographic technique in the examined preparation.  相似文献   

6.
Treatment with rumen fluid improves methane production from non-degradable lignocellulosic biomass during subsequent methane fermentation; however, the kinetics of xylanases during treatment with rumen fluid remain unclear. This study aimed to identify key xylanases contributing to xylan degradation and their individual activities during xylan treatment with bovine rumen microorganisms. Xylan was treated with bovine rumen fluid at 37°C for 48 h under anaerobic conditions. Total solids were degraded into volatile fatty acids and gases during the first 24 h. Zymography showed that xylanases of 24, 34, 85, 180, and 200 kDa were highly active during the first 24 h. Therefore, these xylanases are considered to be crucial for xylan degradation during treatment with rumen fluid. Metagenomic analysis revealed that the rumen microbial community’s structure and metabolic function temporally shifted during xylan biodegradation. Although statistical analyses did not reveal significantly positive correlations between xylanase activities and known xylanolytic bacterial genera, they positively correlated with protozoal (e.g., Entodinium, Diploplastron, and Eudiplodinium) and fungal (e.g., Neocallimastix, Orpinomyces, and Olpidium) genera and unclassified bacteria. Our findings suggest that rumen protozoa, fungi, and unclassified bacteria are associated with key xylanase activities, accelerating xylan biodegradation into volatile fatty acids and gases, during treatment of lignocellulosic biomass with rumen fluid.  相似文献   

7.
Association of methanogenic bacteria with rumen protozoa   总被引:6,自引:0,他引:6  
Methanogenic bacteria superficially associated with rumen entodiniomorphid protozoa were observed by fluorescence microscopy. A protozoal suspension separated from strained rumen fluid (SRF) by gravity sedimentation exhibited a rate of methane production six times greater (per millilitre) than SRF. The number of protozoa (per millilitre) in the protozoal suspension was three times greater than that of SRF; however, the urease activity of this fraction was half that of SRF. The methanogenic activity of SRF and the discrete fractions obtained by sedimentation of protozoa correlated with the numbers of protozoa per millilitre in each fraction. Gravity-sedimented protozoa, washed four times with cell-free rumen fluid, retained 67-71% of the recoverable methanogenic activity. Thus it is evident from our observations that many methanogens adhere to protozoa and that the protozoa support methanogenic activity of the attached methanogens. When protozoa-free sheep were inoculated with rumen contents containing a complex population of protozoa, methanogenic activity of the microflora in SRF samples was not significantly enhanced.  相似文献   

8.
Insecticides containing organophosphate, chlorinated hydrocarbon, and carbamate were tested with bovine ruminal ingesta fractions. Rumen bacteria exposed to insecticide levels of 0 to 500 ppm in rumen fluid for 4 hr were inoculated into rumen fluid-starch feed extract medium. No apparent significant bacterial count inhibitions were noted. Also, when insecticides were used as carbon sources at concentrations of 500 ppm in carbohydrate-limited media, no increases in bacterial counts were indicated. Warburg manometric data showed that paraffin oil-Triton X-155 preparations of dimethoate, Diazinon, lindane, Thiodan and Sevin stimulated gas production in holotrich protozoa. Entodinium simplex, an oligotrich, produced less gas with insecticide substrates per unit of dry weight than did an Isotricha sp. Rumen bacteria and plant debris fractions from ruminal ingesta provided with insecticides did not give increased manometric responses over the endogenous control vessels. Washed suspensions of I. intestinalis produced volatile fatty acids in excess of the endogenous suspensions when provided insecticide substrates. Thiodan dissimilation by I. intestinalis was followed colorimetrically with 15% loss in substrate in 1 hr of incubation at 39 C. Diazinon-C14 substrate uptake was demonstrated with suspensions of E. simplex and I. intestinalis. Rumen ciliates are suggested as a possible means for screening out useful insecticides susceptible to microbial dissimilation for use on forage and other cattle-feed crops.  相似文献   

9.
Cultures of Streptococcus bovis and mixed populations of rumen bacteria were used to investigate the concentration of ATP and rumen bacterial numbers at various stages of growth. ATP, extracted with Tris buffer, was analyzed using the firefly luciferin-luciferase bioluminescent reaction. ATP concentrations of S. bovis and mixed cultures of rumen bacteria significantly correlated with live cell counts during the log phase of growth but not during the stationary phase. The average cellular ATP concentration of rumen bacteria was calculated to be 0.3 fg of ATP per cell. Studies done with in vivo artificial rumen apparatus revealed that the protozoal contribution to rumen fluid ATP pool size was much more substantial than was the bacterial contribution. The rumen fluid ATP concentration was greater in cattle with protozoa than in those that were defaunated. Differences in ATP concentration due to size differences of ciliate protozoa were observed. Due to the unbalanced distribution of ATP in rumen microbes, ATP appears to be an unsuitable indicator of rumen microbial biomass.  相似文献   

