首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 314 毫秒
1.
AMP-activated protein kinase (AMPK) plays an important role in mediating energy metabolism and is controlled mainly by two upstream kinases, LKB1 or Ca2+/calmodulin-dependent protein kinase kinase-β (CaMKKβ). Previously, we found that baicalin, one of the major flavonoids in a traditional Chinese herb medicine, Scutellaria baicalensis, protects against the development of hepatic steatosis in rats feeding with a high-fat diet by the activation of AMPK, but, the underlying mechanism for AMPK activation is unknown. Here we show that in two LKB1-deficient cells, HeLa and A549 cells, baicalin activates AMPK by α Thr-172 phosphorylation and subsequent phosphorylation of its downstream target, acetyl CoA carboxylase, at Ser-79, to a similar degree as does in HepG2 cells (that express LKB1). Pharmacologic inhibition of CaMKKβ by its selective inhibitor STO-609 markedly inhibits baicalin-induced AMPK activation in both HeLa and HepG2 cells, indicating that CaMKKβ is the responsible AMPK kinase. We also show that treatment of baicalin causes a larger increase in intracellular Ca2+ concentration ([Ca2+]i), although the maximal level of [Ca2+]i is lower in HepG2 cells compared to HeLa cells. Chelation of intracellular free Ca2+ by EDTA and EGTA, or depletion of intracellular Ca2+ stores by the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin abrogates baicalin-induced activation of AMPK in HeLa cells. Neither cellular ATP nor the production of reactive oxygen species is altered by baicalin. Finally, in HeLa cells, baicalin treatment no longer decreases intracellular lipid accumulation caused by oleic acid after inhibition of CaMKKβ by STO-609. These results demonstrate that a potential Ca2+/CaMKKβ dependent pathway is involved in the activation of AMPK by baicalin and suggest that CaMKKβ likely acts as an upstream kinase of AMPK in response to baicalin.  相似文献   

2.
Liraglutide is a glucagon-like peptide-1 (GLP-1) mimetic used for the treatment of Type 2 diabetes. Similar to the actions of endogenous GLP-1, liraglutide potentiates the post-prandial release of insulin, inhibits glucagon release and increases satiety. Recent epidemiological studies and clinical trials have suggested that treatment with GLP-1 mimetics may also diminish the risk of cardiovascular disease in diabetic patients. The mechanism responsible for this effect has yet to be determined; however, one possibility is that they might do so by a direct effect on vascular endothelium. Since low grade inflammation of the endothelium is an early event in the pathogenesis of atherosclerotic cardiovascular disease (ASCVD), we determined the effects of liraglutide on inflammation in cultured human aortic endothelial cells (HAECs). Liraglutide reduced the inflammatory responses to TNFα and LPS stimulation, as evidenced by both reduced protein expression of the adhesion molecules VCAM-1 and E-Selectin, and THP-1 monocyte adhesion. This was found to result from increased cell Ca2+ and several molecules sensitive to Ca2+ with known anti inflammatory actions in endothelial cells, including CaMKKβ, CaMKI, AMPK, eNOS and CREB. Treatment of the cells with STO-609, a CaMKK inhibitor, diminished both the activation of AMPK, CaMKI and the inhibition of TNFα and LPS-induced monocyte adhesion by liraglutide. Likewise, expression of an shRNA against AMPK nullified the anti-inflammatory effects of liraglutide. The results indicate that liraglutide exerts a strong anti-inflammatory effect on HAECs. They also demonstrate that this is due to its ability to increase intracellular Ca2+ and activate CAMKKβ, which in turn activates AMPK.  相似文献   

3.
We recently showed that bitter melon-derived triterpenoids (BMTs) activate AMPK and increase GLUT4 translocation to the plasma membrane in vitro, and improve glucose disposal in insulin resistant models in vivo. Here we interrogated the mechanism by which these novel compounds activate AMPK, a leading anti-diabetic drug target. BMTs did not activate AMPK directly in an allosteric manner as AMP or the Abbott compound (A-769662) does, nor did they activate AMPK by inhibiting cellular respiration like many commonly used anti-diabetic medications. BMTs increased AMPK activity in both L6 myotubes and LKB1-deficient HeLa cells by 20–35%. Incubation with the CaMKKβ inhibitor, STO-609, completely attenuated this effect suggesting a key role for CaMKKβ in this activation. Incubation of L6 myotubes with the calcium chelator EGTA-AM did not alter this activation suggesting that the BMT-dependent activation was Ca2+-independent. We therefore propose that CaMKKβ is a key upstream kinase for BMT-induced activation of AMPK.  相似文献   

