首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
A study was made of induction of mutations, resistant to 6-thioguanine (TGr), and reproductive death of Chinese hamster cells after irradiation by fission-spectrum fast neutrons (mean energy of 0.75 MeV) with doses of 10-130 cGy. A high relative biological effectiveness (RBE) of fast neutrons was shown. The maximum RBE values (13-16) were within the dose range inducing minimum mutagenic and lethal effects. RBE decreased with the dose increase. Inspite of high mutagenic effectiveness of neutrons, estimated according to TGr mutation frequency per cell per dose unit, their relative mutagenic effectiveness, estimated per cell per one lethal event, did not substantially differ from that of X-radiation.  相似文献   

2.
A filtered reactor beam, consisting mainly of 24 keV neutrons, was used to study the induction of chromosome aberrations in the V79/4(AH1) Chinese hamster cell line. The yields of both dicentrics and acentrics were linear with dose and the value of relative biological effectiveness (RBE) for dicentrics at low doses was 6.5 +/- 1.4. This value was similar to that found previously for a neutron spectrum with mean energy 2.1 MeV, and suggests that the RBE of neutrons does not increase to very high values in the energy region below 100 keV. This result does not support the suggestions of Davy (1969) and Key (1971) that the neutron RBE rises to very high values in the intermediate energy range.  相似文献   

3.
Neoplastic cell transformation by heavy ions   总被引:1,自引:0,他引:1  
We have studied the induction of morphological transformation by heavy ions. Golden hamster embryo cells were irradiated with 95 MeV 14N ions (530 keV/microns), 22 MeV 4He ions (36 keV/microns), and 22 MeV 4He ions with a 100-microns Al absorber (77 keV/microns) which were generated by a cyclotron at the Institute of Physical and Chemical Research in Japan. Colonies were considered to contain neoplastically transformed cells when the cells were densely stacked and made a crisscross pattern. It was shown that the induction of transformation was much more effective with 14N and 4He ions than with gamma or X rays. The relative biological effectiveness (RBE) relative to 60Co gamma rays was 3.3 for 14N ions, 2.4 for 4He ions, and 3.3 for 4He ions with a 100-microns Al absorber. The relationship between RBE and linear energy transfer was qualitatively similar for both cell death and transformation.  相似文献   

4.
Microtus males were exposed to different doses of 250 kV X-rays or fast fission neutrons of 1 MeV mean energy. Early (= round) spermatids were analyzed for the presence of extra sex chromosomes, diploidy and micronuclei at different time intervals corresponding with treated differentiating spermatogonia and spermatocytes. Induction of nondisjunction of sex chromosomes could not be detected. In contrast, induction of diploids by both types of radiation was statistically significant at all sampling times. Dose-effect relationships for most of the sampling times were linear and sometimes linear-quadratic concave upward or downward. There were pronounced stage-specific differences in sensitivity as reflected by differences in doubling doses that ranged from 4 to 22 cGy for X-rays and from 0.4 to 4 cGy for neutrons. Spermatocytes at pachytene were the most sensitive cells and proliferating spermatogonia the least sensitive ones. The relative biological effectiveness (RBE) of neutrons depended on the cell stage treated and fluctuated between 1.4 and 9.2. Evidence for radiation-induced chromosomal breakage events was obtained via detection of micronuclei. Induction of micronuclei by X-rays or neutrons was statistically significant at all spermatocyte stages tested. There was no effect in spermatogonia. With a few exceptions dose-effect relationships were linear. Differences in stage sensitivity were clearly present as evidenced by doubling dose which ranged from 5 to 29 cGy for X-rays and from 1 to 3 cGy for neutrons. RBE values varied from 5.2 to 12.7. Maximum sensitivity was detected in spermatocytes at diakinesis, MI and MII. Resting primary spermatocytes (G1 and S phase) were somewhat less sensitive and actively proliferating spermatogonia were the least sensitive cells. The pattern of stage sensitivity for induction of diploids was distinctly different from that for induction of chromosomal breakage.  相似文献   

5.
The dependence of the survival rate and the number of sister chromatid exchanges (SCEs) in Chinese hamster V79-4 cells on the dose of gamma-rays and neutrons with average energy of 0.7 MeV has been investigated. The value of RBE for neutrons is 5.5. The number of SCEs increased with the dose of gamma-radiation while no induction of SCEs could be detected after neutron irradiation.  相似文献   

