首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Modern metabolomic approaches that generate more comprehensive phytochemical profiles than were previously available are providing new opportunities for understanding plant‐animal interactions. Specifically, we can characterize the phytochemical landscape by asking how a larger number of individual compounds affect herbivores and how compounds covary among plants. Here we use the recent colonization of alfalfa (Medicago sativa) by the Melissa blue butterfly (Lycaeides melissa) to investigate the effects of indivdiual compounds and suites of covarying phytochemicals on caterpillar performance. We find that survival, development time, and adult weight are all associated with variation in nutrition and toxicity, including biomolecules associated with plant cell function as well as putative anti‐herbivore action. The plant‐insect interface is complex, with clusters of covarying compounds in many cases encompassing divergent effects on different aspects of caterpillar performance. Individual compounds with the strongest associations are largely specialized metabolites, including alkaloids, phenolic glycosides, and saponins. The saponins are represented in our data by more than 25 individual compounds with beneficial and detrimental effects on L. melissa caterpillars, which highlights the value of metabolomic data as opposed to approaches that rely on total concentrations within broad defensive classes.  相似文献   

2.
3.
Animals often express behavioral preferences for different types of food or other resources, and these preferences can evolve or shift following association with novel food types. Shifts in preference can involve at least two phenomena: a change in rank preference or a change in specificity. The former corresponds to a change in the order in which hosts are preferred, while a shift in specificity can be an increase in the tendency to utilize multiple hosts. These possibilities have been examined in relatively few systems that include extensive population-level replication. The Melissa blue butterfly, Lycaeides melissa, has colonized exotic alfalfa, Medicago sativa, throughout western North America. We assayed the host preferences of 229 females from ten populations associated with novel and native hosts. In four out of five native-associated populations, a native host was preferred over the exotic host, while preference for a native host characterized only two out of five of the alfalfa-associated populations. Across all individuals from alfalfa-associated populations, there appears to have been a decrease in specificity: females from these populations lay fewer eggs on the native host and more eggs on the exotic relative to females from native-host populations. However, females from alfalfa-associated populations did not lay more eggs on a third plant species, which suggests that preferences for specific hosts in this system can potentially be gained and lost independently. Geographic variation in oviposition preference in L. melissa highlights the value of surveying a large number of populations when studying the evolution of a complex behavioral trait.  相似文献   

4.
1. Plants possess numerous traits that confer resistance against insect herbivores, and herbivores, in turn, can evolve traits to ameliorate the effectiveness of these traits. The pipevine swallowtail, Battus philenor, is an extreme specialist on plants in the genus Aristolochia. The only host plant available to the California population of B. philenor is A. californica. Aristolochia californica is distinct from most other B. philenor host plants in that it is pubescent. 2. The progeny of B. philenor are larger in California compared with populations examined in Texas. Size differences persist throughout larval development. 3. Regardless of maternal host plant, population differences in progeny size persist, and crosses between California (large progeny) and Texas (small progeny) B. philenor populations resulted in offspring producing intermediate sized progeny, indicating a heritable component to progeny size variation. 4. California neonate caterpillars more easily overcame the trichomes of A. californica compared with Texas neonates. When trichomes were removed from A. californica, time to feeding establishment was reduced for caterpillars from both populations. Texas caterpillars established feeding sites on A. californica with trichomes removed, in the same time required to establish feeding on their non‐pubescent host plant, A. erecta. 5. This study shows that plant trichomes might impose selection pressure on progeny size.  相似文献   

