首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
Statins are important lipid-lowering agents with other pleiotropic effects. Several studies have explored a possible protective effect of statins to reduce the morbidity and mortality of many infectious diseases. Staphylococcus aureus is one of the main pathogens implicated in nosocomial infections; its ability to form biofilms makes treatment difficult. The present study observed the MIC of atorvastatin, pravastatin and simvastatin against S. aureus, Pseudomonas aeruginosa, Escherichia coli and Enterococcus faecalis. Simvastatin was the only agent with activity against clinical isolates and reference strains of methicilin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). Thus, the effects of simvastatin on the growth, viability and biofilm formation of S. aureus were tested. In addition, a possible synergistic effect between simvastatin and vancomycin was evaluated. Simvastatin’s MIC was 15.65 µg/mL for S. aureus 29213 and 31.25 µg/mL for the other strains of S. aureus. The effect of simvastatin was bactericidal at 4xMIC and bacteriostatic at the MIC concentration. No synergistic effect was found between simvastatin and vancomycin. However, the results obtained against S. aureus biofilms showed that, in addition to inhibiting adhesion and biofilm formation at concentrations from 1/16xMIC to 4xMIC, simvastatin was also able to act against mature biofilms, reducing cell viability and extra-polysaccharide production. In conclusion, simvastatin showed pronounced antimicrobial activity against S. aureus biofilms, reducing their formation and viability.  相似文献   

3.
The SaeRS two-component regulatory system of Staphylococcus aureus is known to affect the expression of many genes. The SaeS protein is the histidine kinase responsible for phosphorylation of the response regulator SaeR. In S. aureus Newman, the sae system is constitutively expressed due to a point mutation in saeS, relative to other S. aureus strains, which results in substitution of proline for leucine at amino acid 18. Strain Newman is unable to form a robust biofilm and we report here that the biofilm-deficient phenotype is due to the saeSP allele. Replacement of the Newman saeSP with saeSL, or deletion of saeRS, resulted in a biofilm-proficient phenotype. Newman culture supernatants were observed to inhibit biofilm formation by other S. aureus strains, but did not affect biofilm formation by S. epidermidis. Culture supernatants of Newman saeSL or Newman ΔsaeRS had no significant effect on biofilm formation. The inhibitory factor was inactivated by incubation with proteinase K, but survived heating, indicating that the inhibitory protein is heat-stable. The inhibitory protein was found to affect the attachment step in biofilm formation, but had no effect on preformed biofilms. Replacement of saeSL with saeSP in the biofilm-proficient S. aureus USA300 FPR3757 resulted in the loss of biofilm formation. Culture supernatants of USA300 FPR3757 saeSP, did not inhibit biofilm formation by other staphylococci, suggesting that the inhibitory factor is produced but not secreted in the mutant strain. A number of biochemical methods were utilized to isolate the inhibitory protein. Although a number of candidate proteins were identified, none were found to be the actual inhibitor. In an effort to reduce the number of potential inhibitory genes, RNA-Seq analyses were done with wild-type strain Newman and the saeSL and ΔsaeRS mutants. RNA-Seq results indicated that sae regulates many genes that may affect biofilm formation by Newman.  相似文献   

