首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Diet selection in mammalian herbivores is thought to be mainly influenced by intrinsic factors such as nutrients and plant secondary compounds, yet extrinsic factors like ambient temperature may also play a role. In particular, warmer ambient temperatures could enhance the toxicity of plant defence compounds through decreased liver metabolism of herbivores. Temperature-dependent toxicity has been documented in pharmacology and agriculture science but not in wild mammalian herbivores. Here, we investigated how ambient temperature affects liver metabolism in the desert woodrat, Neotoma lepida. Woodrats (n = 21) were acclimated for 30 days to two ambient temperatures (cool = 21°C, warm = 29°C). In a second experiment, the temperature exposure was reduced to 3.5 h. After temperature treatments, animals were given a hypnotic agent and clearance time of the agent was estimated from the duration of the hypnotic state. The average clearance time of the agent in the long acclimation experiment was 45% longer for animals acclimated to 29°C compared with 21°C. Similarly, after the short exposure experiment, woodrats at 29°C had clearance times 26% longer compared with 21°C. Our results are consistent with the hypothesis that liver function is reduced at warmer environmental temperatures and may provide a physiological mechanism through which climate change affects herbivorous mammals.  相似文献   

2.
Sorensen JS  Heward E  Dearing MD 《Oecologia》2005,146(3):415-422
Mammalian herbivores are predicted to regulate concentrations of ingested plant secondary metabolites (PSMs) in the blood by modifying the size and frequency of feeding bouts. It is theorized that meal size is limited by a maximum tolerable concentration of PSMs in the blood, such that meal size is predicted to decrease as PSM concentration increases. We investigated the relationship between PSM concentration in the diet and feeding patterns in the herbivorous desert woodrat (Neotoma lepida) fed diets containing phenolic resin extracted from creosote bush (Larrea tridentata). Total daily intake, meal size and feeding frequency were quantified by observing the foraging behavior of woodrats on diets containing increasing concentrations of creosote resin. Desert woodrats reduced meal size as resin concentration in the diet increased, resulting in an overall reduction in daily intake and regulation of resin intake. Moreover, desert woodrats were able to detect resin concentrations in the diet and regulate the intake of resin very rapidly. We suggest that the immediate and sustained ability to detect and regulate the intake of resin concentrations during each foraging bout provides a behavioral mechanism to regulate blood concentrations of resin and allows desert woodrats to make “wise” foraging decisions.  相似文献   

3.
Plants integrate seasonal cues such as temperature and day length to optimally adjust their flowering time to the environment. Compared to the control of flowering before and after winter by the vernalization and day length pathways, mechanisms that delay or promote flowering during a transient cool or warm period, especially during spring, are less well understood. Due to global warming, understanding this ambient temperature pathway has gained increasing importance. In Arabidopsis thaliana, FLOWERING LOCUS M (FLM) is a critical flowering regulator of the ambient temperature pathway. FLM is alternatively spliced in a temperature-dependent manner and the two predominant splice variants, FLM-ß and FLM-δ, can repress and activate flowering in the genetic background of the A. thaliana reference accession Columbia-0. The relevance of this regulatory mechanism for the environmental adaptation across the entire range of the species is, however, unknown. Here, we identify insertion polymorphisms in the first intron of FLM as causative for accelerated flowering in many natural A. thaliana accessions, especially in cool (15°C) temperatures. We present evidence for a potential adaptive role of this structural variation and link it specifically to changes in the abundance of FLM-ß. Our results may allow predicting flowering in response to ambient temperatures in the Brassicaceae.  相似文献   

4.
Kohl KD  Dearing MD 《Ecology letters》2012,15(9):1008-1015
For decades, ecologists have hypothesised that exposure to plant secondary compounds (PSCs) modifies herbivore‐associated microbial community composition. This notion has not been critically evaluated in wild mammalian herbivores on evolutionary timescales. We investigated responses of the microbial communities of two woodrat species (Neotoma bryanti and N. lepida). For each species, we compared experienced populations that independently converged to feed on the same toxic plant (creosote bush, Larrea tridentata) to naïve populations with no exposure to creosote toxins. The addition of dietary PSCs significantly altered gut microbial community structure, and the response was dependent on previous experience. Microbial diversity and relative abundances of several dominant phyla increased in experienced woodrats in response to PSCs; however, opposite effects were observed in naïve woodrats. These differential responses were convergent in experienced populations of both species. We hypothesise that adaptation of the foregut microbiota to creosote PSCs in experienced woodrats drives this differential response.  相似文献   