5.
The genetic and ecological factors that shape the evolution of animal diets remain poorly understood. For herbivorous insects, the expectation has been that trade‐offs exist, such that adaptation to one host plant reduces performance on other potential hosts. We investigated the genetic architecture of alternative host use by rearing individual Lycaeides melissa butterflies from two wild populations in a crossed design on two hosts (one native and one introduced) and analysing the genetic basis of differences in performance using genomic approaches. Survival during the experiment was highest when butterfly larvae were reared on their natal host plant, consistent with local adaptation. However, cross‐host correlations in performance among families (within populations) were not different from zero. We found that L. melissa populations possess genetic variation for larval performance and variation in performance had a polygenic basis. We documented very few genetic variants with trade‐offs that would inherently constrain diet breadth by preventing the optimization of performance across hosts. Instead, most genetic variants that affected performance on one host had little to no effect on the other host. In total, these results suggest that genetic trade‐offs are not the primary cause of dietary specialization in L. melissa butterflies.  相似文献   

6.
Plant–insect interactions are ubiquitous, and have been studied intensely because of their relevance to damage and pollination in agricultural plants, and to the ecology and evolution of biodiversity. Variation within species can affect the outcome of these interactions. Specific genes and chemicals that mediate these interactions have been identified, but genome‐ or metabolome‐scale studies might be necessary to better understand the ecological and evolutionary consequences of intraspecific variation for plant–insect interactions. Here, we present such a study. Specifically, we assess the consequences of genome‐wide genetic variation in the model plant Medicago truncatula for Lycaeides melissa caterpillar growth and survival (larval performance). Using a rearing experiment and a whole‐genome SNP data set (>5 million SNPs), we found that polygenic variation in M. truncatula explains 9%–41% of the observed variation in caterpillar growth and survival. Genetic correlations among caterpillar performance and other plant traits, including structural defences and some anonymous chemical features, suggest that multiple M. truncatula alleles have pleiotropic effects on plant traits and caterpillar performance (or that substantial linkage disequilibrium exists among distinct loci affecting subsets of these traits). A moderate proportion of the genetic effect of M. truncatula alleles on L. melissa performance can be explained by the effect of these alleles on the plant traits we measured, especially leaf toughness. Taken together, our results show that intraspecific genetic variation in M. truncatula has a substantial effect on the successful development of L. melissa caterpillars (i.e., on a plant–insect interaction), and further point toward traits potentially mediating this genetic effect.  相似文献   

7.
Because shelter-building herbivorous insect species often consider structural features of their host plants in selecting construction sites, their probability of attack is likely to be a function of some combination of plant architectural traits and leaf quality factors. We tested the hypothesis that plant architecture, in the form of the number of touching leaves, influences interspecific variation in attack by leaf-tying caterpillars in five species of sympatric Missouri oaks (Quercus). We compared colonization on control branches, in which both architecture and leaf quality were potentially important, with colonization on experimental branches for which we controlled for the effects of architecture by creating equal numbers of artificial ties. Colonization of artificial ties was highly correlated with natural colonization on neighboring control branches, suggesting that leaf quality factors and not architecture influenced interspecific variation in attack by leaf-tying caterpillars. Of the leaf quality factors measured (water, protein-binding capacity, nitrogen, specific leaf area, pubescence, and toughness), nitrogen was the most explanatory. With the exception of white oak, natural leaf tie colonization was positively correlated with nitrogen availability (ratio of nitrogen to protein-binding capacity), and negatively correlated with protein-binding capacity of leaf extracts. Both host plant species and subgenus oak influenced the community composition of leaf-tying caterpillars and the non-tying symbionts colonizing the ties. Host plant differences in leaf nitrogen content were positively correlated with pupal weight of one of two caterpillar species reared on all five host plant species. Thus, interspecific differences in nitrogen, nitrogen availability, and protein-binding capacity of leaf extracts are the best predictors at this time of interspecific differences in attack by leaf-tying caterpillars, in turn affecting their success on individual host plants in the laboratory.  相似文献   

