首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
Huys  Rony 《Hydrobiologia》1988,167(1):485-495
A new order, Gelyelloida, is proposed for Gelyella Rouch & Lescher-Moutoué, 1977 (ex Harpacticoida), an enigmatic genus of freshwater-inhabiting copepod from European karstic systems. The new order is characterized by a unique combination of generalised gnathostomous mouth parts and unusual derived features, some of them suggesting a possible neotenic origin for the order. It is suggested that gelyellids have had a long evolutionary history and separated as an early offshoot of the main cyclopoid lineage.  相似文献   

3.
Morphological similarity associated to restricted distributions and low dispersal abilities make the direct developing “Terrarana” frogs of the genus Euparkerella a good model for examining diversification processes. We here infer phylogenetic relationships within the genus Euparkerella, using DNA sequence data from one mitochondrial and four nuclear genes coupled with traditional Bayesian phylogenetic reconstruction approaches and more recent coalescent methods of species tree inference. We also used Bayesian clustering analysis and a recent Bayesian coalescent-based approach specifically to infer species delimitation. The analysis of 39 individuals from the four known Euparkerella species uncovered high levels of genetic diversity, especially within the two previously morphologically-defined E. cochranae and E. brasiliensis. Within these species, the gene trees at five independent loci and trees from combined data (concatenated dataset and the species tree) uncovered six deeply diverged and geographically coherent evolutionary units, which may have diverged between the Miocene and the Pleistocene. These six units were also uncovered in the Bayesian clustering analysis, and supported by the Bayesian coalescent-based species delimitation (BPP), and Genealogical Sorting Index (GSI), providing thus strong evidence for underestimation of the current levels of diversity within Euparkerella. The cryptic diversity now uncovered opens new opportunities to examine the origins and maintenance of microendemism in the context of spatial heterogeneity and/or human induced fragmentation of the highly threatened Brazilian Atlantic forest hotspot.  相似文献   

4.
Most of the reproductive modes of frogs include an exotrophic tadpole, but a number of taxa have some form of endotrophic development that lacks a feeding tadpole stage. The dicroglossid frog genus Limnonectes ranges from China south into Indonesia. The breeding biologies of the approximately 60 described species display an unusual diversity that range from exotrophic tadpoles to endotrophic development in terrestrial nests. There have been mentions of oviductal production of typical, exotrophic tadpoles in an undescribed species of Limnonectes from Sulawesi, Indonesia. Here we examine newly collected specimens of this species, now described as L. larvaepartus and present the first substantial report on this unique breeding mode. Typical exotrophic tadpoles that are retained to an advanced developmental stage in the oviducts of a female frog are birthed into slow-flowing streams or small, non-flowing pools adjacent to the streams.  相似文献   

5.

Background

Speciose clades usually harbor species with a broad spectrum of adaptive strategies and complex distribution patterns, and thus constitute ideal systems to disentangle biotic and abiotic causes underlying species diversification. The delimitation of such study systems to test evolutionary hypotheses is difficult because they often rely on artificial genus concepts as starting points. One of the most prominent examples is the bellflower genus Campanula with some 420 species, but up to 600 species when including all lineages to which Campanula is paraphyletic. We generated a large alignment of petD group II intron sequences to include more than 70% of described species as a reference. By comparison with partial data sets we could then assess the impact of selective taxon sampling strategies on phylogenetic reconstruction and subsequent evolutionary conclusions.

Methodology/Principal Findings

Phylogenetic analyses based on maximum parsimony (PAUP, PRAP), Bayesian inference (MrBayes), and maximum likelihood (RAxML) were first carried out on the large reference data set (D680). Parameters including tree topology, branch support, and age estimates, were then compared to those obtained from smaller data sets resulting from “classification-guided” (D088) and “phylogeny-guided sampling” (D101). Analyses of D088 failed to fully recover the phylogenetic diversity in Campanula, whereas D101 inferred significantly different branch support and age estimates.

