首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A single dose of diisopropyl phosphorofluoridate (DFP), an organophosphorus ester, produces delayed neurotoxicity (OPIDN) in hen. DFP produces mild ataxia in hens in 7–14 days, which develops into severe ataxia or paralysis as the disease progresses. Since, OPIDN is associated with alteration in the expression of several proteins (e.g., Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) -subunit, tau, tubulin, neurofilament (NF) protein, vimentin, GFAP) as well as their mRNAs (e.g., NF, CaM kinase II -subunit), we determined the effect of a single dose of DFP on the expression of one of the best known immediate-early gene (IEG), c-fos. C-fos expression was measured by Northern hybridization in cerebrum, cerebellum, brainstem, midbrain, spinal cord, and the sciatic nerves of hens at 0.5 hr, 1 hr, 2 hr, 1 day, 5 days, 10 days, and 20 days after a single 1.7 mg/kg, sc. injection of DFP. All the tissues (cerebrum, 52%; cerebellum, 55%; brainstem, 49%; midbrain, 23%; spinal cord, 80%; sciatic nerve, 157%;) showed significant increase in c-fos expression in 30 min and this elevated level persisted at least up to 2 hr. Expressions of -actin mRNA and 18S RNA were used as internal controls. The significant increase in c-fos expression in DFP-treated hens suggests that c-fos may be one of the IEGs involved in the development of OPIDN.Both of them equally contributed towards this work  相似文献   

2.
Diisopropyl phosphorofluoridate (DFP) produces organophosphorus-ester induced delayed neurotoxicity (OPIDN) in the hen, human and other sensitive species. We studied the effect of single dose of DFP (1.7 mg/kg/s.c.) on the expression of alpha tubulin which is one of the major sub-unit of tubulin polymers that constitute an important constituent of cellular architecture. The hens were sacrificed at different time points i.e. 1, 2, 5, 10, and 20 days. Total RNA was extracted from the following brain regions: cerebrum, cerebellum, and brainstem as well as spinal cord. Northern blots prepared using standard protocols were hybridized with alpha tubulin as well as with -actin and 28S RNA cDNA (controls) probes. The results indicate a differential /spatial /temporal regulation of alpha tubulin levels which may be the result of perturbed microtubule dynamics not only in the axons but also in perikarya of neurons in the CNS of DFP treated hens. In the highly susceptible tissues like brainstem and spinal cord the initial down-regulation of mRNA levels could be attributed to DFP induced stress response resulting in inhibited cell metabolism and or cell injury / cell death. Increase in levels of mRNA at 5 days and thereafter coincided with increased tubulin transport which may be due to increased phosphorylation of tubulins in both axons and perikarya and other intraaxonal changes resulting in impaired axonal transport. DFP induced decreased rate of tubulin polymerization resulting in increased levels of free tubulin monomers may be involved in the altered alpha tubulin mRNA expression at different time points by autoregulatory circuits. Cerebellum being the less susceptible tissue showed only a moderate decline at day 2, while the alpha tubulin remained at near control levels at day 1. Delayed down-regulation may be due to the co-ordinated up or down- regulation of different sub-types of alpha and beta tubulins as well as the differential response of specialised cell types in cerebellum. Continuous overexpression of alpha tubulin in cerebrum from the beginning may be its effective protective strategy to safeguard itself from neurotoxicity. Differential expression pattern observed could be due to the differential susceptibility and variability in the rate of axonal transport of different regions besides the tubulin heterogenity of CNS. Hence our results indicte differential expression of alpha tubulin is either one of the reasons for the development of OPIDN or the result of progressive changes taking place during OPIDN.  相似文献   