8.
Corresponding to theory, the persistence of metapopulations in fragmented landscapes depends on the area of suitable habitat patches and their degree of isolation, mediating the individual exchange between habitats. More recently, habitat quality has been highlighted as being equally important. We therefore assess the role of habitat area, isolation and quality for the occupancy of larval stages of the regionally threatened butterfly Euphydryas desfontainii occurring in grassland habitats comprising the host plant Dipsascus comosus. We put a special focus on habitat quality which was determined on two spatial scales: the landscape (among patches) and the within-patch level. On the landscape level, occupancy of caterpillars was determined by a presence-absence analysis at 28 host plant patches. On the within-patch level, oviposition site selection was studied by comparing 159 host plants with egg clutches to a random sample of 253 unoccupied host plants within six habitat patches. The occupancy of caterpillars and presence of egg clutches on host plants was then related to several predictors such as patch size and isolation on the landscape level and host plant characteristics and immediate surroundings on the within patch level. On the landscape level, only host plant abundance was related to the presence of caterpillars, while size and isolation did not differ between occupied and unoccupied patches. However, the weak discrimination of larval stages among patches changed on the within-patch level: here, several microclimatic predictors such as sunshine hours and topography, host plant morphology and phenology as well as further potential host plants in the immediate surroundings of the plant chosen for oviposition strongly determined the presence of egg clutches. We strongly suggest promoting the presence of the host plant in topographically and structurally rich habitat patches to offer potential for microclimatic compensation for a species considered threatened by climate change.  相似文献   

9.
The mechanisms through which trophic interactions between species are indirectly mediated by distant members in a food web have received increasing attention in the field of ecology of multitrophic interactions. Scarcely studied aspects include the effects of varying plant chemistry on herbivore immune defences against parasitoids. We investigated the effects of constitutive and herbivore-induced variation in the nutritional quality of wild and cultivated populations of cabbage (Brassica oleracea) on the ability of small cabbage white Pieris rapae (Lepidoptera, Pieridae) larvae to encapsulate eggs of the parasitoid Cotesia glomerata (Hymenoptera, Braconidae). Average encapsulation rates in caterpillars parasitised as first instars were low and did not differ among plant populations, with caterpillar weight positively correlating with the rates of encapsulation. When caterpillars were parasitised as second instar larvae, encapsulation of eggs increased. Caterpillars were larger on the cultivated Brussels sprouts plants and exhibited higher levels of encapsulation compared with caterpillars on plants of either of the wild cabbage populations. Observed differences in encapsulation rates between plant populations could not be explained exclusively by differences in host growth on the different Brassica populations. Previous herbivore damage resulted in a reduction in the larval weight of subsequent herbivores with a concomitant reduction in encapsulation responses on both Brussels sprouts and wild cabbage plants. To our knowledge this is the first study demonstrating that constitutive and herbivore-induced changes in plant chemistry act in concert, affecting the immune response of herbivores to parasitism. We argue that plant-mediated immune responses of herbivores may be important in the evaluation of fitness costs and benefits of herbivore diet on the third trophic level.  相似文献   

10.
The colonization of exotic plants by herbivorous insects has provided opportunities for investigating causes and consequences of the evolution of niche breadth. The butterfly Lycaeides melissa utilizes exotic alfalfa, Medicago sativa, which is a relatively poor larval resource, and previous studies have found that caterpillars that consume M. sativa develop into smaller and less fecund adults. Here we investigate the effect of smaller female body size on male mate preference, a previously unexplored consequence of novel host use. Smaller females, which developed on the exotic host, were less likely to be visited by males. This result was confirmed with a second set of choice tests involving females reared on a single plant species, thus ruling out host-specific confounding factors. We suggest that an effect on mate choice be considered part of the complex suite of factors determining persistence of herbivorous insects following colonization of new habitats or resources.  相似文献   