4.
Virulence of the nosocomial pathogen Staphylococcus epidermidis is crucially linked to formation of adherent biofilms on artificial surfaces. Biofilm assembly is significantly fostered by production of a bacteria derived extracellular matrix. However, the matrix composition, spatial organization, and relevance of specific molecular interactions for integration of bacterial cells into the multilayered biofilm community are not fully understood. Here we report on the function of novel 18 kDa Small basic protein (Sbp) that was isolated from S. epidermidis biofilm matrix preparations by an affinity chromatographic approach. Sbp accumulates within the biofilm matrix, being preferentially deposited at the biofilm–substratum interface. Analysis of Sbp-negative S. epidermidis mutants demonstrated the importance of Sbp for sustained colonization of abiotic surfaces, but also epithelial cells. In addition, Sbp promotes assembly of S. epidermidis cell aggregates and establishment of multilayered biofilms by influencing polysaccharide intercellular-adhesin (PIA) and accumulation associated protein (Aap) mediated intercellular aggregation. While inactivation of Sbp indirectly resulted in reduced PIA-synthesis and biofilm formation, Sbp serves as an essential ligand during Aap domain-B mediated biofilm accumulation. Our data support the conclusion that Sbp serves as an S. epidermidis biofilm scaffold protein that significantly contributes to key steps of surface colonization. Sbp-negative S. epidermidis mutants showed no attenuated virulence in a mouse catheter infection model. Nevertheless, the high prevalence of sbp in commensal and invasive S. epidermidis populations suggests that Sbp plays a significant role as a co-factor during both multi-factorial commensal colonization and infection of artificial surfaces.  相似文献   

5.
There is evidence that MRSA ST398 of animal origin is only capable of temporarily occupying the human nose, and it is therefore, often considered a poor human colonizer.We inoculated 16 healthy human volunteers with a mixture of the human MSSA strain 1036 (ST931, CC8) and the bovine MSSA strain 5062 (ST398, CC398), 7 weeks after a treatment with mupirocin and chlorhexidine-containing soap. Bacterial survival was studied by follow-up cultures over 21 days. The human strain 1036 was eliminated faster (median 14 days; range 2–21 days) than the bovine strain 5062 (median 21 days; range 7–21 days) but this difference was not significant (p = 0.065). The bacterial loads were significantly higher for the bovine strain on day 7 and day 21. 4/14 volunteers (28.6%) showed elimination of both strains within 21 days. Of the 10 remaining volunteers, 5 showed no differences in bacterial counts between both strains, and in the other 5 the ST398 strain far outnumbered the human S. aureus strain. Within the 21 days of follow-up, neither human strain 1036 nor bovine strain 5062 appeared to acquire or lose any mobile genetic elements. In conclusion, S. aureus ST398 strain 5062 is capable of adequately competing for a niche with a human strain and survives in the human nose for at least 21 days.  相似文献   

6.
Fibronectin-binding proteins (FnBP), FnBPA and FnBPB, are purported to be involved in biofilm formation of Staphylococcus aureus. This study was performed to find which of three consecutive N subdomains of the A domain in the FnBP is the key domain in FnBP. A total of 465 clinical isolates of S. aureus were examined for the biofilm forming capacity and the presence of N subdomains of FnBP. In the biofilm-positive strains, N2 and N3 subdomains of FnBPA, and N1 and N3 subdomains of FnBPB were significantly more prevalent. Multivariate logistic regression analysis of 246 biofilm-positive and 123 biofilm-negative strains identified only the FnBPB-N3 subdomain as an independent risk determinant predictive for biofilm-positive strains of S. aureus (Odds ratio [OR], 13.174; P<0.001). We also attempted to delete each of the fnbA-N2 and -N3 and fnbB-N1 and -N3 from S. aureus strain 8325-4 and examined the biofilm forming capacity in the derivative mutants. In agreement with the results of the multivariate regression analysis, deletion of either the fnbA-N2 or ?N3, or fnbB-N1 did not significantly diminish the capacity of strain 8325-4 to develop a biofilm, while deletion of the fnbB-N3 did. Therefore, it is suggested that the FnBPB-N3 subdomain of isotype I may be a key domain in FnBP which is responsible for the causing biofilm formation in S. aureus clinical isolates.  相似文献   