3.
A single dose (1.7 mg/kg, s.c.) of diisopropylphosphorofluoridate (DFP) causes organophosphorus ester-induced delayed neurotoxicity (OPIDN) in susceptible species. We studied the effects of DFP administration on the mRNA expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an important glycolytic protein at different time points (1, 2, 5, 10 and 20 days) post-treatment. Total RNA was extracted from cerebrum, cerebellum, brainstem, midbrain, and spinal cord of the control and DFP-treated hens, and northern blots were prepared using standard protocols and hybridized with GAPDH, as well as beta-actin and 28S RNA cDNA (control) probes. There was a distinct spatial/temporal mRNA expression pattern for the different tissues studied. Non-susceptible tissue, cerebrum showed a dramatic increase in GAPDH mRNA at day 1, post-treatment and levels remained high at all time points, suggestive of protective mechanisms from the beginning. In contrast, highly susceptible tissues like brainstem, spinal cord and midbrain showed either no elevation or slight down-regulation at day 1, suggesting trauma and cell injury/cell death. Overall, there was moderate level of induction during the subsequent time points in these tissues, indicative of pathways of either recovery or degeneration. Cerebellum being the less susceptible tissue showed moderate increase initially, followed by higher induction, suggestive of rapid recovery. Our current data on GAPDH provides an important link in this complex network of molecular changes involving pathways identified by our group and others, such as nitric oxide (NO), CaM kinase-II (CaMK-II), protein kinase-A (PKA), c-fos, and phosphorylated-CREB (p-CREB) in DFP-induced OPIDN.  相似文献   

4.
5.
6.
Diisopropyl phosphorofluoridate (DFP) is a type I organophosphorus compound and produces delayed neurotoxicity (OPIDN) in adult hens. A single dose of DFP (1.7 mg/kg, sc.) produces mild ataxia in hens in 7-14 days, which develops into severe ataxia or paralysis as the disease progresses. We have previously shown altered expression of several proteins (e.g. Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) -subunit, tau, tubulin, neurofilament protein (NF), vimentin, GFAP) and an immediate early gene (e.g. c-fos) in DFP-treated hens. Here we show an increase in protein kinase A (PKA) protein level and activity in the spinal cord at 1-day and 5-days time periods after DFP administration. We also determined the protein levels of protein kinase C (PKC), CaM kinase II and several phosphatases (i.e. phosphatase 1 (PP1), phosphatase 2A (PP2A), phosphatase 2B (PP2B) in the spinal cord of DFP-treated hens after 1, 5, 10, and 20 days). There was increase in CaM kinase II subunit level after 10 and 20 days of treatment, and decrease in PKC level at 1-day and 20-days time periods in spinal cord mitochondria. In contrast, the cerebrum, which is resistant to DFP-induced axonal degeneration, did not show change in PKA and CaM Kinase II levels at any time period DFP post-administration. No alteration was found in the protein levels of PP1, PP2A, and PP2B at any time period. An early induction in PKA, which is an important protein kinase in signal transduction, followed by that of CaM kinase might be contributing towards the development of OPIDN in DFP-treated hens.  相似文献   

7.
Diisopropyl phosphorofluoridate (DFP) is an organophosphorus ester, which produces mild ataxia in 7-14 days and severe ataxia or paralysis in about 20 days (OPIDN) in hens. Previous studies in this laboratory have shown enhanced temporal expression of neurofilament (NF) subunit mRNAs in the spinal cord (SC) of DFP-treated hens. The main objective of this investigation was to study the effect of DFP administration on NF subunit mRNAs expression, when OPIDN is protected or potentiated by pre-treatment or post-treatment, respectively, with phenylmethylsulfonyl fluoride (PMSF). The hens were sacrificed 1, 5, 10, and 20 days after the last treatment. In contrast with enhanced mRNA expression of NF subunits reported in OPIDN, there was no alteration in the expression of NF subunits in the SC of PMSF-protected hens that did not develop OPIDN. PMSF post-treatment of DFP-treated hens, which enhanced delayed neurotoxicity produced by a low dose of DFP, exhibited decrease in the mRNA expression of NF subunits in SC at all time periods (1-20 days) of observation. The expression of NF subunits was also studied in the degeneration-resistant tissue cerebrum of treated hens. The results from protected hens suggested that temporal enhanced expression of NF subunit mRNAs in DFP-treated hens might be contributing to the development of OPIDN in hens. By contrast, PMSF post-treatment seemed to potentiate OPIDN by a mechanism different from that followed by DFP alone to produce OPIDN.  相似文献   