5.
Bacterial wilt, caused by members of the heterogenous Ralstonia solanacearum species complex, is an economically important vascular disease affecting many crops. Human activity has widely disseminated R. solanacearum strains, increasing their global agricultural impact. However, tropical highland race 3 biovar 2 (R3bv2) strains do not cause disease in tropical lowlands, even though they are virulent at warm temperatures. We tested the hypothesis that differences in temperature adaptation and competitive fitness explain the uneven geographic distribution of R. solanacearum strains. Using three phylogenetically and ecologically distinct strains, we measured competitive fitness at two temperatures following paired-strain inoculations of their shared host, tomato. Lowland tropical strain GMI1000 was only weakly virulent on tomato under temperate conditions (24°C for day and 19°C for night [24/19°C]), but highland tropical R3bv2 strain UW551 and U.S. warm temperate strain K60 were highly virulent at both 24/19°C and 28°C. Strain K60 was significantly more competitive than both GMI1000 and UW551 in tomato rhizospheres and stems at 28°C, and GMI1000 also outcompeted UW551 at 28°C. The results were reversed at cooler temperatures, at which highland strain UW551 generally outcompeted GMI1000 and K60 in planta. The superior competitive index of UW551 at 24/19°C suggests that adaptation to cool temperatures could explain why only R3bv2 strains threaten highland agriculture. Strains K60 and GMI1000 each produced different bacteriocins that inhibited growth of UW551 in culture. Such interstrain inhibition could explain why R3bv2 strains do not cause disease in tropical lowlands.  相似文献   

6.
Burke JJ 《Plant physiology》1990,93(2):652-656
The relationship between the thermal dependence of the reappearance of chlorophyll variable fluorescence following illumination and temperature dependence of the apparent Michaelis constant (Km) of NADH hydroxypyruvate reductase for NADH was investigated in cool and warm season plant species. Brancker SF-20 and SF-30 fluorometers were used to evaluate induced fluorescence transients from detached leaves of wheat (Triticum aestivum L. cv TAM-101), cotton (Gossypium hirsutum L. cv Paymaster 145), tomato (Lycopersicon esculentum cv Del Oro), bell pepper (Capsicum annuum L. cv California Wonder), and petunia (Petunia hybrida cv. Red Sail). Following an illumination period at 25°C, the reappearance of variable fluorescence during a dark incubation was determined at 5°C intervals from 15°C to 45°C. Variable fluorescence recovery was normally distributed with the maximum recovery observed at 20°C in wheat, 30°C in cotton, 20°C to 25°C in tomato, 30 to 35°C in bell pepper and 25°C in petunia. Comparison of the thermal response of fluorescence recovery with the temperature sensitivity of the apparent Km of hydroxypyruvate reductase for NADH showed that the range of temperatures providing fluorescence recovery corresponded with those temperatures providing the minimum apparent Km values (viz. the thermal kinetic window).  相似文献   

7.
Cotton fibers (Gossypium hirsutum L.) developing in vitro responded to cyclic temperature change similarly to those of field-grown plants under diumal temperature fluctuations. Absolute temperatures and rates of temperature change were similar under both conditions. In vitro fibers exhibited a “growth ring” for each time the temperature cycled to 22 or 15°C. Rings were rarely detected when the low point was 28°C. The rings seemed to correspond to alternating regions of high and low cellulose accumulation. Fibers developed in vitro under 34°C/22°C cycling developed similarly to constant 34°C controls, but 34°C/22°C and 34°C/15°C cycling caused delayed onset and prolonged periods of elongation and secondary wall thickening. Control fiber length and weight were finally achieved under 34°C/22°C cycling, but both parameters were reduced at the end of the experiment under 34°C/15°C cycling. Fibers developed under all conditions had equal bundle tensile strength. These results demonstrate that: (a) cool temperature effects on fiber development are at least partly fiber/ovule-specific events; they do not depend on whole-plant physiology; and (b) cultured ovules are valid models for research on the regulation of the field cool temperature response.  相似文献   