4.
Macrophages are capable of assuming numerous phenotypes in order to adapt to endogenous and exogenous challenges but many of the factors that regulate this process are still unknown. We report that Ca2+/calmodulin-dependent kinase kinase α (CaMKKα) is expressed in human monocytic cells and demonstrate that its inhibition blocks type-II monocytic cell activation and promotes classical activation. Affinity chromatography with paramagnetic beads isolated an approximately 50 kDa protein from nuclear lysates of U937 human monocytic cells activated with phorbol-12-myristate-13-acetate (PMA). This protein was identified as CaMKKα by mass spectrometry and Western analysis. The function of CaMKKα in monocyte activation was examined using the CaMKKα inhibitors (STO-609 and forskolin) and siRNA knockdown. Inhibition of CaMKKα, enhanced PMA-dependent CD86 expression and reduced CD11b expression. In addition, inhibition was associated with decreased translocation of CaMKKα to the nucleus. Finally, to further examine monocyte activation profiles, TNFα and IL-10 secretion were studied. CaMKKα inhibition attenuated PMA-dependent IL-10 production and enhanced TNFα production indicating a shift from type-II to classical monocyte activation. Taken together, these findings indicate an important new role for CaMKKα in the differentiation of monocytic cells.  相似文献   

5.
6.
7.
Before a cell enters mitosis, the Golgi apparatus undergoes extensive fragmentation. This is required for the correct partitioning of the Golgi apparatus into daughter cells, and inhibition of this process leads to cell cycle arrest in G2 phase. AMP-activated protein kinase (AMPK) plays critical roles in regulating growth and reprogramming metabolism. Recent studies have suggested that AMPK promotes mitotic progression and Golgi disassembly, and that this seems independent of the cellular energy status. However, the molecular mechanism underlying these events is not well understood. Here, we show that both treatment with compound C and depletion of AMPKα2 (but not AMPKα1) delays the G2/M transition in synchronized HeLa cells, as evidenced by flow cytometry and mitotic index analysis. Furthermore, knockdown of AMPKα2 specifically delays further fragmentation of isolated Golgi stacks. Interestingly, pAMPKαThr172 signals transiently appear in the perinuclear region of late G2/early prophase cells, partially co-localizing with the Golgi matrix protein, GM-130. These Golgi pAMPKαThr172 signals were also specifically abolished by AMPKα2 knockdown, indicating specific spatio-temporal activation of AMPKα2 at Golgi complex during late G2/early prophases. We also found that the specific CaMKKβ inhibitor, STO-609, reduces the pAMPKα Thr172 signals in the perinuclear region of G2 phase cells and delays mitotic Golgi fragmentation. Taken together, these data suggest that AMPKα2 is the major catalytic subunit of AMPKα which regulates Golgi fragmentation and G2/M transition, and that the CaMKKβ activates AMPKα2 during late G2 phase.  相似文献   

8.
The Ca2+ sensor STIM1 is crucial for activation of store-operated Ca2+ entry (SOCE) through transient receptor potential canonical and Orai channels. STIM1 phosphorylation serves as an “off switch” for SOCE. However, the signaling pathway for STIM1 phosphorylation is unknown. Here, we show that SOCE activates AMP-activated protein kinase (AMPK); its effector p38β mitogen-activated protein kinase (p38β MAPK) phosphorylates STIM1, thus inhibiting SOCE in human lung microvascular endothelial cells. Activation of AMPK using 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) resulted in STIM1 phosphorylation on serine residues and prevented protease-activated receptor-1 (PAR-1)-induced Ca2+ entry. Furthermore, AICAR pretreatment blocked PAR-1-induced increase in the permeability of mouse lung microvessels. Activation of SOCE with thrombin caused phosphorylation of isoform α1 but not α2 of the AMPK catalytic subunit. Moreover, knockdown of AMPKα1 augmented SOCE induced by thrombin. Interestingly, SB203580, a selective inhibitor of p38 MAPK, blocked STIM1 phosphorylation and led to sustained STIM1-puncta formation and Ca2+ entry. Of the three p38 MAPK isoforms expressed in endothelial cells, p38β knockdown prevented PAR-1-mediated STIM1 phosphorylation and potentiated SOCE. In addition, inhibition of the SOCE downstream target CaM kinase kinase β (CaMKKβ) or knockdown of AMPKα1 suppressed PAR-1-mediated phosphorylation of p38β and hence STIM1. Thus, our findings demonstrate that SOCE activates CaMKKβ-AMPKα1-p38β MAPK signaling to phosphorylate STIM1, thereby suppressing endothelial SOCE and permeability responses.  相似文献   