Conclusions/Significance

A short genomic region with high phylogenetic utility allowed us to easily generate a comprehensive phylogenetic framework for the speciose Campanula clade. Our approach recovered 17 well-supported and circumscribed sub-lineages. Knowing these will be instrumental for developing more specific evolutionary hypotheses and guide future research, we highlight the predictive value of a mass taxon-sampling strategy as a first essential step towards illuminating the detailed evolutionary history of diverse clades.  相似文献   

6.
The ‘tree lobsters’ are an enigmatic group of robust, ground-dwelling stick insects (order Phasmatodea) from the subfamily Eurycanthinae, distributed in New Guinea, New Caledonia and associated islands. Its most famous member is the Lord Howe Island stick insect Dryococelus australis (Montrouzier), which was believed to have become extinct but was rediscovered in 2001 and is considered to be one of the rarest insects in the world. To resolve the evolutionary position of Dryococelus, we constructed a phylogeny from approximately 2.4 kb of mitochondrial and nuclear sequence data from representatives of all major phasmatodean lineages. Our data placed Dryococelus and the New Caledonian tree lobsters outside the New Guinean Eurycanthinae as members of an unrelated Australasian stick insect clade, the Lanceocercata. These results suggest a convergent origin of the ‘tree lobster’ body form. Our reanalysis of tree lobster characters provides additional support for our hypothesis of convergent evolution. We conclude that the phenotypic traits leading to the traditional classification are convergent adaptations to ground-living behaviour. Our molecular dating analyses indicate an ancient divergence (more than 22 Myr ago) between Dryococelus and its Australian relatives. Hence, Dryococelus represents a long-standing separate evolutionary lineage within the stick insects and must be regarded as a key taxon to protect with respect to phasmatodean diversity.  相似文献   

7.
Leptobrachium bompu Sondhi and Ohler, 2011 was described based on a single specimen collected from Eaglenest in southern slope of Himalaya(holotype: No. KA0001/200905). In April, 2014, seven adults and three tadpoles of Leptobrachium bompu were collected from upper Medog, Tibet, China since most the morphological characters of the adult frogs matched the species Leptobrachium bompu, while the tadpoles mentioned above were determined as the same species as the adults by molecular systematics analysis. Three types of iris coloration were found in the seven adult specimens and two types of spiraculum in the three tadpoles. Advertisement calls usually had 6-8 notes and the fundamental frequency ranged from 1076 to 1466 Hz. All the specimens collected at upper Medog were clustered as one lineage with very low genetic variation and located at the base of the phylogenetic tree of the genus Leptobrachium.  相似文献   

8.
Efforts to identify ecological and life history factors associated with cooperative breeding have been largely unsuccessful, and interest is growing in the role of phylogenetic history in determining the distribution of this social system among lineages. In birds, cooperative breeding is distributed non-randomly among lineages, suggesting that phylogenetic inertia may play an important role in determining its distribution. The bird genus Aphelocoma has been particularly well studied because, although it is a relatively small genus, it shows broad among-lineage variation in level of cooperation. Previous analyses described an unusual unidirectional pattern of evolutionary loss of cooperation in Aphelocoma. Here, historical reconstructions based on new phylogenetic data suggest that evolutionary changes in cooperation have been bidirectional, with at least one gain and at least one loss over relatively recent timescales. This result emphasizes that, although history plays an important role in determining the incidence of cooperative breeding, cooperative behavior can switch relatively quickly in evolutionary time and may be influenced by the ecological context within which particular populations are distributed.  相似文献   

9.
A clade where the most halotolerant fungus in the world – Hortaea werneckii, belongs (hereafter referred to as Hortaea werneckii lineage) includes five species: Hortaea werneckii, H. thailandica, Stenella araguata, Eupenidiella venezuelensis, and Magnuscella marina, of which the first species attracts increasing attention of mycologists. The species diversity and phylogenetic relationships within this lineage are weakly known. In this study two moderately halophilic black yeast strains were isolated from brine of graduation tower in Poland. Molecular phylogenetic analyses based on the rDNA ITS1-5.8S-ITS2 (=ITS), rDNA 28S D1–D2 (=LSU), and RNA polymerase II (rpb2) sequences showed that the two strains belong to Hortaea werneckii lineage but cannot be assigned to any described taxa. Accordingly, a new genus and species, Salinomyces and Salinomyces polonicus, are described for this fungus. Furthermore, molecular phylogenetic analyses have revealed that Hortaea thailandica is more closely related to S. polonicus than to H. werneckii. A new combination Salinomyces thailandicus is proposed for this fungus.  相似文献   