7.
A large collection of Staphylococcus aureus including a. 745 clinically significant isolates that were consecutively recovered from human infections during 2012–2013, b. 19 methicillin-susceptible (MSSA), randomly selected between 2006–2011 from our Staphylococcal Collection, c. 16 human colonizing isolates, and d. 10 strains from colonized animals was investigated for the presence and the molecular characteristics of CC398. The study was conducted in Thessaly, a rural region in Greece. The differentiation of livestock-associated clade from the human clade was based on canSNPs combined with the presence of the φ3 bacteriophage and the tetM, scn, sak, and chp genes. Among the 745 isolates, two MRSA (0.8% of total MRSA) and thirteen MSSA (2.65% of total MSSA) were found to belong to CC398, while, between MSSA of our Staphylococcal Collection, one CC398, isolated in 2010, was detected. One human individual, without prior contact with animals, was found to be colonized by a MSSA CC398. No CC398 was identified among the 10 S. aureus isolated from animals. Based on the molecular markers, the 17 CC398 strains were equally placed in the livestock-associated and in the human clades. This is the first report for the dissemination of S. aureus CC398 among humans in Greece.  相似文献   

8.
The aim of this investigation was to determine the persistence of biofilm-associated antibiotic resistance developed by methicillin-sensitive Staphylococcus aureus (MSSA), of different capsular types, during biofilm formation. Because of superiority of the tissue culture plate (TCP) over the Congo Red Agar (CRA) method for measuring biofilm formation, it was used to determine the persistence of the antibiotic resistance developed by the isolates in biofilms. The antibiotic resistance was found to persist for 3–4 wk post-propagation as planktonic subcultures. Interestingly, some strains even developed resistance to vancomycin and/or teicoplanin. However, no association of either biofilm formation or persistent antibiotic resistance with the major capsular phenotype was observed. These observations highlight the potential significance of (a) determining the antibiograms of S. aureus subcultured from biofilms developed in vitro using the TCP method as well as from planktonic cultures for formulation of an optimal therapeutic strategy, and (b) continuing to identify predominant non-capsular antigens contributing to biofilm formation, regardless of the capsular phenotype for the development of an effective potentially broad-spectrum vaccine for prevention of bovine mastitis caused by S. aureus.  相似文献   

9.
Clonal complex (CC) 398 methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) are associated with carriage and infection among animals and humans but only a single case of CC398 MRSA has been reported in the Republic of Ireland (ROI). The present study investigated the molecular epidemiology of CC398 MRSA (n = 22) and MSSA (n = 10) from animals and humans in the ROI from 2010–2014. Isolates underwent antimicrobial susceptibility testing, spa typing, DNA microarray profiling and PCR for CC398-associated resistance genes. All MRSA underwent SCCmec IV or V subtyping. Four distinct CC398-MRSA incidents were identified from (i) a man in a nursing home (spa type t011-SCCmec IVa, immune evasion complex (IEC) negative), (ii) a horse and veterinarian who had recently travelled to Belgium (t011-IVa, IEC positive), (iii) pigs (n = 9) and farm workers (n = 9) on two farms, one which had been restocked with German gilts and the other which was a finisher farm (t034-VT, IEC negative, 3/9 pigs; t011- VT, IEC negative, 6/9 pigs & 9/9 farm workers), and (iv) a child who had worked on a pig farm in the UK (t034-VT, IEC negative). Isolates also carried different combinations of multiple resistance genes including erm(A), erm(B), tet(K), tet(M) & tet(L), fexA, spc, dfrG, dfrK aacA-aphD and aadD further highlighting the presence of multiple CC398-MRSA strains. CC398 MSSA were recovered from pigs (n = 8) and humans (n = 2). CC398 MSSA transmission was identified among pigs but zoonotic transmission was not detected with animal and human isolates exhibiting clade-specific traits. This study highlights the importation and zoonotic spread of CC398 MRSA in the ROI and the spread of CC398 MSSA among pigs. Increased surveillance is warranted to prevent further CC398 MRSA importation and spread in a country that was considered CC398 MRSA free.  相似文献   