9.
Cystic fibrosis (CF) patients and model systems exhibit consistent abnormalities in PUFA metabolism, including increased metabolism of linoleate to arachidonate. Recent studies have connected these abnormalities to increased expression and activity of the Δ6- and Δ5-desaturase enzymes. However, the mechanism connecting these changes to the CF transmembrane conductance regulator (CFTR) mutations responsible for CF is unknown. This study tests the hypothesis that increased activity of AMP-activated protein kinase (AMPK), previously described in CF bronchial epithelial cells, causes these changes in fatty acid metabolism by driving desaturase expression. Using CF bronchial epithelial cell culture models, we confirm elevated activity of AMPK in CF cells and show that it is due to increased phosphorylation of AMPK by Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ). We also show that inhibition of AMPK or CaMKKβ reduces desaturase expression and reverses the metabolic alterations seen in CF cells. These results signify a novel AMPK-dependent mechanism linking the genetic defect in CF to alterations in PUFA metabolism.  相似文献   

10.
Autophagy is the main lysosomal catabolic process that becomes activated under stress conditions, such as amino acid starvation and cytosolic Ca2+ upload. However, the molecular details on how both conditions control autophagy are still not fully understood. Here we link essential amino acid starvation and Ca2+ in a signaling pathway to activate autophagy. We show that withdrawal of essential amino acids leads to an increase in cytosolic Ca2+, arising from both extracellular medium and intracellular stores, which induces the activation of adenosine monophosphate-activated protein kinase (AMPK) via Ca2+/calmodulin-dependent kinase kinase-β (CaMKK-β). Furthermore, we show that autophagy induced by amino acid starvation requires AMPK, as this induction is attenuated in its absence. Subsequently, AMPK activates UNC-51-like kinase (ULK1), a mammalian autophagy-initiating kinase, through phosphorylation at Ser-555 in a process that requires CaMKK-β. Finally, the mammalian target of rapamycin complex C1 (mTORC1), a negative regulator of autophagy downstream of AMPK, is inhibited by amino acid starvation in a Ca2+-sensitive manner, and CaMKK-β appears to be important for mTORC1 inactivation, especially in the absence of extracellular Ca2+. All these results highlight that amino acid starvation regulates autophagy in part through an increase in cellular Ca2+ that activates a CaMKK-β-AMPK pathway and inhibits mTORC1, which results in ULK1 stimulation.  相似文献   

11.
12.
In the present review, sperm morphology, acrosome reaction, motility, short-term storage and cryopreservation are summarized and discussed in sturgeon (Chondrostei, Acipenseriformes). The elongated head of spermatozoon comprises an acrosome with 8?C12 posterolateral projections. Usually three endonuclear canals are observed in the nucleus. Proximal and distal centrioles and 3?C6 mitochondria are located in the midpiece region. The flagellum consists of an axoneme with a typical ??9?+?2?? structure of microtubules and presents a ribon-like structure due to two lateral membranous fins. Egg water, Ca2+ and Mg2+ can trigger acrosome reaction. Trypsin- and chymotrypsin-like activities are reported in sturgeon sperm. These physiological properties of sturgeon sperm are identified as serine activity with 33?kDa molecular mass and can be inhibited by their respective inhibitors. The K+ prevents sperm activation in seminal plasma, and hypo-osmolality or decrease of extracellular K+ triggers sperm activation. Extracellular Ca2+ is involved in flagellar beating pattern and sperm velocity. After activation, sperm motility, velocity, and flagellar beating frequency, wavelength and amplitude decrease, while number of waves and curvature increase. Sturgeon sperm can be stored for several days at 4?°C; however it is better to add K+ into the immobilizing medium because it prevents sperm activation during incubation. Regarding sperm cryopreservation, methanol is a better cryoprotectant than DMSO. Either short-term storage or cryopreservation of sperm generates damage to spermatozoa that lead to reduction of sperm motility performance. Some studies suggest using an activation medium containing Ca2+ for enhancing sperm motility performance of incubated or frozen-thawed sperm.  相似文献   