8.
Thermotoga maritima (T. maritima) is a typical thermophile, and its proteome response to environmental temperature changes has yet to be explored. This study aims to uncover the temperature-dependent proteins of T. maritima using comparative proteomic approach. T. maritima was cultured under four temperatures, 60°C, 70°C, 80°C and 90°C, and the bacterial proteins were extracted and electrophoresed in two-dimensional mode. After analysis of gel images, a total of 224 spots, either cytoplasm or membrane, were defined as temperature-dependent. Of these spots, 75 unique bacterial proteins were identified using MALDI TOF/TOF MS. As is well known, the chaperone proteins such as heat shock protein 60 and elongation factor Tu, were up-regulated in abundance due to increased temperature. However, several temperature-dependent proteins of T. maritima responded very differently when compared to responses of the thermophile T. tengcongensis. Intriguingly, a number of proteins involved in central carbohydrate metabolism were significantly up-regulated at higher temperature. Their corresponding mRNA levels were elevated accordingly. The increase in abundance of several key enzymes indicates that a number of central carbohydrate metabolism pathways of T. maritima are activated at higher temperatures.  相似文献   

9.
Fatty acid composition of old and new roots was determined for soybeans (Glycine max [L.] Merr. cv Ransom) at root-zone temperatures of 14, 18, and 22°C during a 26-day period. New roots had a greater concentration of polyunsaturated fatty acids than old roots. The ratio of polyunsaturated to saturated fatty acid concentration in new roots exposed to 14 and 18°C peaked at 16 days and declined, while the corresponding ratio in old roots increased throughout the treatment period. Apparently the response of fatty acid composition in old and new roots to low temperature was mediated by tissue aging or differentiation. These findings were contrary to the concept that modifications in fatty acid composition remain constant at lower temperatures.

The function of root tissues exposed to lower temperature was evaluated with respect to the ability of the root systems to absorb NO3. Over the relatively long periods of exposure, the ability of whole root systems to absorb NO3 was similar at cool and warm temperatures. The effect of cool temperature on functioning of roots appeared to involve reductions in the rates of initiation and differentiation of young root tissues rather than changes in membrane permeability related to alteration of fatty acid composition.

  相似文献   

10.
The whitethroat woodrat (Neotoma albigula) eats juniper (Juniperus monosperma), but the amount of juniper in its diet varies seasonally. We tested whether changes in juniper consumption are due to changes in ambient temperature and what the physiological consequences of consuming plant secondary compounds (PSCs) at different ambient temperatures might be. Woodrats were acclimated to either 20 degrees C or 28 degrees C. Later, they were given two diets to choose from (50% juniper and a nontoxic control) for 7 d. Food intake, resting metabolic rate (RMR), and body temperature (T(b)) were measured over the last 2 d. Woodrats at 28 degrees C ate significantly less juniper, both proportionally and absolutely, than woodrats at 20 degrees C. RMRs were higher for woodrats consuming juniper regardless of ambient temperature, and T(b) was higher for woodrats consuming juniper at 28 degrees C than for woodrats eating control diet at 28 degrees C. Thus, juniper consumption by N. albigula is influenced by ambient temperature. We conclude that juniper may influence thermoregulation in N. albigula in ways that are helpful at low temperatures but harmful at warmer temperatures in that juniper PSCs may be more toxic at warmer temperatures. The results suggest that increases in ambient temperature associated with climate change could significantly influence foraging behavior of mammalian herbivores.  相似文献   

11.
12.
The temperature boundary for phase separation of membrane lipids extracted from Nerium oleander leaves was determined by analysis of spin label motion using electron spin resonance spectroscopy and by analysis of polarization of fluorescence from the probe, trans-parinaric acid. A discontinuity of the temperature coefficient for spin label motion, and for trans-parinaric acid fluorescence was detected at 7°C and −3°C with membrane lipids from plants grown at 45°C/32°C (day/night) and 20°C/15°C, respectively. This change was associated with a sharp increase in the polarization of fluorescence from trans-parinaric acid indicating that significant domains of solid lipid form below 7°C or −3°C in these preparations but not above these temperatures. In addition, spin label motion indicated that the lipids of plants grown at low temperatures are more fluid than those of plants grown at higher temperatures.