10.
Staphylococcus aureus and Staphylococcus epidermidis are two of the most significant opportunistic human pathogens, causing medical implant and nosocomial infections worldwide. These bacteria contain surface proteins that play crucial roles in multiple biological processes. It has become apparent that they have evolved a number of unique mechanisms by which they can immobilise proteins on their surface. Notably, a conserved cell membrane-anchored enzyme, sortase A (SrtA), can catalyse the covalent attachment of precursor bacterial cell wall-attached proteins to peptidoglycan. Considering its indispensable role in anchoring substrates to the cell wall and its effects on virulence, SrtA has attracted great attention. In this study, a 549-bp gene was cloned from a pathogenic S. epidermidis strain, YC-1, which shared high identity with srtA from other Staphylococcus spp. A mutant strain, YC-1ΔsrtA, was then constructed by allelic exchange mutagenesis. The direct survival rate assay suggested that YC-1ΔsrtA had a lower survival capacity in healthy mice blood compare with the wild-type strain, indicating that the deletion of srtA affects the virulence and infectious capacity of S. epidermidis YC-1. YC-1ΔsrtA was then administered via intraperitoneal injection and it provided a relative percent survival value of 72.7 % in mice against S. aureus TC-1 challenge. These findings demonstrate the possbility that YC-1ΔsrtA might be used as a live attenuated vaccine to produce cross-protection against S. aureus.  相似文献   

11.

Background

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most widespread and dangerous pathogens in healthcare settings. We carried out this case-control-control study at a tertiary care hospital in Guangzhou, China, to examine the antimicrobial susceptibility patterns, risk factors and clinical outcomes of MRSA infections.

Methods

A total of 57 MRSA patients, 116 methicillin-susceptible Staphylococcus aureus (MSSA) patients and 102 S. aureus negative patients were included in this study. We applied the disk diffusion method to compare the antimicrobial susceptibilities of 18 antibiotics between MRSA and MSSA isolates. Risk factors of MRSA infections were evaluated using univariate and multivariate logistic regression models. We used Cox proportional hazards models and logistic regression analysis to assess the hospital stay duration and fatality for patients with MRSA infections.

Results

The MRSA group had significantly higher resistance rates for most drugs tested compared with the MSSA group. Using MSSA patients as controls, the following independent risk factors of MRSA infections were identified: 3 or more prior hospitalizations (OR 2.8, 95% CI 1.3–5.8, P = 0.007), chronic obstructive pulmonary disease (OR 5.9, 95% CI 1.7–20.7, P = 0.006), and use of a respirator (OR 3.6, 95% CI 1.0–12.9, P = 0.046). With the S. aureus negative patients as controls, use of a respirator (OR 3.8, 95% CI 1.0–13.9, P = 0.047) and tracheal intubation (OR 8.2, 95% CI 1.5–45.1, P = 0.016) were significant risk factors for MRSA infections. MRSA patients had a longer hospital stay duration and higher fatality in comparison with those in the two control groups.

Conclusions

MRSA infections substantially increase hospital stay duration and fatality. Thus, MRSA infections are serious issues in this healthcare setting and should receive more attention from clinicians.  相似文献   

12.
13.
S. epidermidis is one of the leading causes of orthopaedic infections associated with biofilm formation on implant devices. Open fractures are at risk of S. epidermidis transcutaneous contamination leading to higher non-union development compared to closed fractures. Although the role of infection in delaying fracture healing is well recognized, no in vivo models investigated the impact of subclinical low-grade infections on bone repair and non-union. We hypothesized that the non-union rate is directly related to the load of this commonly retrieved pathogen and that a low-grade contamination delays the fracture healing without clinically detectable infection. Rat femurs were osteotomized and stabilized with plates. Fractures were infected with a characterized clinical-derived methicillin-resistant S. epidermidis (103, 105, 108 colony forming units) and compared to uninfected controls. After 56 days, bone healing and osteomyelitis were clinically assessed and further evaluated by micro-CT, microbiological and histological analyses. The biofilm formation was visualized by scanning electron microscopy. The control group showed no signs of infection and a complete bone healing. The 103 group displayed variable response to infection with a 67% of altered bone healing and positive bacterial cultures, despite no clinical signs of infection present. The 105 and 108 groups showed severe signs of osteomyelitis and a non-union rate of 83–100%, respectively. The cortical bone reaction related to the periosteal elevation in the control group and the metal scattering detected by micro-CT represented limitations of this study. Our model showed that an intra-operative low-grade S. epidermidis contamination might prevent the bone healing, even in the absence of infectious signs. Our findings also pointed out a dose-dependent effect between the S. epidermidis inoculum and non-union rate. This pilot study identifies a relevant preclinical model to assess the role of subclinical infections in orthopaedic and trauma surgery and to test specifically designed diagnostic, prevention and therapeutic strategies.  相似文献   