13.
14.
Both signaling by nitric oxide (NO) and by the Ca2+/calmodulin (CaM)-dependent protein kinase II α isoform (CaMKIIα) are implicated in two opposing forms of synaptic plasticity underlying learning and memory, as well as in excitotoxic/ischemic neuronal cell death. For CaMKIIα, these functions specifically involve also Ca2+-independent autonomous activity, traditionally generated by Thr-286 autophosphorylation. Here, we demonstrate that NO-induced S-nitrosylation of CaMKIIα also directly generated autonomous activity, and that CaMKII inhibition protected from NO-induced neuronal cell death. NO induced S-nitrosylation at Cys-280/289, and mutation of either site abolished autonomy, indicating that simultaneous nitrosylation at both sites was required. Additionally, autonomy was generated only when Ca2+/CaM was present during NO exposure. Thus, generation of this form of CaMKIIα autonomy requires simultaneous signaling by NO and Ca2+. Nitrosylation also significantly reduced subsequent CaMKIIα autophosphorylation specifically at Thr-286, but not at Thr-305. A previously described reduction of CaMKII activity by S-nitrosylation at Cys-6 was also observed here, but only after prolonged (>5 min) exposure to NO donors. These results demonstrate a novel regulation of CaMKII by another second messenger system and indicate its involvement in excitotoxic neuronal cell death.  相似文献   

15.
NO is known to modulate calcium handling and cellular signaling in the myocardium, but key targets for NO in the heart remain unidentified. Recent reports have implied that NO can activate calcium/calmodulin (Ca2+/CaM)-dependent protein kinase II (CaMKII) in neurons and the heart. Here we use our novel sensor of CaMKII activation, Camui, to monitor changes in the conformation and activation of cardiac CaMKII (CaMKIIδ) activity after treatment with the NO donor S-nitrosoglutathione (GSNO). We demonstrate that exposure to NO after Ca2+/CaM binding to CaMKIIδ results in autonomous kinase activation, which is abolished by mutation of the Cys-290 site. However, exposure of CaMKIIδ to GSNO prior to Ca2+/CaM exposure strongly suppresses kinase activation and conformational change by Ca2+/CaM. This NO-induced inhibition was ablated by mutation of the Cys-273 site. We found parallel effects of GSNO on CaM/CaMKIIδ binding and CaMKIIδ-dependent ryanodine receptor activation in adult cardiac myocytes. We conclude that NO can play a dual role in regulating cardiac CaMKIIδ activity.  相似文献   