8.
Diisopropyl phosphorofluoridate (DFP) produces delayed neurotoxicity, known as organophosphorus ester-induced delayed neurotoxicity (OPIDN), in hen, human, and other sensitive species. A single dose of DFP (1.7 mg/kg, se.) produces first mild ataxia followed by paralysis in 7-14 days in hens. DFP treatment also increases in vitro autophosphorylation of Ca2+ calmodulin-dependent protein kinase II (CaM kinase II) and the phosphorylation of several cytoslceletal proteins in the hen brain. To investigate whether increase in CaM kinase II activity is associated with increased expression of its mRNA, we cloned and sequenced CaM kinase II a subunit cDNA, and used it to study CaM kinase II expression in brain regions and spinal cord. Hen CaM kinase II subunit differs in 7 amino acids from that of rat CaM kinase II. Its mRNA occurs predominantly as a 6.7 kb message, which is very close to that of human CaM kinase II a subunit. Northern blot analysis showed a transient increase in CaM kinase II subunit mRNA in the cerebellum and spinal cord of DFP-treated chickens. The increase in CaM kinase II mRNA expression is consistent with the previously reported increase in its activity in brain and spinal cord, and its increased expression only in cerebellum and spinal cord, which are sensitive to the Wallerian-type degeneration characteristic of OPIDN, suggests the probable role of this enzyme in delayed neurotoxicity.  相似文献   

9.
Diisopropyl phosphorofluoridate (DFP) is an organophosphorus ester, and a single dose (1.7 mg/kg, sc.) of this compound produces mild ataxia in hens in 7–14 days and a severe ataxia or paralysis (OPIDN) in three weeks. OPIDN is associated with axonal swelling and their degeneration. We have previously observed alteration in neurofilament (NF) protein levels in the spinal cord of DFP-treated hens. The main objective of this investigation was to study NF protein levels in the sciatic nerves (SN) of hens, in which OPIDN has been potentiated by phenylmethylsulfonyl fluoride (PMSF) post-treatment. PMSF is known to protect DFP-treated (1.7 mg/kg) hens from developing OPIDN if injected before, and potentiate OPIDN if injected after the administration of DFP (0.5 mg/kg). The potentiation of OPIDN was accompanied by earlier elevation of NF proteins in the SN particulate fraction. In contrast, SN supernatant fraction showed a transient fall in NF protein levels in potentiation OPIDN. Out of the two other cytoskeletal proteins (i.e., tubulin, tau) studied in this investigation, tubulin also showed earlier elevation in its level in the particulate fraction in potentiated OPIDN. The earlier elevation of NF protein levels in SN particulate fraction in potentiated OPIDN suggested the possible involvement of NFs in delayed neurotoxicity.  相似文献   

10.
11.
Summary Expression of intermediate filament proteins was studied in human developing spinal cord using immunoperoxidase and double-label immunofluorescence methods with monoclonal antibodies to vimentin and glial fibrillary acidic protein (GFAP). Vimentin was found in the processes of radial glial cells in 6-week embryos, while GFAP appeared in vimentin-positive astroglial cells at 8–10 weeks. GFAP and vimentin were present in approximately equal amounts in differentiating astrocytes in 23-week spinal cord. In 30-week fetuses, astrocytes reacted strongly for GFAP, while both the reaction intensity and the number of vimentin-positive cells fluctuated predominantly in the grey matter. No clear-cut transition from vimentin to GFAP was noticed during the development of astrocytes. The majority of ependymal cells in 23-week fetuses contained vimentin but only a few of them reacted for GFAP. The expression of vimentin continued during the whole development of the ependymal layer, in contrast to the reactivity for GFAP which disappeared between the 30th week and term.  相似文献   

12.
Abstract— In a neurochemical study of experimental Border Disease in lambs it was found that the fresh weights of four parts of the CNS (cerebrum, cerebellum, brain stem and spinal cord) from clinically affected lambs were significantly smaller than those of controls at birth but by 20 weeks of age the cerebrum, cerebellum and brain stem had reached near normal weights. The spinal cord was still considerably smaller, however. Clinical symptoms of the disease (muscular spasms and'hairy'birthcoat) had disappeared during this period, accompanied by a regression in the neurochemical abnormalities seen at birth. Thus the deficiency of myelin lipids was partially made up by the rapid deposition of cerebrosides and by 20 weeks differences in the fatty acid composition of this lipid fraction were no longer apparent. Myelin degeneration as indicated by the presence of elevated levels of esterified cholesterol was apparently absent at 20 weeks of age and this was parallelled by a fall in the level of'anti-myelin'antibodies in the sera of affected lambs. The altered distribution of copper in spinal cord myelin seen at birth had also become nearly normal at the end of the period.  相似文献   