10.
The aim of this study was to determine if rumen protozoa could form large amounts of reserve carbohydrate compared to the amounts formed by bacteria when competing for glucose in batch cultures. We separated large protozoa and small bacteria from rumen fluid by filtration and centrifugation, recombined equal protein masses of each group into one mixture, and subsequently harvested (reseparated) these groups at intervals after glucose dosing. This method allowed us to monitor reserve carbohydrate accumulation of protozoa and bacteria individually. When mixtures were dosed with a moderate concentration of glucose (4.62 or 5 mM) (n = 2 each), protozoa accumulated large amounts of reserve carbohydrate; 58.7% (standard error of the mean [SEM], 2.2%) glucose carbon was recovered from protozoal reserve carbohydrate at time of peak reserve carbohydrate concentrations. Only 1.7% (SEM, 2.2%) was recovered in bacterial reserve carbohydrate, which was less than that for protozoa (P < 0.001). When provided a high concentration of glucose (20 mM) (n = 4 each), 24.1% (SEM, 2.2%) of glucose carbon was recovered from protozoal reserve carbohydrate, which was still higher (P = 0.001) than the 5.0% (SEM, 2.2%) glucose carbon recovered from bacterial reserve carbohydrate. Our novel competition experiments directly demonstrate that mixed protozoa can sequester sugar away from bacteria by accumulating reserve carbohydrate, giving protozoa a competitive advantage and stabilizing fermentation in the rumen. Similar experiments could be used to investigate the importance of starch sequestration.  相似文献   

11.
Enrichment cultures of rumen bacteria degraded oxalate within 3 to 7 days in a medium containing 10% rumen fluid and an initial level of 45 mM sodium oxalate. This capability was maintained in serially transferred cultures. One mole of methane was produced per 3.8 mol of oxalate degraded. Molecular hydrogen and formate inhibited oxalate degradation but not methanogenesis; benzyl viologen and chloroform inhibited both oxalate degradation and methanogenesis. Attempts to isolate oxalate-degrading bacteria from these cultures were not successful. Oxalate degradation was uncoupled from methane production when enrichments were grown in continuous culture at dilution rates greater than or equal to 0.078 h-1. Growth of the uncoupled population (lacking methanogens) in batch culture was accompanied by degradation of 45 mM oxalate within 24 h and production of 0.93 mol of formate per mol of oxalate degraded. Oxalate degradation by the uncoupled population was not inhibited by molecular hydrogen or formate. Cell yields (grams [dry weight]) per mole of oxalate degraded by the primary enrichment and the uncoupled populations were 1.7 and 1.0, respectively.  相似文献   

12.
Cell walls containing α,ε-diaminopimelate-l,7-14C (DAP) was prepared from Escherichia coli isolated from the rumen. After incubation of ciliates with the cell walls, 22.0% of DAP contained in cell walls of E. coli was converted to lysine and pipecolate. Heat-treated mixed rumen bacteria and heat-treated cell walls of mixed rumen bacteria added to the culture medium of rumen ciliates increased 0.572 and 0.934 μmole/ml of sum of lysine and pipecolate, respectively.

From these results, it is clear that rumen ciliate protozoa can form lysine from DAP contained in the mucopeptide of bacterial cell walls. One of the nutritional significance of inhabitation of ciliates in the rumen was revealed.  相似文献   

13.
The possibility of lysine formation from α,ε-diaminopimelate (DAP), acetate, aspartate or α-aminoadipate (AAA) in rumen ciliates was examined. DAP-1,7-14C added to the medium was decarboxylated and converted to radioactive lysine in great amounts and radioactive pipecolate in small amounts by rumen ciliates. Difference of the ability to form lysine from DAP between genus Entodinium and Diplodinium was not observed. With sodium acetate-U-14C, amino acids fraction of the supernatant fluid of the incubation medium and ciliates contained only 0.56 and 0.59% of the total radioactivity, respectively. In the case of l-aspartate-U-14C, 95.1% of the radioactivity of the supernatant fluid desalted and 62.2% of the radioactivity incorporated into ciliates (1.5% of the total radioactivity) remained as aspartate. Autoradiograms revealed the negligible spots of lysine in ciliates in both cases. AAA-6-14C remained almost unchanged, even after incubation with rumen ciliates.  相似文献   