6.
Using the method of alkaline elution for the treatment of cell DNA in chinese hamster fibroblasts irradiated with low doses of either cobalt-60 gamma rays or p (34 MeV) Be neutrons, we determined the kinetics of radio-induced strand breaks. The comparison gamma rays-neutrons reveals important discrepancies which suggest that neutrons induce a so for unknown reaction in DNA simultaneously with single and double strand breakage. This observation could contribute to explain the high RBE value of high LET particles.  相似文献   

7.
Human lymphocytes were irradiated in vitro during Go stage by graded doses of thermal neutrons and neutrons having an average energy of 0.04; 0.09; 0.35; 0.85 and 14,7 MeV as well as by 60Co gamma rays, and RBE of neutrons relative to gamma-rays was calculated for the frequency of total and different types of aberrations. It was found that the RBE has the most value at the low doses and decreases when the exposition dose increases. 0.35 MeV neutrons have the maximum RBE in comparison with neutrons having other energies. When comparing the RBE values calculated for different types of chromosome aberrations, it was found out that dicentrics and dicentrics plus centric rings had more RBE than acentric aberrations (pair fragments and minutes).  相似文献   

8.
Cytotoxic and mutagenic effects of high-LET charged iron (56Fe) particles were measured quantitatively using primary cultures of human skin fibroblasts. Argon and lanthanum particles and gamma rays were used in comparative studies. The span of LETs selected was from 150 keV/microns (330 MeV/u) to 920 keV/microns (600 MeV/u). Mutations were scored at the hypoxanthine guanine phosphoribosyl transferase (HPRT) locus using 6-thio-guanine (6-TG) for selection. Exposure to these high-LET charged particles resulted in exponential survival curves. Mutation induction, however, was fitted by the linear model. The relative biological effectiveness (RBE) for cell killing ranged from 3.7 to 1.3, while that for mutation induction ranged from 5.7 to 0.5. Both the RBE for cell killing and the RBE for mutagenesis decreased with increasing LET over the range of 1.50 to 920 keV/microns. The inactivation cross section (sigma i) and the action cross section for mutation induction (sigma m) ranged from 32.9 to 92.0 microns2 and 1.45 to 5.56 X 10(-3) microns2; the maximum values were obtained by 56Fe with an LET of 200 keV/microns. The mutagenicity (sigma m/sigma i) ranged from 2.05 to 7.99 X 10(-5) with an inverse relationship to LET.  相似文献   

9.
The relative biological effectiveness (RBE) of a range of neutron energies relative to 250-kVp X rays has been determined for oncogenic transformation and cell survival in the mouse C3H 10T 1/2 cell line. Monoenergetic neutrons at 0.23, 0.35, 0.45, 0.70, 0.96, 1.96, 5.90, and 13.7 MeV were generated at the Radiological Research Accelerator Facility of the Radiological Research Laboratories, Columbia University, and were used to irradiate asynchronous cells at low absorbed doses from 0.05 to 1.47 Gy. X irradiations covered the range 0.5 to 8 Gy. Over the more than 2-year period of this study, the 31 experiments provided comprehensive information, indicating minimal variability in control material, assuring the validity of comparisons over time. For both survival and transformation, a curvilinear dose response for X rays was contrasted with linear or nearly linear dose responses for the various neutron energies. RBE increased as dose decreased for both end points. Maximal RBE values for transformation ranged from 13 for cells exposed to 5.9-MeV neutrons to 35 for 0.35-MeV neutrons. This study clearly shows that over the range of neutron energies typically seen by nuclear power plant workers and individuals exposed to the atomic bombs in Japan, a wide range of RBE values needs to be considered when evaluating the neutron component of the effective dose. These results are in concordance with the recent proposals in ICRU 40 both to change upward and to vary the quality factor for neutron irradiations.  相似文献   

10.
With L-cells exposed to neutrons and X-rays the RBE of fission spectrum neutrons (1.2 MeV) was 2.8, and that of high-energy neutrons (22 MeV), 1.3. X-Irradiation with small doses (0.25 to 0.50 Gy) exerted a stimulatory effect on the growth and division of cells.  相似文献   