16.
The binding of the adaptor protein APPL1 to adiponectin receptors is necessary for adiponectin-induced AMP-activated protein kinase (AMPK) activation in muscle, yet the underlying molecular mechanism remains unknown. Here we show that in muscle cells adiponectin and metformin induce AMPK activation by promoting APPL1-dependent LKB1 cytosolic translocation. APPL1 mediates adiponectin signaling by directly interacting with adiponectin receptors and enhances LKB1 cytosolic localization by anchoring this kinase in the cytosol. Adiponectin also activates another AMPK upstream kinase Ca2+/calmodulin-dependent protein kinase kinase by activating phospholipase C and subsequently inducing Ca2+ release from the endoplasmic reticulum, which plays a minor role in AMPK activation. Our results show that in muscle cells adiponectin is able to activate AMPK via two distinct mechanisms as follows: a major pathway (the APPL1/LKB1-dependent pathway) that promotes the cytosolic localization of LKB1 and a minor pathway (the phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathway) that stimulates Ca2+ release from intracellular stores.Adiponectin, an adipokine abundantly expressed in adipose tissue, exhibits anti-diabetic, anti-inflammatory, and anti-atherogenic properties and hence is a potential therapeutic target for various metabolic diseases (13). The beneficial effects of adiponectin are mediated through the direct interaction of adiponectin with its cell surface receptors, AdipoR1 and AdipoR2 (4, 5). Adiponectin increases fatty acid oxidation and glucose uptake in muscle cells by activating AMP-activated protein kinase (AMPK)3 (4, 6), which depends on the interaction of AdipoR1 with the adaptor protein APPL1 (Adaptor protein containing Pleckstrin homology domain, Phosphotyrosine binding domain, and Leucine zipper motif) (5). However, the underlying mechanisms by which APPL1 mediates adiponectin signaling to AMPK activation and other downstream targets remain unclear.AMPK is a serine/threonine protein kinase that acts as a master sensor of cellular energy balance in mammalian cells by regulating glucose and lipid metabolism (7, 8). AMPK is composed of a catalytic α subunit and two noncatalytic regulatory subunits, β and γ. The NH2-terminal catalytic domain of the AMPKα subunit is highly conserved and contains the activating phosphorylation site (Thr172) (9). Two AMPK variants, α1 and α2, exist in mammalian cells that show different localization patterns. AMPKα1 subunit is localized in non-nuclear fractions, whereas the AMPKα2 subunit is found in both nucleus and non-nuclear fractions (10). Biochemical regulation of AMPK activation occurs through various mechanisms. An increase in AMP level stimulates the binding of AMP to the γ subunit, which induces a conformational change in the AMPK heterotrimer and results in AMPK activation (11). Studies have shown that the increase in AMPK activity is not solely via AMP-dependent conformational change, rather via phosphorylation by upstream kinases, LKB1 and CaMKK. Dephosphorylation by protein phosphatases is also important in regulating the activity of AMPK (12).LKB1 has been considered as a constitutively active serine/threonine protein kinase that is ubiquitously expressed in all tissues (13, 14). Under conditions of high cellular energy stress, LKB1 acts as the primary AMPK kinase through an AMP-dependent mechanism (1517). Under normal physiological conditions, LKB1 is predominantly localized in the nucleus. LKB1 is translocated to the cytosol, either by forming a heterotrimeric complex with Ste20-related adaptor protein (STRADα/β) and mouse protein 25 (MO25α/β) or by associating with an LKB1-interacting protein (LIP1), to exert its biological function (1822). Although LKB1 has been shown to mediate contraction- and adiponectin-induced activation of AMPK in muscle cells, the underlying molecular mechanisms remain elusive (15, 23).CaMKK is another upstream kinase of AMPK, which shows considerable sequence and structural homology with LKB1 (2426). The two isoforms of CaMKK, CaMKKα and CaMKKβ, encoded by two distinct genes, share ∼70% homology at the amino acid sequence level and exhibit a wide expression in rodent tissues, including skeletal muscle (2734). Unlike LKB1, AMPK phosphorylation mediated by CaMKKs is independent of AMP and is dependent only on Ca2+/calmodulin (35). Hence, it is possible that an LKB1-independent activation of AMPK by CaMKK exists in muscle cells. However, whether and how adiponectin stimulates this pathway in muscle cells are not known.In this study, we demonstrate that in muscle cells adiponectin induces an APPL1-dependent LKB1 translocation from the nucleus to the cytosol, leading to increased AMPK activation. Adiponectin also activates CaMKK by stimulating intracellular Ca2+ release via the PLC-dependent mechanism, which plays a minor role in activation of AMPK. Taken together, our results demonstrate that enhanced cytosolic localization of LKB1 and Ca2+-induced activation of CaMKK are the mechanisms underlying adiponectin-stimulated AMPK activation in muscle cells.  相似文献   

17.
Hsu YC  Ip MM 《Cellular signalling》2011,23(12):2013-2020
Conjugated linoleic acid (CLA) has shown chemopreventive activity in several tumorigenesis models, in part through induction of apoptosis. We previously demonstrated that the t10,c12 isomer of CLA induced apoptosis of TM4t mouse mammary tumor cells through both mitochondrial and endoplasmic reticulum (ER) stress pathways, and that the AMP-activated protein kinase (AMPK) played a critical role in the apoptotic effect. In the current study, we focused on the upstream pathways by which AMPK was activated, and additionally evaluated the contributing role of oxidative stress to apoptosis. CLA-induced activation of AMPK and/or induction of apoptosis were inhibited by infection of TM4t cells with an adenovirus expressing a peptide which blocks the interaction between the G protein coupled receptor (GPCR) and Gαq, by the phospholipase C (PLC) inhibitor U73122, by the inositol trisphosphate (IP3) receptor inhibitor 2-APB, by the calcium/calmodulin-dependent protein kinase kinase α (CaMKK) inhibitor STO-609 and by the intracellular Ca2+ chelator BAPTA-AM. This suggests that t10,c12-CLA may exert its apoptotic effect by stimulating GPCR through Gαq signaling, activation of phosphatidylinositol-PLC, followed by binding of the PLC-generated IP3 to its receptor on the ER, triggering Ca2+ release from the ER and finally stimulating the CaMKK–AMPK pathway. t10,c12-CLA also increased oxidative stress and lipid peroxidation, and antioxidants blocked its apoptotic effect, as well as the CLA-induced activation of p38 MAPK, a downstream effector of AMPK. Together these data elucidate two major pathways by which t10,c12-CLA induces apoptosis, and suggest a point of intersection of the two pathways both upstream and downstream of AMPK.  相似文献   