14.
Predation of bacteria by protozoa has important implications on rumen metabolism and bacterial populations. Protozoa can also restrict the passage of pathogenic bacteria to the host’s lower gastrointestinal tract. This work aimed to evaluate the predation by Entodinium caudatum (EC) and the intraprotozoal survival of Salmonella enterica serovar Typhimurium. EC cells from a monofaunated sheep were incubated for up to 105 min with a S. enterica strain producing a green fluorescent protein. Rumen fluid from a defaunated sheep (DEF) was used as a control. Fluorescence, as an index of predation, measured in the residual (protozoal) fraction was higher in EC than in DEF. 105 min after the beginning of the incubation it was higher than 30 min after. Intracellular survival of Salmonella within EC was assessed by means of a selective medium. Amounts of Salmonella in the residual fraction were higher in EC than in DEF only after 30 min. After 105 min, each protozoa engulfed 100 Salmonella cell per min. Intraprotozoal survival of ingested Salmonella was 0.0017. Predation of S. enterica by E. caudatum occurred and increased in proportion to time, but bacterial viability inside the protozoa was lower at 105 min. This study demonstrates that fluorescence emission combined with bacterial and protozoal cultures could be a reliable method for quantifying bacterial predation and viability in vitro.  相似文献   

15.
Sixteen strains of rumen bacteria and 21 protozoal preparations were screened for glycoside hydrolase and phosphatase activity, using 22 nitrophenyl glycoside substrates. The range and level of bacterial enzyme activities were species dependent, although, the glycosidases associated with plant cell wall breakdown were most active in the cellulolytic and hemicellulolytic species. Alkaline phosphatase occurred widely in the organisms examined, but was most active in the twoBacteroides ruminicola strains.A wide range of enzyme activities was also detected in the holotrich and Entodiniomorphid ciliates isolated from the rumen or cultured in vitro. The glycosidases involved in cellulose and hemicellulose breakdown were detected in all of the protozoa examined, and, with the exception ofEntodinium spp., were most active in the Entodiniomorphid protozoa; -l-arabinofuranosidase, an essential hemicellulolytic glycoside hydrolase, was particularly active in this latter group of ciliates.  相似文献   

16.
A highly specific medium was developed for the enumeration of lactate-utilizing bacteria in the rumen of sheep. This medium, which contained 2.0% lactate, 2.0% Trypticase, 0.2% yeast extract, and volatile fatty acids, hemin, and trace elements in place of rumen fluid, enabled high counts (42 × 107 to 190 × 107/g of ingesta) of lactate-utilizing bacteria to be made with a high degree of specificity (96%). The medium also supported the growth of all species of predominant lactate-utilizing bacteria reported to occur in the rumen and thus is of importance for ecological studies where the incidence and influence of the different species on lactate metabolism under changing conditions in the rumen cannot be predicted. The survival rate of isolates was increased from 60 to 96% by addition to the modified maintenance medium of 40% rumen fluid in place of the volatile fatty acids, hemin, and trace elements used in the counting medium. These results, together with the slow growth of colonies in roll bottles, showed that, although highly selective, the counting medium was not optimal for the types selected.  相似文献   

17.
Non-lactating dairy cattle were transitioned to a high-concentrate diet to investigate the effect of ruminal pH suppression, commonly found in dairy cattle, on the density, diversity, and community structure of rumen methanogens, as well as the density of rumen protozoa. Four ruminally cannulated cows were fed a hay diet and transitioned to a 65% grain and 35% hay diet. The cattle were maintained on an high-concentrate diet for 3 weeks before the transition back to an hay diet, which was fed for an additional 3 weeks. Rumen fluid and solids and fecal samples were obtained prior to feeding during weeks 0 (hay), 1, and 3 (high-concentrate), and 4 and 6 (hay). Subacute ruminal acidosis was induced during week 1. During week 3 of the experiment, there was a significant increase in the number of protozoa present in the rumen fluid (P = 0.049) and rumen solids (P = 0.004), and a significant reduction in protozoa in the rumen fluid in week 6 (P = 0.003). No significant effect of diet on density of rumen methanogens was found in any samples, as determined by real-time PCR. Clone libraries were constructed for weeks 0, 3, and 6, and the methanogen diversity of week 3 was found to differ from week 6. Week 3 was also found to have a significantly altered methanogen community structure, compared to the other weeks. Twenty-two unique 16S rRNA phylotypes were identified, three of which were found only during high-concentrate feeding, three were found during both phases of hay feeding, and seven were found in all three clone libraries. The genus Methanobrevibacter comprised 99% of the clones present. The rumen fluid at weeks 0, 3, and 6 of all the animals was found to contain a type A protozoal population. Ultimately, high-concentrate feeding did not significantly affect the density of rumen methanogens, but did alter methanogen diversity and community structure, as well as protozoal density within the rumen of nonlactating dairy cattle. Therefore, it may be necessary to monitor the rumen methanogen and protozoal communities of dairy cattle susceptible to depressed pH when methane abatement strategies are being investigated.  相似文献   

18.