10.
The Mediterranean Basin has experienced extensive change in geology and climate over the past six million years. Yet, the relative importance of key geological events for the distribution and genetic structure of the Mediterranean fauna remains poorly understood. Here, we use population genomic and phylogenomic analyses to establish the evolutionary history and genetic structure of common wall lizards (Podarcis muralis). This species is particularly informative because, in contrast to other Mediterranean lizards, it is widespread across the Iberian, Italian, and Balkan Peninsulas, and in extra-Mediterranean regions. We found strong support for six major lineages within P. muralis, which were largely discordant with the phylogenetic relationship of mitochondrial DNA. The most recent common ancestor of extant P. muralis was likely distributed in the Italian Peninsula, and experienced an “Out-of-Italy” expansion following the Messinian salinity crisis (∼5 Mya), resulting in the differentiation into the extant lineages on the Iberian, Italian, and Balkan Peninsulas. Introgression analysis revealed that both inter- and intraspecific gene flows have been pervasive throughout the evolutionary history of P. muralis. For example, the Southern Italy lineage has a hybrid origin, formed through admixture between the Central Italy lineage and an ancient lineage that was the sister to all other P. muralis. More recent genetic differentiation is associated with the onset of the Quaternary glaciations, which influenced population dynamics and genetic diversity of contemporary lineages. These results demonstrate the pervasive role of Mediterranean geology and climate for the evolutionary history and population genetic structure of extant species.  相似文献   

11.
The long generation time and large effective size of widespread forest tree species can result in slow evolutionary rate and incomplete lineage sorting, complicating species delimitation. We addressed this issue with the African timber tree genus Milicia that comprises two morphologically similar and often confounded species: M. excelsa, widespread from West to East Africa, and M. regia, endemic to West Africa. We combined information from nuclear microsatellites (nSSRs), nuclear and plastid DNA sequences, and morphological systematics to identify significant evolutionary units and infer their evolutionary and biogeographical history. We detected five geographically coherent genetic clusters using nSSRs and three levels of genetic differentiation. First, one West African cluster matched perfectly with the morphospecies M. regia that formed a monophyletic clade at both DNA sequences. Second, a West African M. excelsa cluster formed a monophyletic group at plastid DNA and was more related to M. regia than to Central African M. excelsa, but shared many haplotypes with the latter at nuclear DNA. Third, three Central African clusters appeared little differentiated and shared most of their haplotypes. Although gene tree paraphyly could suggest a single species in Milicia following the phylogenetic species concept, the existence of mutual haplotypic exclusivity and nonadmixed genetic clusters in the contact area of the two taxa indicate strong reproductive isolation and, thus, two species following the biological species concept. Molecular dating of the first divergence events showed that speciation in Milicia is ancient (Tertiary), indicating that long-living tree taxa exhibiting genetic speciation may remain similar morphologically.  相似文献   

12.
Paurodontella parapitica n. sp., collected from the rhizosphere of an apple tree in Kermanshah province, western Iran, is described. The new species is characterized by a body length of 505 to 723 µm (females) and 480 to 600 µm (males), lip region continuous by depression; 7 to 8 μm broad, 3 to 4 µm high, stylet length 7 to 9 µm or 1 to 1.3 times the lip region diameter, short postuterine sac of 4 to 6 μm long, lateral fields with five to six incisures; outer incisures crenated and inner incisures weakly crenated, excretory pore situated 90 to 100 µm from anterior end; functional males common in the population, with spicules 24 to 26 μm long. Tail of both sexes similar, almost straight and elongate-conoid. The new species resembles in morphology and morphometrics to four known species of the genus, namely P. apitica, P. minuta, P. myceliophaga, and P. sohailai. The results of phylogenetic analyses based on sequences of D2/D3 expansion region of 28S rRNA gene revealed this genus is polyphyletic in four different clades in Tylenchid.  相似文献   