14.
Bacterial species comprise related genotypes that can display divergent phenotypes with important clinical implications. Staphylococcus epidermidis is a common cause of nosocomial infections and, critical to its pathogenesis, is its ability to adhere and form biofilms on surfaces, thereby moderating the effect of the host’s immune response and antibiotics. Commensal S. epidermidis populations are thought to differ from those associated with disease in factors involved in adhesion and biofilm accumulation. We quantified the differences in biofilm formation in 98 S. epidermidis isolates from various sources, and investigated population structure based on ribosomal multilocus typing (rMLST) and the presence/absence of genes involved in adhesion and biofilm formation. All isolates were able to adhere and form biofilms in in vitro growth assays and confocal microscopy allowed classification into 5 biofilm morphotypes based on their thickness, biovolume and roughness. Phylogenetic reconstruction grouped isolates into three separate clades, with the isolates in the main disease associated clade displaying diversity in morphotype. Of the biofilm morphology characteristics, only biofilm thickness had a significant association with clade distribution. The distribution of some known adhesion-associated genes (aap and sesE) among isolates showed a significant association with the species clonal frame. These data challenge the assumption that biofilm-associated genes, such as those on the ica operon, are genetic markers for less invasive S. epidermidis isolates, and suggest that phenotypic characteristics, such as adhesion and biofilm formation, are not fixed by clonal descent but are influenced by the presence of various genes that are mobile among lineages.  相似文献   

15.

Background

Recently, a clone of MRSA with clonal complex 398 (CC398) has emerged that is related to an extensive reservoir in animals, especially pigs and veal calves. It has been reported previously that methicillin-susceptible variants of CC398 circulate among humans at low frequency, and these have been isolated in a few cases of bloodstream infections (BSI). The purpose of this study was to determine the prevalence of S. aureus CC398 in blood cultures taken from patients in a geographic area with a high density of pigs.

Methodology/Principal Findings

In total, 612 consecutive episodes of S. aureus BSI diagnosed before and during the emergence of CC398 were included. Three strains (2 MSSA and 1 MRSA) that were isolated from bacteremic patients between 2010–2011 were positive in a CC398 specific PCR. There was a marked increase in prevalence of S. aureus CC398 BSI isolated between 2010–2011 compared to the combined collections that were isolated between 1996–1998 and 2002–2005 (3/157, 1.9% vs. 0/455, 0.0%; p = 0.017).

Conclusions/Significance

In conclusion, in an area with a relative high density of pigs, S. aureus CC398 was found as a cause of BSI in humans only recently. This indicates that S. aureus CC398 is able to cause invasive infections in humans and that the prevalence is rising. Careful monitoring of the evolution and epidemiology of S. aureus CC398 in animals and humans is therefore important.  相似文献   