11.
In many insects the eggs are highly vulnerable and egg parasitism can represent a major cause of mortality. It is thus important for the ovipositing female to find a protected site for her eggs. We have examined how egg parasitation can affect host plant choice by Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Ovipositing moths exhibited significantly higher preference for alfalfa compared to cotton, both in the laboratory and the field. However, larval performance, in terms of development rate and the attained larval and pupal weight, was significantly better on cotton than on alfalfa. In laboratory tests no difference in larval survival on the two host plants was observed. To test the hypothesis that seeking enemy-free space could be a factor behind the preference for alfalfa, the parasitation levels on the two plants were investigated. In field tests, the egg parasitoid Chelonus inanitus (Linnaeus) (Hymenoptera: Braconidae) parasitized a significantly higher number of egg batches on cotton than on alfalfa. Furthermore, the parasitoid was significantly faster in finding and parasitizing S. littoralis eggs on cotton than on alfalfa in a cage experiment. These findings support the assumption that the preference for the inferior larval food plant, alfalfa, reflects a search for a host plant species on which attacks by natural enemies are less likely. Possible factors accounting for the preference of S. littoralis for alfalfa and the higher parasitation rates on cotton are discussed.  相似文献   

12.
Exotic plants often displace native plants and thus alter the availability of native hostplants for specialist herbivorous insects. The submersed aquatic weevil Euhrychiopsis lecontei Dietz is endemic to North America, but there are now source populations on the exotic Eurasian watermilfoil (Myriophyllum spicatum L.) as well as on the weevil's ancestral host, northern watermilfoil (Myriophyllum sibiricum Komarov). This provides an opportunity to examine a host range expansion in progress. To further define the host range of the weevil and to determine how population source and rearing plant influence host plant preference and performance, we conducted a series of preference and rearing experiments with weevils from two source populations reared on northern milfoil, on Eurasian milfoil, switched late in larval development from northern to Eurasian milfoil, and vice versa. We also included two rearing treatments with milfoils on which the weevil has not been documented: the native M. verticillatum L. and the exotic M. aquaticum Verd. Preference by weevils in the switched rearing treatments was similar to preferences exhibited by weevils reared solely on the second (later) milfoil species and an increase in preference for Eurasian milfoil was induced by adult exposure to Eurasian milfoil for 2 weeks. In contrast, sizes and development times of weevils in the switched rearing treatments were similar to sizes and development times exhibited by weevils reared solely on the first (early) milfoil species. These results indicate that preference by the milfoil weevil is determined late in larval development or later and Hopkins' host selection principle is not supported. However, size and development time were most affected by hostplant quality during larval development when larvae must acquire the resources needed for pupation. Oviposition preference in the milfoil weevil was a population attribute, not a fixed individual attribute and there was no significant variation in preference among individuals reared on northern milfoil, but significant variation in preference was detected among weevils reared on Eurasian milfoil. Weevils oviposited on all four milfoil species and completed development on three of them, but did not develop beyond the larval stage on M. aquaticum. Weevils reared on Eurasian milfoil developed faster and reached larger adult sizes than weevils in any other rearing treatment. The smallest sizes and longest development times were for weevils reared on the natives, northern milfoil and M. verticillatum. The milfoil weevil oviposits on an array of milfoil species and is unable to distinguish an unsuitable host (M. aquaticum) within this genus. The influence of rearing plant and adult exposure to Eurasian milfoil on hostplant preference suggests that host range expansion to novel congeners may occur more rapidly than predicted by models which assume that genetic variation is required. Significant variation among individuals in hostplant preference suggests the potential for a host shift to a plant for which E. lecontei appears pre-adapted.  相似文献   