A change in the molecular ordering of lipids was also detected by analysis of the separation of the hyperfine extrema of electron spin resonance spectra. This occurred at 2°C and 33°C with lipids from the high and low temperature grown plants, respectively. According to previous interpretation of spin label data the change at 29°C (or 33°C) would have indicated the temperature for the initiation of the phase separation process, and the change at 7°C (or −3°C) its completion. Because of the present results, however, this interpretation needs to be modified.

Differences in the physical properties of membrane lipids of plants grown at the hot or cool temperatures correlate with differences in the physiological characteristics of plants and with changes in the fatty acid composition of the corresponding membrane lipids. Environmentally induced modification of membrane lipids could thus account, in part, for the apparently beneficial adjustments of physiological properties of this plant when grown in these regimes.

  相似文献   

13.
14.
The response of maize (Zea mays L.) protoplasts to high temperature stress was investigated. After isolation and electroporation, protoplasts were preincubated for 12 hours at 26°C then incubated for 6 hours at elevated temperatures. The pattern of polypeptides synthesized by these protoplasts during the last hour was monitored by in vivo labeling with 35S-methionine. Incubation at 40° and 42°C resulted in the synthesis of polypeptides not detectable at 26°C. Introduction of a chimeric maize heat shock protein 70 promoter-chloramphenicol acetyltransferase coding region gene into protoplasts via electroporation resulted in the temperature-dependent induction of chloramphenicol acetyltransferase activity with maximal activity at 40°C. In the same protoplasts, a second chimeric gene, in which the firefly luciferase coding region was under the control of the 35S promoter from cauliflower mosaic virus, did not show an increase in expression after incubation at higher temperatures. Maize protoplasts provide a system to study molecular responses to high temperature stress.  相似文献   

15.
The effects of temperature on rates of cellulose synthesis, respiration, and long-term glucose uptake were investigated using cultured cotton ovules (Gossypium hirsutum L. cv Acala SJ1). Ovules were cultured either at constant 34°C or under cycling temperatures (12 h at 34°C/12 h at 15-40°C). Rates of respiration and cellulose synthesis at various temperatures were determined on day 21 during the stage of secondary wall synthesis by feeding cultured ovules with [14C]glucose. Respiration increased between 18 and approximately 34°C, then remained constant up to 40°C. In contrast, the rate of cellulose synthesis increased above 18°C, reached a plateau between about 28 and 37°C, and then decreased at 40°C. Therefore, the optimum temperature for rapid and metabolically efficient cellulose synthesis in Acala SJ1 is near 28°C. In ovules cycled to 15°C, respiration recovered to the control rate immediately upon rewarming to 34°C, but the rate of cellulose synthesis did not fully recover for several hours. These data indicate that cellulose synthesis and respiration respond differently to cool temperatures. The long-term uptake of glucose, which is the carbon source in the culture medium, increased as the low temperature in the cycle increased between 15 and 28°C. However, glucose uptake did not increase in cultures grown constantly at 34°C compared to those cycled at 34/28°C. These observations are consistent with previous observations on the responses of fiber elongation and weight gain to cycling temperatures in vitro and in the field.  相似文献   