13.
Subacute dose of 0,0-diisopropyl phosphorofluoridate (DFP), a potent organophosphorus ester capable of producing delayed neurotoxicity (OPIDN), did not produce any significant change in the levels of lysosomal and mitochondrial marker enzymes of brain, liver and serum at any time after treatment in hens protected with atropine. The results suggest the absence of any involvement of mitochondrial and lysosomal enzymes at any stage in the development of OPIDN in susceptible species by treating with DFP.  相似文献   

14.
We developed a sensitive and simple procedure for determination of galactosylsphingosine (psychosine), using HPLC. The method involved extraction of lipids, separation by cation-exchange and C18 reverse-phase columns, and derivatization with o-phthalaldehyde. The fluorescent galactosylsphingosine was detected by HPLC. The amount of galactosylsphingosine was accurately assayed by simultaneous determination of glucosylsphingosine, as the internal standard. The detection limit was 0.5 ng/assay tube, and the quantitative range of the method was up to 750 ng. This procedure was applied to tissue from the twitcher mouse, an animal model of human globoid cell leukodystrophy, as well as tissue from normal and carrier mice. In the latter mice, a small amount of galactosylsphingosine was detected in the spinal cord (21.6-37.2 ng/100 mg wet weight) but not in the cerebrum and sciatic nerve. Marked accumulation of galactosylsphingosine was noted in the nervous tissues of the twitcher strain, even on postnatal day 4. The concentration of galactosylsphingosine was greater in the peripheral than in central nervous tissues. The spinal cord and brainstem contained more galactosylsphingosine than did the cerebrum and cerebellum. The concentration increased with age from 764 ng/100 mg in the sciatic nerve at 4 days to 5,910 ng/100 mg at 37 days. These data correlate well with the pathological changes; tissues containing higher concentrations of galactosylsphingosine show earlier and more severe pathological changes than those containing lower concentrations, thereby indicating the close link of galactosylsphingosine to the pathogenesis of the twitcher mouse.  相似文献   

15.
Diisopropyl phosphorofluoridate (DFP) produces organophosphorus ester-induced delayed neurotoxicity (OPIDN) in sensitive species. We have investigated the in vivo and in vitro effects of DFP on hen brain tubulin polymerization. Hens were treated with a single dose of DFP (1.7 mg/kg, sc.), and were sacrificed after 18–21 days. Tubulin from DFP-treated hen brains showed small but significant decrease (14.42%) in the rate of polymerization and 11.05% decrease in rise in O.D. at 340 nm in 30 min. DFP in vivo treatment also resulted in decreased concentration of tau and an enhanced concentration of two peptides (45 kDa, 35 kDa) in the brain supernatant. These peptides seemed to be the degradation products of MAP-2. The decrease in the rate of brain tubulin polymerization in treated hens is consistent with neurochemical alterations and the focal degeneration and aggregation of these filamentous structures in OPIDN.Abbreviations DFP Diisopropyl phosphorofluoridate - DMSO dimethyl sulfoxide - DTT dithiothreitol - EGTA ethyleneglycol-bis(-aminoethyl ether)N,N,N,N-tetraacetic acid - EDTA ethylenediaminetetraacetic acid - 2, 5-DH 2, 5-hexanedione - DMHD 3, 4-dimethyl-2, 5-hexanedione - OPIDN organophosphorus ester-induced delayed neurotoxicity - PMSF phenylmethylsulfonyl fluoride - PIPES piperazine-N,N-bis[2-ethanesulfonic acid] - TOCP tri-o-cresyl phosphate  相似文献   

16.
The phylogenetic evolution was studied of both glial fibrillary acidic protein (GFAP) and vimentin expression in the ependyma of the adult vertebrate spinal cord. Eleven species from different vertebrate groups were examined using different fixatives and fixation procedures to demonstrate any differences in immunoreactivity. GFAP expression in the ependymal cells showed a clear inverse relation with phylogenetic evolution because it was more elevated in lower than in higher vertebrates. GFAP positive cells can be ependymocytes and tanycytes, although depending on their structural characteristics and distribution, the scarce GFAP positive ependymal cells in higher vertebrates may be tanycytes. Ependymal vimentin expression showed a species-dependent pattern instead of a phylogenetic pattern of expression. Vimentin positive ependymal cells were only found in fish and rats; in fish, they were tanycytes and were quite scarce, with only one or two cells per section being immunostained. However, in the rat spinal cord, all the ependymocytes showed positive immunostaining for vimentin. The importance of the immunohistochemical procedure, the cellular nature of GFAP positive ependymal cells and the relationship between tanycytes and ependymocytes are discussed, as well as GFAP and vimentin expression.  相似文献   