11.
The modifying effect of L-NAME, the NO-synthase inhibitor and D-NAME, the inactive enantiomer was investigated in human carcinoma cells (HeLa) and Chinese hamster fibroblasts (V-79) exposed to different doses of gamma-rays and 0.85 MeV neutrons. We estimated the level of the chromosome aberrations manifested as the bridges and fragments in anaphases. Radioprotective effect of L-NAME showed the inverse dependence on the exposure dose and at low doses (1 Gy) it was higher in the V-79 cells, than in the HeLa cells. However, at high doses (3, 4, 6 Gy) the efficiency of L-NAME for these cellular lines was almost equal (DFR = 2). The modifying effect of L-NAME was almost equal for gamma-irradiation and neutrons, although the exposure of V-79 cells to neutrons induced more the asymmetric chromosome aberrations (RBE = 4). The D-NAME had no effect on the level of the radiation-induced chromosome aberrations, although D-NAME treatment of cells increased the chromatin condensation, as well as L-NAME. The counteractive condensation does not play the major role in the radioprotective effect of L-NAME. We suggest that the radioprotective effect of L-NAME resulted from the action on the generation reactive radicals due to the inhibition of the inducible NO-synthase.  相似文献   

12.
Survival of colony-forming units-spleen (CFU-S) was measured after single doses of photons or heavy charged particles from the BEVALAC. The purposes were to define the radiosensitivity to heavy ions used medically and to evaluate relationships between relative biological effectiveness (RBE) and dose-averaged linear energy transfer (LET infinity). In in vitro irradiation experiments. CFU-S suspensions were exposed to 220 kVp X rays or to 20Ne (372 MeV/micron) or 40Ar (447 MeV/micron) particles in the plateau portion of the Bragg curve. In in vivo irradiation experiments, donor mice from which CFU-S were harvested were exposed to 12C (400 MeV/micron). 20Ne (400 or 670 MeV/micron), or 40Ar (570 MeV/micron) particles in Bragg peaks spread to 4 or 10 cm by spiral ridge filters. Based on RBE at 10 survival, the maximum RBE of 2.1 was observed for 40Ar particles characterized by an LET infinity of approximately 100 keV/micron. Lower RBEs were determined at lower or higher estimated values of LET infinity and ranged from 1.1 for low energy 40Ar particles to 1.5-1.6 for low energy 12C and 20Ne. The responses of CFU-S are compared with responses of other model systems to heavy charged particles and with the reported sensitivity of CFU-S to neutrons of various energies. The maximum RBE reported here, 2.1 for high energy 40Ar particles, is somewhat lower than values reported for fission-spectrum neutrons, and is appreciably lower than values for monoenergetic 0.43-1.8 MeV neutrons. Low energy 12C and 20Ne particles have RBEs in the range of values reported for 14.7 MeV neutrons.  相似文献   

13.
The relative biological effectiveness (RBE) of neutrons and other types of densely ionizing radiation appears to be close to 1.0 for the induction of strand breaks, but considerably higher RBEs have been found for cellular end points such as colony-forming ability. This may be due to differences in the processing of strand breaks or to the involvement of other lesions whose yields are more dependent on radiation quality. Because cell cycle delays may be of great importance in the processing of DNA damage, we determined the RBE for disturbances of the G1 phase in four different cell types (Be11 melanoma, 4197 squamous cell carcinoma, EA14 glioma, GM6419 fibroblasts) and compared them with the RBE for cell inactivation. The method we used to determine the progress from G1 into S was as follows: Cells were serum-deprived for a number of days and then stimulated to grow with culture medium containing normal amounts of serum. Immediately before the change of medium, cells were exposed to graded doses of either 240 kV X rays or 6 MeV neutrons. At different times afterward, cells were labeled with BrdU and the numbers of active S-phase cells were assessed using two-parameter flow cytometry. For all four cell types, cells started to progress from G1 into S after a few hours. Radiation suppressed this process in all cases, but there were some interesting differences. For Be11 and 4197 cells, the most obvious effect was a delay in G1; the labeling index increased a few hours later in irradiated samples than in controls, and there was no significant effect on the maximum labeling index. For EA14 and GM6419 cells, although smaller doses were used because of greater radiosensitivity, a delay of the entry into S phase was again noticeable, but the most significant effect was a reduction in the maximum percentage of active S-phase cells after stimulation, indicating a permanent or long-term arrest in G1. The RBE for the G1 delay was the same for all four cell types, about 2.8, while the RBE for the G1 arrest varied between 3.2 for the most resistant Be11 cells and 1.7 for the most sensitive GM6419 cells. This trend was similar to that observed for the RBE for cell inactivation. If, as described above, the same number of strand breaks per dose is induced by neutrons and by X rays, the signal transduction cascade translates them into a greater G1 delay in the case of higher LET. This appears to be independent of repair capacity, because it is similar in all cell types we investigated. We therefore assume that a higher lesion density or the presence of other types of lesions is important for this relatively early effect. A G1 arrest, however, is more closely related to the later events leading to cell inactivation, where strand break repair does play a major role, influencing X-ray sensitivity more strongly than sensitivity to neutrons because of a lower repairability of lesions induced by higher-LET radiation.  相似文献   