13.
Following its introduction into Europe (EU), the common milkweed (Asclepias syriaca) has been free of most specialist herbivores that are present in its native North American (NA) range, except for the oleander aphid Aphis nerii. We compared EU and NA populations of A. nerii on EU and NA milkweed populations to test the hypothesis that plant–insect interactions differ on the two continents. First, we tested if herbivore performance is higher on EU plants than on NA plants, because the former have escaped most of their herbivores and have perhaps been selected for lower defence levels following introduction. Second, we compared two A. nerii lines (one from each continent) to test whether genotypic differences in the herbivore may influence species interactions in plant–herbivore communities in the context of species introductions. The NA population of A. nerii developed faster, had higher fecundity and attained higher population growth rates than the EU population. There was no overall significant continental difference in aphid resistance between the plants. However, milkweed plants from EU supported higher population growth rates and faster development of the NA line of A. nerii than plants from NA. In contrast, EU aphids showed similar (low) performance across plant populations from both continents. In a second experiment, we examined how chewing herbivores indirectly mediate interactions between milkweeds and aphids, and induced A. syriaca plants from each continent by monarch caterpillars (Danaus plexippus) to compare the resulting changes in plant quality on EU aphid performance. As specialist chewing herbivores of A. syriaca are only present in NA, we expected that plants from the two continents may affect aphid growth in different ways when they are challenged by a specialist chewing herbivore. Caterpillar induction decreased aphid developmental times on NA plants, but not on EU plants, whereas fecundity and population growth rates were unaffected by induction on both plant populations. The results show that genetic variation in the plants as well as in the herbivores can determine the outcome of plant–herbivore interactions.  相似文献   

14.
The butterfly Boloria aquilonaris is a specialist of oligotrophic ecosystems. Population viability analysis predicted the species to be stable in Belgium and to collapse in the Netherlands with reduced host plant quality expected to drive species decline in the latter. We tested this hypothesis by rearing B. aquilonaris caterpillars from Belgian and Dutch sites on host plants (the cranberry, Vaccinium oxycoccos). Dutch plant quality was lower than Belgian one conferring lower caterpillar growth rate and survival. Reintroduction and/or supplementation may be necessary to ensure the viability of the species in the Netherlands, but some traits may have been selected solely in Dutch caterpillars to cope with gradual changes in host plant quality. To test this hypothesis, the performance of Belgian and Dutch caterpillars fed with plants from both countries were compared. Dutch caterpillars performed well on both plant qualities, whereas Belgian caterpillars could not switch to lower quality plants. This can be considered as an environmentally induced plastic response of caterpillars and/or a local adaptation to plant quality, which precludes the use of Belgian individuals as a unique solution for strengthening Dutch populations. More generally, these results stress that the relevance of local adaptation in selecting source populations for relocation may be as important as restoring habitat quality.  相似文献   

15.
Herbivorous insects that have recently incorporated novel hosts into their diet provide unique opportunities for understanding factors that promote or constrain the evolution of niche breadth. Lycaeides melissa has colonized both cultivated and feral alfalfa (Medicago sativa) throughout much of North America within the past 200 years. We investigated the quality of the novel host as a resource for juvenile development, and asked if the novel host is a preferred host for oviposition relative to a native host (Astragalus canadensis). Larval-performance and oviposition-preference were examined using L. melissa individuals from a population associated with both M. sativa and A. canadensis, and oviposition-preference was also examined in another population associated exclusively with M. sativa. In addition, we investigated the effects of M. sativa and A. canadensis flowers on both preference and performance. Only one of the hosts, M. sativa, has flowers that are accessible to nectaring butterflies, and we hypothesized that the presence of flowers could affect female behavior. We find that the novel host is a relatively poor larval resource: adults that were reared as larvae on M. sativa were roughly one-third the size of adults that were reared on the native host, A. canadensis. The native host, Astragalus canadensis, is the preferred host in choice experiments involving only foliage. However, when flowers were included in preference assays, the native and novel hosts received similar numbers of eggs. Thus, the presence of flowers on hosts in the field might influence the utilization of a novel and inferior larval resource. These results are consistent with a model in which host shifts are driven by adult behavior that does not directly optimize larval performance.  相似文献   