13.
The poorly known fossil record of fur seals and sea lions (Otariidae) does not reflect their current diversity and widespread abundance. This limited fossil record contrasts with the more complete fossil records of other pinnipeds such as walruses (Odobenidae). The oldest known otariids appear 5–6 Ma after the earliest odobenids, and the remarkably derived craniodental morphology of otariids offers few clues to their early evolutionary history and phylogenetic affinities among pinnipeds. We report a new otariid, Eotaria crypta, from the lower middle Miocene ‘Topanga’ Formation (15–17.1 Ma) of southern California, represented by a partial mandible with well-preserved dentition. Eotaria crypta is geochronologically intermediate between ‘enaliarctine’ stem pinnipedimorphs (16.6–27 Ma) and previously described otariid fossils (7.3–12.5 Ma), as well as morphologically intermediate by retaining an M2 and a reduced M1 metaconid cusp and lacking P2–4 metaconid cusps. Eotaria crypta eliminates the otariid ghost lineage and confirms that otariids evolved from an ‘enaliarctine’-like ancestor.  相似文献   

14.
The family Thermodesulfobiaceae, comprising one genus Thermodesulfobium with two validly published species, is currently assigned to order Thermoanaerobacterales within the class Clostridia of the phylum Bacillota. At the same time, the very first 16S rRNA gene sequence-based phylogenetic studies of representatives of the genus pointed out great differences between Thermodesulfobium and other members of the phylum Bacillota. Subsequent studies of new Thermodesulfobium representatives supported deep phylogenetic branching of this lineage within bacterial tree, implying that it represents a novel phylum. The results of the phylogenomic analysis performed in the frames of the present work confirm previous findings and suggest that Thermodesulfobium represents a distinct phylum-level lineage. Thus, we propose the transfer of the family Thermodesulfobiaceae to the new order Thermodesulfobiales within the new class Thermodesulfobiia and the new phylum Thermodesulfobiota.  相似文献   

15.
16.
When experiencing resource competition or abrupt environmental change, animals often must transition rapidly from an ancestral diet to a novel, derived diet. Yet, little is known about the proximate mechanisms that mediate such rapid evolutionary transitions. Here, we investigated the role of diet-induced, cryptic genetic variation in facilitating the evolution of novel resource-use traits that are associated with a new feeding strategy—carnivory—in tadpoles of spadefoot toads (genus Spea). We specifically asked whether such variation in trophic morphology and fitness is present in Scaphiopus couchii, a species that serves as a proxy for ancestral Spea. We also asked whether corticosterone, a vertebrate hormone produced in response to environmental signals, mediates the expression of this variation. Specifically, we compared broad-sense heritabilities of tadpoles fed different diets or treated with exogenous corticosterone, and found that novel diets can expose cryptic genetic variation to selection, and that diet-induced hormones may play a role in revealing this variation. Our results therefore suggest that cryptic genetic variation may have enabled the evolutionary transition to carnivory in Spea tadpoles, and that such variation might generally facilitate rapid evolutionary transitions to novel diets.  相似文献   