18.
ADP responses underlie therapeutic approaches to many cardiovascular diseases, and ADP receptor antagonists are in widespread clinical use. The role of ADP in platelet biology has been extensively studied, yet ADP signaling pathways in endothelial cells remain incompletely understood. We found that ADP promoted phosphorylation of the endothelial isoform of nitric-oxide synthase (eNOS) at Ser1179 and Ser635 and dephosphorylation at Ser116 in cultured endothelial cells. Although eNOS activity was stimulated by both ADP and ATP, only ADP signaling was significantly inhibited by the P2Y1 receptor antagonist MRS 2179 or by knockdown of P2Y1 using small interfering RNA (siRNA). ADP activated the small GTPase Rac1 and promoted endothelial cell migration. siRNA-mediated knockdown of Rac1 blocked ADP-dependent eNOS Ser1179 and Ser635 phosphorylation, as well as eNOS activation. We analyzed pathways known to regulate eNOS, including phosphoinositide 3-kinase/Akt, ERK1/2, Src, and calcium/calmodulin-dependent kinase kinase-β (CaMKKβ) using the inhibitors wortmannin, PD98059, PP2, and STO-609, respectively. None of these inhibitors altered ADP-modulated eNOS phosphorylation. In contrast, siRNA-mediated knockdown of AMP-activated protein kinase (AMPK) inhibited ADP-dependent eNOS Ser635 phosphorylation and eNOS activity but did not affect eNOS Ser1179 phosphorylation. Importantly, the AMPK enzyme inhibitor compound C had no effect on ADP-stimulated eNOS activity, despite completely blocking AMPK activity. CaMKKβ knockdown suppressed ADP-stimulated eNOS activity, yet inhibition of CaMKKβ kinase activity using STO-609 failed to affect eNOS activation by ADP. These data suggest that the expression, but not the kinase activity, of AMPK and CaMKKβ is necessary for ADP signaling to eNOS.  相似文献   

19.
20.
Metabotropic glutamate receptor 1α (mGluR1α), a member of the family C G protein-coupled receptors, is emerging as a potential drug target for various disorders, including chronic neuronal degenerative diseases. In addition to being activated by glutamate, mGluR1α is also modulated by extracellular Ca2+. However, the underlying mechanism is unknown. Moreover, it has long been challenging to develop receptor-specific agonists due to homologies within the mGluR family, and the Ca2+-binding site(s) on mGluR1α may provide an opportunity for receptor-selective targeting by therapeutics. In the present study, we show that our previously predicted Ca2+-binding site in the hinge region of mGluR1α is adjacent to the site where orthosteric agonists and antagonists bind on the extracellular domain of the receptor. Moreover, we found that extracellular Ca2+ enhanced mGluR1α-mediated intracellular Ca2+ responses evoked by the orthosteric agonist l-quisqualate. Conversely, extracellular Ca2+ diminished the inhibitory effect of the mGluR1α orthosteric antagonist (S)-α-methyl-4-carboxyphenylglycine. In addition, selective positive (Ro 67-4853) and negative (7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester) allosteric modulators of mGluR1α potentiated and inhibited responses to extracellular Ca2+, respectively, in a manner similar to their effects on the response of mGluR1α to glutamate. Mutations at residues predicted to be involved in Ca2+ binding, including E325I, had significant effects on the modulation of responses to the orthosteric agonist l-quisqualate and the allosteric modulator Ro 67-4853 by extracellular Ca2+. These studies reveal that binding of extracellular Ca2+ to the predicted Ca2+-binding site in the extracellular domain of mGluR1α modulates not only glutamate-evoked signaling but also the actions of both orthosteric ligands and allosteric modulators on mGluR1α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号