16.
Staphylococcus aureus and Staphylococcus epidermidis are major human pathogens of increasing importance due to the dissemination of antibiotic-resistant strains. Evidence suggests that the ability to form matrix-encased biofilms contributes to the pathogenesis of S. aureus and S. epidermidis. In this study, we investigated the functions of two staphylococcal biofilm matrix polymers: poly-N-acetylglucosamine surface polysaccharide (PNAG) and extracellular DNA (ecDNA). We measured the ability of a PNAG-degrading enzyme (dispersin B) and DNase I to inhibit biofilm formation, detach preformed biofilms, and sensitize biofilms to killing by the cationic detergent cetylpyridinium chloride (CPC) in a 96-well microtiter plate assay. When added to growth medium, both dispersin B and DNase I inhibited biofilm formation by both S. aureus and S. epidermidis. Dispersin B detached preformed S. epidermidis biofilms but not S. aureus biofilms, whereas DNase I detached S. aureus biofilms but not S. epidermidis biofilms. Similarly, dispersin B sensitized S. epidermidis biofilms to CPC killing, whereas DNase I sensitized S. aureus biofilms to CPC killing. We concluded that PNAG and ecDNA play fundamentally different structural roles in S. aureus and S. epidermidis biofilms.  相似文献   

17.

Background

Inhibition and eradication of Staphylococcus aureus biofilms with conventional antibiotic is difficult, and the treatment is further complicated by the rise of antibiotic resistance among staphylococci. Consequently, there is a need for novel antimicrobials that can treat biofilm-related infections and decrease antibiotics burden. Natural compounds such as eugenol with anti-microbial properties are attractive agents that could reduce the use of conventional antibiotics. In this study we evaluated the effect of eugenol on MRSA and MSSA biofilms in vitro and bacterial colonization in vivo.

Methods and Results

Effect of eugenol on in vitro biofilm and in vivo colonization were studied using microtiter plate assay and otitis media-rat model respectively. The architecture of in vitro biofilms and in vivo colonization of bacteria was viewed with SEM. Real-time RT-PCR was used to study gene expression. Check board method was used to study the synergistic effects of eugenol and carvacrol on established biofilms. Eugenol significantly inhibited biofilms growth of MRSA and MSSA in vitro in a concentration-dependent manner. Eugenol at MIC or 2×MIC effectively eradicated the pre-established biofilms of MRSA and MSSA clinical strains. In vivo, sub-MIC of eugenol significantly decreased 88% S. aureus colonization in rat middle ear. Eugenol was observed to damage the cell-membrane and cause a leakage of the cell contents. At sub-inhibitory concentration, it decreases the expression of biofilm-and enterotoxin-related genes. Eugenol showed a synergistic effect with carvacrol on the eradication of pre-established biofilms.

Conclusion/Major Finding

This study demonstrated that eugenol exhibits notable activity against MRSA and MSSA clinical strains biofilms. Eugenol inhibited biofilm formation, disrupted the cell-to-cell connections, detached the existing biofilms, and killed the bacteria in biofilms of both MRSA and MSSA with equal effectiveness. Therefore, eugenol may be used to control or eradicate S. aureus biofilm-related infections.  相似文献   

18.
Staphylococcus aureus is an important pathogen that forms biofilms on the surfaces of medical implants. Biofilm formation by S. aureus is associated with the production of poly N-acetylglucosamine (PNAG), also referred to as polysaccharide intercellular adhesin (PIA), which mediates bacterial adhesion, leading to the accumulation of bacteria on solid surfaces. This study shows that the ability of S. aureus SA113 to adhere to nasal epithelial cells is reduced after the deletion of the ica operon, which contains genes encoding PIA/PNAG synthesis. However, this ability is restored after a plasmid carrying the entire ica operon is transformed into the mutant strain, S. aureus SA113Δica, showing that the synthesis of PIA/PNAG is important for adhesion to epithelial cells. Additionally, S. carnosus TM300, which does not produce PIA/PNAG, forms a biofilm and adheres to epithelial cells after the bacteria are transformed with a PIA/PNAG-expressing plasmid, pTXicaADBC. The adhesion of S. carnosus TM300 to epithelial cells is also demonstrated by adding purified exopolysaccharide (EPS), which contains PIA/PNAG, to the bacteria. In addition, using a mouse model, we find that the abscess lesions and bacterial burden in lung tissues is higher in mice infected with S. aureus SA113 than in those infected with the mutant strain, S. aureus SA113Δica. The results indicate that PIA/PNAG promotes the adhesion of S. aureus to human nasal epithelial cells and lung infections in a mouse model. This study elucidates a mechanism that is important to the pathogenesis of S. aureus infections.  相似文献   

19.