17.
Marine sponges (Porifera) harbor large amounts of commensal microbial communities within the sponge mesohyl. We employed 16S rRNA gene library construction using specific PCR primers to provide insights into the phylogenetic identity of an abundant sponge-associated bacterium that is morphologically characterized by the presence of a membrane-bound nucleoid. In this study, we report the presence of a previously unrecognized evolutionary lineage branching deeply in the domain Bacteria that is moderately related to the Planctomycetes, Verrucomicrobia, and Chlamydia lines of decent. Because members of this lineage showed <75% 16S rRNA gene sequence similarity to known bacterial phyla, we suggest the status of a new candidate phylum, named “Poribacteria”, to acknowledge the affiliation of the new bacterium with sponges. The affiliation of the morphologically conspicuous sponge bacterium with the novel phylogenetic lineage was confirmed by fluorescence in situ hybridization with newly designed probes targeting different sites of the poribacterial 16S rRNA. Consistent with electron microscopic observations of cell compartmentalization, the fluorescence signals appeared in a ring-shaped manner. PCR screening with “Poribacteria”-specific primers gave positive results for several other sponge species, while samples taken from the environment (seawater, sediments, and a filter-feeding tunicate) were PCR negative. In addition to a report for Planctomycetes, this is the second report of cell compartmentalization, a feature that was considered exclusive to the eukaryotic domain, in prokaryotes.  相似文献   

18.
A new species of the cryptic, minute, wingless, and enigmatic taxon Caurinus, and the second for the subfamily Caurininae,is described from Prince of Wales Island in the Alexander Archipelago, Alaska. It is distinguished from its only congener, Caurinus dectes Russell, 1979b, which occurs 1,059 km southeast in Oregon and Washington, based on external morphology and sequences of the mitochondrial gene cytochrome oxidase II. These two species are probably evolutionary relicts – the only known members of a clade dating to the Late Jurassic or older.  相似文献   

19.

Background

We present a multi-locus phylogenetic analysis of the shallow water (high intertidal) barnacle genus Chthamalus, focusing on member species in the western hemisphere. Understanding the phylogeny of this group improves interpretation of classical ecological work on competition, distributional changes associated with climate change, and the morphological evolution of complex cirripede phenotypes.

Methodology and Findings

We use traditional and Bayesian phylogenetic and ‘deep coalescent’ approaches to identify a phylogeny that supports the monophyly of the mostly American ‘fissus group’ of Chthamalus, but that also supports a need for taxonomic revision of Chthamalus and Microeuraphia. Two deep phylogeographic breaks were also found within the range of two tropical American taxa (C. angustitergum and C. southwardorum) as well.

Conclusions

Our data, which include two novel gene regions for phylogenetic analysis of cirripedes, suggest that much more evaluation of the morphological evolutionary history and taxonomy of Chthamalid barnacles is necessary. These data and associated analyses also indicate that the radiation of species in the late Pliocene and Pleistocene was very rapid, and may provide new insights toward speciation via transient allopatry or ecological barriers.  相似文献   

20.
Cyanobacteria are an ancient group of photosynthetic prokaryotes, which are significant in biogeochemical cycles. The most primitive among living cyanobacteria, Gloeobacter violaceus, shows a unique ancestral cell organization with a complete absence of inner membranes (thylakoids) and an uncommon structure of the photosynthetic apparatus. Numerous phylogenetic papers proved its basal position among all of the organisms and organelles capable of plant-like photosynthesis (i.e., cyanobacteria, chloroplasts of algae and plants). Hence, G. violaceus has become one of the key species in evolutionary study of photosynthetic life. It also numbers among the most widely used organisms in experimental photosynthesis research. Except for a few related culture isolates, there has been little data on the actual biology of Gloeobacter, being relegated to an “evolutionary curiosity” with an enigmatic identity. Here we show that members of the genus Gloeobacter probably are common rock-dwelling cyanobacteria. On the basis of morphological, ultrastructural, pigment, and phylogenetic comparisons of available Gloeobacter strains, as well as on the basis of three new independent isolates and historical type specimen, we have produced strong evidence as to the close relationship of Gloeobacter to a long known rock-dwelling cyanobacterial morphospecies Aphanothece caldariorum. Our results bring new clues to solving the 40 year old puzzle of the true biological identity of Gloeobacter violaceus, a model organism with a high value in several biological disciplines. A probable broader distribution of Gloeobacter in common wet-rock habitats worldwide is suggested by our data, and its ecological meaning is discussed taking into consideration the background of cyanobacterial evolution. We provide observations of previously unknown genetic variability and phenotypic plasticity, which we expect to be utilized by experimental and evolutionary researchers worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号