14.
The effectiveness of neutrons from a Californium-252 source in the induction of various abnormalities in the Tradescantia clone 4430 stamen hair cells (Trad-SH assay) were studied. A special attention was paid to check whether any enhancement in effects is visible in the cells enriched with boron ions. Inflorescences, normal or pretreated with chemicals containing boron, were irradiated in the air with neutrons from a 252Cf source at KAERI, Taejon, Korea. To estimate the relative biological effectiveness (RBE) of the beam under the study, numbers of Tradescantia inflorescence without chemical pretreatment were irradiated with various doses of X-rays. The ranges of radiation doses used for neutrons were 0-1.0Gy and for X-rays 0-0.5Gy. Following the culturing according to standard procedures screening of gene and lethal mutations in somatic cells of stamen hairs was done in the extended period, between days 7 and 19 after exposures. Maximal RBE values for the induction of pink, colorless and lethal mutations were evaluated from comparison of the slopes in linear parts of the dose response curves obtained after irradiation with X-rays and californium source. The RBE(max) value or the induction of gene mutation was estimated as 7.2 comparing the value 5.6 in the studies reported earlier. The comparison of dose-response curves and its alteration, due to changes in the cells and plants environment during and after irradiation, explains the observed differences. Inflorescence pretreated with borax responded to neutrons differently depending on the biological end points. Although, for the induction of pink mutations no significant difference was observed, though, in the case of cell lethality, pretreated with boron ion plants have shoved a statistically significant increase of the RBE value from 5.5 to 34.7, and in the case of colorless mutations from 1.6 to 5.6.  相似文献   

15.
The effectiveness of 14.1 MeV neutrons relative to 200 kV X-rays for the induction of the various kinds of dumpy mutation in mature sperm of Drosophila melanogaster was investigated. The estimated RBE values are: 0.52 for all complete mutations; 0.64 for the (olv, ov) types; 0.33 for the (ol, lv, o, v, c) types; 0.33 for all fractional mutations. These data lend support to the thesis that (1) complete dumpy mutations of the olv and ov types are more frequently associated with chromosomal aberrations than those of the ol, lv, o, v and c types, and (2) fractional mutations and complete mutations of the (ol, lv, o, v, c) types are most probably point mutational events.  相似文献   

16.
The suitability of comet assay to identify DNA damage induced by neutrons of varying energy was tested. For this purpose, monoenergetic neutrons from Hiroshima University Radiobiological Research Accelerator (HIRRAC) were used to induce DNA damage in irradiated human peripheral blood lymphocytes. The level of damage was computed as tail moment for different doses (0.125-1 Gy) and compared with the effects resulting from irradiation with (60)Co gamma. The neutron-irradiated cells exhibited longer comet tails consisting of tiny pieces of broken DNA in contrast to the streaking tails generated by (60)Co gamma. The peak biological effectiveness occurred at 0.37 and 0.57 MeV; a further increase or decrease in neutron energy led to a reduced RBE value. The RBE values, as measured by the comet assay, were 6.3, 5.4, 4.7, 4.3, 2.6, and 1.7 for 0.37, 0.57, 0.79, 0.186, 1, and 2.3 MeV neutrons. The lower RBE value obtained by the comet assay when compared to that for other biological end points is discussed. This study reports the usefulness of the alkaline comet assay for identifying DNA damage induced by neutrons of the same radiation weighting factor. The comet assay is a potential tool for use in neutron therapy, as well as a method for the rapid screening of samples from individuals accidentally exposed to radiation.  相似文献   

17.
Extension of previous investigations at this laboratory regarding life shortening and tumor induction in the mouse has provided more complete dose-response information in the low dose region of X rays and neutrons. A complete observation of survival and late pathology has been carried out on over 2000 BC3F1 female mice irradiated with single doses of 1.5 MeV neutrons (0.5, 1, 2, 4, 8, 16 cGy) and, for comparison, of X rays (4, 8, 16, 32, 64, 128, 256 cGy). Data analysis has shown that a significant life shortening is observable only for individual neutron doses not lower than 8 cGy. Nevertheless, assuming a linear nonthreshold form for the overall dose-effect relationships of both radiation qualities, an RBE value of 12.3 is obtained for the 1.5 MeV neutrons. The induction of solid tumors by neutrons becomes statistically significant at individual doses from 8 cGy and by X rays for doses larger than 1 Gy. Linear dependence on neutron dose appears adequate to interpret the data at low doses. A separate analysis of ovarian tumor induction substantiates the hypothesis of a threshold dose for the X rays, while this is not strictly needed to interpret the neutron data. A trend analysis conducted on the neoplasm incidence confirms the above findings. Death rates have been analyzed, and a general agreement between the shift to earlier times of these curves and tumor induction was found.  相似文献   