Background

Tibetan sheep (TS) and Gansu Alpine Finewool sheep (GS) are both important plateau sheep raised and fed on the harsh Qinghai–Tibetan Plateau, China. Rumen methanogen and protozoal communities of plateau sheep are affected by their hosts and living environments, and play important roles in ruminant nutrition and greenhouse gas production. However, the characteristics, differences, and associations of these communities remain largely uncharacterized.

Results

The rumen methanogen and protozoal communities of plateau sheep were investigated by 16S/18S rRNA gene clone libraries. The predominant methanogen order in both sheep species was Methanobacteriales followed by Methanomassiliicoccales, which is consistent with those seen in global ruminants. However, the most dominant species was Methanobrevibacter millerae rather than Methanobrevibacter gottschalkii seen in most ruminants. Compared with GS and other ruminants, TS have more exclusive operational taxonomic units and a lower proportion (64.5%) of Methanobrevibacter. The protozoa were divided into Entodiniomorphida and Vestibuliferida, including nine genera and 15 species. The proportion of holotrich protozoa was much lower (1.1%) in TS than ordinary sheep. The most predominant genus was Entodinium (70.0%) in TS and Enoploplastron (48.8%) in GS, while the most common species was Entodinium furca monolobum (43.9%) and Enoploplastron triloricatum (45.0%) in TS and GS, respectively; Entodinium longinucleatum (22.8%) was only observed in TS. LIBSHUFF analysis indicated that the methanogen communities of TS were significantly different from those of GS, but no significant differences were found in protozoal communities.

Conclusion

Plateau sheep have coevolved with unique rumen methanogen and protozoal communities to adapt to harsh plateau environments. Moreover, the host appears to have a greater influence on rumen methanogen communities than on rumen protozoal communities. The observed associations of methanogens and protozoa, together with the findings of previous studies on methane emissions from ruminant livestock, revealed that the lower proportion of Methanobrevibacter and holotrich protozoa may be responsible for the lower methane emission of TS. These findings facilitate our understanding of the rumen microbial ecosystem in plateau sheep, and could help the development of new strategies to manipulate rumen microbes to improve productivity and reduce the emission of greenhouse gases.
  相似文献   

19.
Abstract

The objective of the experiment was to evaluate the contribution of various ruminal microbial groups to the fermentation of cell walls of corn stover with different particle sizes based on ruminal gas production in vitro. Physical, chemical, and antibiotical methods were used to differentiate groups of bacteria, protozoa and fungi in rumen fluid, offering following rumen microbial groups: whole rumen fluid (WRF), bacterial (B), protozoal (P), fungal (F), bacterial plus protozoal (B + P), bacterial plus fungal (B + F), protozoal plus fungal (P + F), and negative control (CON). Cell walls from corn stover were ground and ball milled to produce two different particle sizes. The results showed that digestion of the cell walls was undertaken by the interaction among ruminal bacteria, protozoa and fungi, and such co-actions seemed to fail alternation by one of three microbial groups or any combinations. However, B + P group showed a significant contribution to the degradation of milled cell walls, and B + F group revealed a great synergy effect on the ground cell walls degradation. Particle size of cell walls also had a considerable influence on their fermentation extent instead of the fermentative patterns by various rumen microbial groups.  相似文献   

20.
Five strains of acetogenic bacteria were isolated by selective enrichment from the rumen of a mature Hereford crossbred steer fed a typical high forage diet. Suspensions of rumen bacteria, prepared from contents collected 7 h postfeeding, blended and strained through cheesecloth, were incubated in a minimal medium containing 10% clarified rumen fluid under either H2:CO2 (80:20) or N2:CO2 (80:20) headspace atmosphere. The selection criterion was an increment of acetate in the enrichments incubated under H2:CO2. Periodically, the enrichment broths were plated onto agar media and presumed acetogenic bacteria subsequently were screened for acetate production. Selected acetogenic bacteria utilized a pressurized atmosphere of H2:CO2 to form acetate in quantities 2 to 8-fold higher than when grown under N2:CO2. All presumptive acetogenic isolates were derived from either the 10-7 or 10-8 dilutions of rumen contents. All 5 strains were Gram-positive rods, and all utilized formate, glucose and CO. One strain required, and all were stimulated by, rumen fluid. No spores were observed with phase-contast microscopy and two strains were motile. No methane was detected in the headspace of pure cultures grown under either gas phase. The isolation of these bacteria indicates that acetogenic bacteria are inhabitants of the rumen of the bovine fed a typical diet and suggests that they may be participants in the utilization of hydrogen in the rumen ecosystem. Strain 139B (= ATCC 43876) is named Acetitomaculum ruminis gen. nov., sp. nov. and is the type strain of this new species. Portions of this work were presented previously (Greening RC, Leedle JAZ (1987) Abstr Annu Meet Am Soc Microbiol I 131, pp 194)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号