16.
What is the role of time-constraints in determining geographical variation in the resource use of organisms? One hypothesis concerning phytophagous insects predicts a local narrowing of host plant range at localities where a short development time is important (because an additional generation per season is only just possible), with increased specialization on host plants permitting fast development. To test this hypothesis, populations of the polyphagous comma butterfly (Nymphalidae: Polygonia c-album) from five European areas (localities in Norway, Sweden, England, Belgium and Spain) were sampled and the preferences of laboratory-reared female butterflies were investigated, by a choice test between Salix caprea and the fastest host Urtica dioica. The results suggest that females of both of two northern univoltine populations (time-stressed from Norway and time-relaxed from Sweden) accept the slow host S. caprea to a higher degree than females of more southern populations with partial additional generations (time-stressed). We thus found partial support for the tested hypothesis, but also conflicting results that cast doubt on its broad generality. Moreover, a split-brood investigation on Swedish stock demonstrated that larval performance is similar on S. caprea and U. dioica early in the summer, but that later in the season S. caprea is a much inferior host. This is reflected by a seasonal trend towards specialization on U. dioica and also provides a simpler explanation than the time-constraints theory for avoidance of S. caprea (and other woody hosts) in areas with two or more generations of insects per year, illustrating the importance of plant phenology as a constraint on resource use in phytophagous insects. Absolute and relative larval performance on the two hosts varied little among populations across Europe, but lower survival on S. caprea in the populations most specialized on U. dioica and related plants may be indicative of performance trade-offs.  相似文献   

17.
Arbuscular mycorrhizal (AM) symbiosis is among the factors contributing to plant survival in serpentine soils characterised by unfavourable physicochemical properties. However, AM fungi show a considerable functional diversity, which is further modified by host plant identity and edaphic conditions. To determine the variability among serpentine AM fungal isolates in their effects on plant growth and nutrition, a greenhouse experiment was conducted involving two serpentine and two non-serpentine populations of Knautia arvensis plants grown in their native substrates. The plants were inoculated with one of the four serpentine AM fungal isolates or with a complex AM fungal community native to the respective plant population. At harvest after 6-month cultivation, intraradical fungal development was assessed, AM fungal taxa established from native fungal communities were determined and plant growth and element uptake evaluated. AM symbiosis significantly improved the performance of all the K. arvensis populations. The extent of mycorrhizal growth promotion was mainly governed by nutritional status of the substrate, while the effect of AM fungal identity was negligible. Inoculation with the native AM fungal communities was not more efficient than inoculation with single AM fungal isolates in any plant population. Contrary to the growth effects, a certain variation among AM fungal isolates was revealed in terms of their effects on plant nutrient uptake, especially P, Mg and Ca, with none of the AM fungi being generally superior in this respect. Regardless of AM symbiosis, K. arvensis populations significantly differed in their relative nutrient accumulation ratios, clearly showing the plant’s ability to adapt to nutrient deficiency/excess.  相似文献   

18.
The evolution of associations between herbivorous insects and their parasitoids is likely to be influenced by the relationship between the herbivore and its host plants. If populations of specialized herbivorous insects are structured by their host plants such that populations on different hosts are genetically differentiated, then the traits affecting insect-parasitoid interactions may exhibit an associated structure. The pea aphid (Acyrthosiphon pisum) is a herbivorous insect species comprised of genetically distinct groups that are specialized on different host plants (Via 1991a, 1994). Here, we examine how the genetic differentiation of pea aphid populations on different host plants affects their interaction with a parasitoid wasp, Aphidius ervi. We performed four experiments. (1) By exposing pea aphids from both alfalfa and clover to parasitoids from both crops, we demonstrate that pea aphid populations that are specialized on alfalfa are successfully parasitized less often than are populations specialized on clover. This difference in parasitism rate does not depend upon whether the wasps were collected from alfalfa or clover fields. (2) When we controlled for potential differences in aphid and parasitoid behavior between the two host plants and ensured that aphids were attacked, we found that pea aphids from alfalfa were still parasitized less often than pea aphids from clover. Thus, the difference in parasitism rates is not due to behavior of either aphids or wasps, but appears to be a physiologically based difference in resistance to parasitism. (3) Replicates of pea aphid clones reared on their own host plant and on a common host plant, fava bean, exhibited the same pattern of resistance as above. Thus, there do not appear to be nutritional or secondary chemical effects on the level of physiological resistance in the aphids due to feeding on clover or alfalfa, and therefore the difference in resistance on the two crops appears to be genetically based. (4) We assayed for genetic variation in resistance among individual pea aphid clones collected from clover fields and found no detectable genetic variation for resistance to parasitism within two populations sampled from clover. This is in contrast to Henter and Via's (1995) report of abundant genetic variation in resistance to this parasitoid within a pea aphid population on alfalfa. Low levels of genetic variation may be one factor that constrains the evolution of resistance to parasitism in the populations of pea aphids from clover, leading them to remain more susceptible than populations of the same species from alfalfa.  相似文献   