18.
(C57Bl/Cne X C3H/Cne)F1 male mice were irradiated with single acute doses of 0.4 MeV neutrons ranging from 0.05 to 2 Gy, and testis cell suspensions were prepared for cytometric analysis of the DNA content 2-70 days after irradiation. Various cell subpopulations could be identified in the control histogram including mature and immature spermatids, diploid spermatogonia and spermatocytes, tetraploid cells and cells in the S-phase. Variations in the relative proportions of different cell types were detected at each dose and time, reflecting lethal damage induced on specific spermatogenetic stages. The reduction of the number of elongated spermatids 28 days after irradiation was shown to be a particularly sensitive parameter for the cytometrical assessment of the radiosensitivity of differentiating gonia. A D0 value of 0.13 Gy was calculated and compared with data obtained after X-irradiation, using the same experimental protocol. In the latter case a biphasic curve was obtained over the dose range from 0.25 to 10 Gy, possibly reflecting the existence of some cell population heterogeneity. RBE values were estimated at different neutron doses relative to the radiosensitive component of the X-ray curve, and ranged from 3.3 to 4, in agreement with data in the literature. Genotoxic effects were monitored 7 days after irradiation by a dose-dependent increase of the coefficient of variation (CV) values of the round spermatid peak, reflecting the induction of numerical and structural chromosome aberrations, and 14 or 21 days after irradiation by the detection of diploid elongated spermatids, probably arising from a radiation-induced complete failure of the first or second meiotic division.  相似文献   

19.
Chromosomes of budding yeast Saccharomyces pastorianus were used to determine the extent of DNA double-strand breaks (DSBs) induced by x-rays (30-50 keV) and 14 MeV neutrons. The yeast chromosomes were separated by pulsed-field gel electrophoresis (PFGE) and the proportion of unbroken molecules corresponding to the largest chromosome no. IV (1500 kbp) was used to calculate the DSB frequency assuming a random distribution of hits. To determine the protective contribution of the cell environment, chromosomes embedded in agarose plugs as well as intact yeast cells, were irradiated under conditions completely inhibiting DNA repair. Following irradiation, the intact cells were also embedded in agarose plugs and the chromosomes isolated to perform PFGE. All radiation experiments resulted in a linear dose-effect curve for DSBs. For both radiation qualities, the yield of DSBs for exposed isolated chromosomes exceeded that for intact yeast cells by a factor of 13. The relative biological effectiveness (RBE) of 14 MeV neutrons in the induction of DNA DSBs was about 2.5. This figure was found to be identical for the in vivo and in vitro exposure of yeast chromosomes (neutrons 36.7 and 2.8, x-rays 14.5 and 1.1 x 10(-8) DSB x Bp-1 Gy-1 for isolated DNA and intact cells, respectively).  相似文献   

20.
The effectiveness of neutrons from a facsimile of the Hiroshima bomb was determined cytogenetically. The "Little-Boy" replica (LBR), assembled at Los Alamos as a controlled nuclear reactor for detailed physical dosimetry, was used. Of special interest, the neutron energy characteristics (including lineal energy) measured 0.74 m from the LBR were remarkably similar to those calculated for the 1945 Hiroshima bomb at 1 to 2 km from the hypocenter, as shown in a companion dosimetric paper (Straume, et al., Radiat. Res. 128, 133-142 (1991)). Thus we examine here the effectiveness of neutrons closely resembling those that the A-bomb survivors received at Hiroshima. Chromosome aberration frequencies were determined in human blood lymphocytes exposed in vitro to graded doses of LBR radiation (97% neutrons, 3% gamma rays). Vials of blood suspended in air at distances up to 2.10 m from the center of the LBR uranium core received doses ranging from 0.02 to 2.92 Gy. The LBR neutrons (E approximately 0.2 MeV) produced 1.18 dicentrics and rings per cell per Gy. They were more effective than the higher-energy fission neutrons (E approximately 1 MeV) commonly used in radiobiology. The maximum RBE (RBEM) of LBR neutrons at low doses is estimated to be 60 to 80 compared to 60Co gamma rays and 22 to 30 compared to 250-kVp X rays. These results provide a quantitative measurement of the biological effectiveness of Hiroshima-like neutrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号