17.
(1) The chemical composition of the CNS (separated into cerebrum, cerebellum, brain stem and spinal cord) was determined in sheep during foetal and post-natal development and in adults. (2) The spinal cord differed from the remainder of the CNS in growing more after the period studied (50-day-old foetuses to 5-week-old lambs) than before it. This was largely attributable to lipid accumulation. (3) Chemical growth (accumulation of DNA, protein and lipid) proceeded linearly in spinal cord, logarithmically in cerebrum and cerebellum while in brain stem growth was described by a sigmoid function. (4) Fat-free dry matter, protein, total lipid, cholesterol and phospholipid concentrations increased progressively in all parts of the CNS but DNA concentrations changed little. In the cerebrum alone there was an increase in DNA concentration during maturation suggesting an increased cell population. Cholesterol was present predominantly in the free form but esters were detected in foetal tissues from 70 up to 120 days gestation. (5) Cerebroside, the characteristic lipid of myelin, increased in concentration soon after 85 days of gestation, up to which point very low values were recorded, the rate varying according to the region of the CNS examined. Rates of increase in total regional cerebroside content were used to identify periods of myelination and the results suggest that there are two periods of peak activity, one about 20 days before birth and the other at 10-20 days after birth. (6) The composition of lipids added during the two phases of myelination and during maturation were characteristically different. In the spinal cord, lipid analyses best reflect changes in myelin composition.  相似文献   

18.
Characterization of a novel 66 kd subunit of mammalian neurofilaments   总被引:7,自引:0,他引:7  
F C Chiu  E A Barnes  K Das  J Haley  P Socolow  F P Macaluso  J Fant 《Neuron》1989,2(5):1435-1445
A 66 kd protein, pl 5.4, was purified from the Triton-insoluble fraction of rat spinal cord. This protein formed 10 nm filaments in vitro. The 66 kd protein was unique, although it shared homology with the 70 kd neurofilament protein (NF-L) and vimentin. An antiserum (anti-66) specific to the 66 kd protein did not cross-react with any of the neurofilament triplet proteins. In the spinal cord, anti-66 intensely stained the axons of the anterior and lateral columns. However, afferents from dorsal root ganglia and the efferents from the motoneurons were negative. In the cerebellum, anti-66 intensely stained most axons. The 66 kd protein was readily detectable in homogenates of forebrain, cerebellum, brainstem, and spinal cord, but was found only in trace amounts in adult sciatic nerves and was not found in extraneural tissues. The 66 kd protein constituted 0.5% of total protein in the spinal cord, whereas NF-L constituted about 1.5%.  相似文献   

19.
20.
We analyzed the distribution of intermediate filament molecular markers, glial fibrillary acidic protein (GFAP), and vimentin in the brain and spinal cord of the adult brown anole lizard, Anolis sagrei. The GFAP immunoreactivity is strong and the positive structures are basically represented by fibers of different lengths and thicknesses which are arranged in a regular radial pattern throughout the central nervous system. In the brain regions that have a thicker neural wall, the radial orientation is not so evident as in the thinner areas. These fibers emerge from radial ependymoglia (tanycytes) whose cell bodies are generally GFAP-immunopositive. The glial fibers give rise to endfeet that are apposed to the subpial surface and to blood vessel walls. In the spinal cord, the optic tectum and the lateroventral regions of the mesencephalon and medulla oblongata, star-shaped astrocytes coexist with radial structures. Vimentin-immunoreactive structures are absent in the brain and spinal cord. In A. sagrei the immunohistochemical response of the astroglial intermediate filaments appears typical of a mature astroglial cell lineage, since they fundamentally express GFAP immunoreactivity. A Western-blot analysis reveals a GFAP-positive single band, common to the different nervous areas. This immunohistochemical study shows that the star-shaped astrocytes have a different distribution in saurians and while the glial pattern of A. sagrei is more evolved than in urodeles it remains immature as compared with crocodilians, avians, and mammals. This condition suggests that reptiles represent a fundamental step in the phylogenetic evolution of the vertebrate glial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号