19.
Anthropogenic climate change poses a substantial challenge to many organisms, to which they need to respond to avoid fitness reductions. Investigating responses to environmental change is particularly interesting in herbivores, as they are potentially affected by indirect effects mediated via variation in host‐plant quality. We here use the herbivorous insect Pieris napi to investigate geographic variation in the response to variation in food quality. We performed a common garden experiment using replicated populations from Germany and Italy, and manipulated host quality by growing host plants at different temperature and water regimes. We found that feeding on plants grown at a higher temperature generally diminished the performance of P. napi, evidenced by a prolonged development time and reduced larval growth rate, body mass, fat content, and phenoloxidase activity. Genotype by environment interactions (G × E) were present in several performance traits, indicating that Italian populations (1) respond more strongly to variation in host‐plant quality and (2) are more sensitive to poor food quality than German ones. This may reflect a cost of the rapid lifestyle found in Italian populations. Consequently, German populations may be more resilient against environmental perturbations and may perhaps even benefit from warmer temperatures, while Italian populations will likely suffer from the concomitantly reduced host‐plant quality. Our study thus exemplifies how investigating G × E may help to better understand the vulnerability of populations to climate change.  相似文献   

20.
Insect parasitoids and their insect hosts represent a wide range of parasitic trophic relations that can be used to understand the evolution of biotic diversity on earth. Testing theories of coevolution between hosts and parasites is based on factors directly involved in host susceptibility and parasitoid virulence. We used controlled encounters with potential hosts of the Aphidius ervi wasp to elucidate behavioral and other phenotypic traits of host Acyrthosiphon pisum that most contribute to success or failure of parasitism. The host aphid is at an advanced stage of specialization on different crop plants, and exhibits intra-population polymorphism for traits of parasitoid avoidance and resistance based on clonal variation of color morph and anti-parasitoid bacterial symbionts. Randomly selected aphid clones from alfalfa and clover were matched in 5 minute encounters with wasps of two parasitoid lineages deriving from hosts of each plant biotype in a replicated transplant experimental design. In addition to crop plant affiliation (alfalfa, clover), aphid clones were characterized for color morph (green, pink), Hamiltonella defensa and Regiella insecticola symbionts, and frequently used behaviors in encounters with A. ervi wasps. A total of 12 explanatory variables were examined using redundancy analysis (RDA) to predict host survival or failure to A. ervi parasitism. Aphid color was the best univariate predictor, but was poorly predictive in the RDA model. In contrast, aphid host plant and symbionts were not significant univariate predictors, but significant predictors in the multivariate model. Aphid susceptibility to wasp acceptance as reflected in host attacks and oviposition clearly differed from its suitability to parasitism and progeny development. Parasitoid progeny were three times more likely to survive on clover than alfalfa host aphids, which was compensated by behaviorally adjusting eggs invested per host. Strong variation of the predictive power of intrinsic (body color) and extrinsic traits (symbionts, host plant), indicate that host variables considered as key predictors of outcomes strongly interact and cannot be considered in isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号