Background

Staphylococcus epidermidis orthopedic device infections are caused by direct inoculation of commensal flora during surgery and remain rare, although S. epidermidis carriage is likely universal. We wondered whether S. epidermidis orthopedic device infection strains might constitute a sub-population of commensal isolates with specific virulence ability. Biofilm formation and invasion of osteoblasts by S. aureus contribute to bone and joint infection recurrence by protecting bacteria from the host-immune system and most antibiotics. We aimed to determine whether S. epidermidis orthopedic device infection isolates could be distinguished from commensal strains by their ability to invade osteoblasts and form biofilms.

Materials and Methods

Orthopedic device infection S. epidermidis strains (n = 15) were compared to nasal carriage isolates (n = 22). Osteoblast invasion was evaluated in an ex vivo infection model using MG63 osteoblastic cells co-cultured for 2 hours with bacteria. Adhesion of S. epidermidis to osteoblasts was explored by a flow cytometric approach, and internalized bacteria were quantified by plating cell lysates after selective killing of extra-cellular bacteria with gentamicin. Early and mature biofilm formations were evaluated by a crystal violet microtitration plate assay and the Biofilm Ring Test method.

Results

No difference was observed between commensal and infective strains in their ability to invade osteoblasts (internalization rate 308+/−631 and 347+/−431 CFU/well, respectively). This low internalization rate correlated with a low ability to adhere to osteoblasts. No difference was observed for biofilm formation between the two groups.

Conclusion

Osteoblast invasion and biofilm formation levels failed to distinguish S. epidermidis orthopedic device infection strains from commensal isolates. This study provides the first assessment of the interaction between S. epidermidis strains isolated from orthopedic device infections and osteoblasts, and suggests that bone cell invasion is not a major pathophysiological mechanism in S. epidermidis orthopedic device infections, contrary to what is observed for S. aureus.  相似文献   

20.
Polymicrobial biofilms are an understudied and a clinically relevant problem. This study evaluates the interaction between C. albicans, and methicillin- susceptible (MSSA) and resistant (MRSA) S. aureus growing in single- and dual-species biofilms. Single and dual species adhesion (90 min) and biofilms (12, 24, and 48 h) were evaluated by complementary methods: counting colony-forming units (CFU mL-1), XTT-reduction, and crystal violet staining (CV). The secretion of hydrolytic enzymes by the 48 h biofilms was also evaluated using fluorimetric kits. Scanning electron microscopy (SEM) was used to assess biofilm structure. The results from quantification assays were compared using two-way ANOVAs with Tukey post-hoc tests, while data from enzymatic activities were analyzed by one-way Welch-ANOVA followed by Games-Howell post hoc test (α = 0.05). C. albicans, MSSA and MRSA were able to adhere and to form biofilm in both single or mixed cultures. In general, all microorganisms in both growth conditions showed a gradual increase in the number of cells and metabolic activity over time, reaching peak values between 12 h and 48 h (ρ<0.05). C. albicans single- and dual-biofilms had significantly higher total biomass values (ρ<0.05) than single biofilms of bacteria. Except for single MRSA biofilms, all microorganisms in both growth conditions secreted proteinase and phospholipase-C. SEM images revealed extensive adherence of bacteria to hyphal elements of C. albicans. C. albicans, MSSA, and MRSA can co-exist in biofilms without antagonism and in an apparent synergistic effect, with bacteria cells preferentially associated to C. albicans hyphal forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号