16.
We report that two species of mouse-tailed bats (Rhinopoma microphyllum and R. cystops) hibernate for five months during winter in geothermally heated caves with stable high temperature (20°C). While hibernating, these bats do not feed or drink, even on warm nights when other bat species are active. We used thermo-sensitive transmitters to measure the bats’ skin temperature in the natural hibernacula and open flow respirometry to measure torpid metabolic rate at different ambient temperatures (Ta, 16–35°C) and evaporative water loss (EWL) in the laboratory. Bats average skin temperature at the natural hibernacula was 21.7 ± 0.8°C, and no arousals were recorded. Both species reached the lowest metabolic rates around natural hibernacula temperatures (20°C, average of 0.14 ± 0.01 and 0.16 ± 0.04 ml O2 g−1 h−1 for R. microphyllum and R. cystops, respectively) and aroused from torpor when Ta fell below 16°C. During torpor the bats performed long apnoeas (14 ± 1.6 and 16 ± 1.5 min, respectively) and had a very low EWL. We hypothesize that the particular diet of these bats is an adaptation to hibernation at high temperatures and that caves featuring high temperature and humidity during winter enable these species to survive this season on the northern edge of their world distribution.  相似文献   

17.
During alcoholic fermentation, Saccharomyces cerevisiae is exposed to a host of environmental and physiological stresses. Extremes of fermentation temperature have previously been demonstrated to induce fermentation arrest under growth conditions that would otherwise result in complete sugar utilization at “normal” temperatures and nutrient levels. Fermentations were carried out at 15°C, 25°C, and 35°C in a defined high-sugar medium using three Saccharomyces cerevisiae strains with diverse fermentation characteristics. The lipid composition of these strains was analyzed at two fermentation stages, when ethanol levels were low early in stationary phase and in late stationary phase at high ethanol concentrations. Several lipids exhibited dramatic differences in membrane concentration in a temperature-dependent manner. Principal component analysis (PCA) was used as a tool to elucidate correlations between specific lipid species and fermentation temperature for each yeast strain. Fermentations carried out at 35°C exhibited very high concentrations of several phosphatidylinositol species, whereas at 15°C these yeast strains exhibited higher levels of phosphatidylethanolamine and phosphatidylcholine species with medium-chain fatty acids. Furthermore, membrane concentrations of ergosterol were highest in the yeast strain that experienced stuck fermentations at all three temperatures. Fluorescence anisotropy measurements of yeast cell membrane fluidity during fermentation were carried out using the lipophilic fluorophore diphenylhexatriene. These measurements demonstrate that the changes in the lipid composition of these yeast strains across the range of fermentation temperatures used in this study did not significantly affect cell membrane fluidity. However, the results from this study indicate that fermenting S. cerevisiae modulates its membrane lipid composition in a temperature-dependent manner.  相似文献   

18.
Anaerobic oxidation of methane (AOM) was investigated in hydrothermal sediments of Guaymas Basin based on δ13C signatures of CH4, dissolved inorganic carbon and porewater concentration profiles of CH4 and sulfate. Cool, warm and hot in-situ temperature regimes (15–20 °C, 30–35 °C and 70–95 °C) were selected from hydrothermal locations in Guaymas Basin to compare AOM geochemistry and 16S ribosomal RNA (rRNA), mcrA and dsrAB genes of the microbial communities. 16S rRNA gene clone libraries from the cool and hot AOM cores yielded similar archaeal types such as Miscellaneous Crenarchaeotal Group, Thermoproteales and anaerobic methane-oxidizing archaea (ANME)-1; some of the ANME-1 archaea formed a separate 16S rRNA lineage that at present seems to be limited to Guaymas Basin. Congruent results were obtained by mcrA gene analysis. The warm AOM core, chemically distinct by lower porewater sulfide concentrations, hosted a different archaeal community dominated by the two deep subsurface archaeal lineages Marine Benthic Group D and Marine Benthic Group B, and by members of the Methanosarcinales including ANME-2 archaea. This distinct composition of the methane-cycling archaeal community in the warm AOM core was confirmed by mcrA gene analysis. Functional genes of sulfate-reducing bacteria and archaea, dsrAB, showed more overlap between all cores, regardless of the core temperature. 16S rRNA gene clone libraries with Euryarchaeota-specific primers detected members of the Archaeoglobus clade in the cool and hot cores. A V6-tag high-throughput sequencing survey generally supported the clone library results while providing high-resolution detail on archaeal and bacterial community structure. These results indicate that AOM and the responsible archaeal communities persist over a wide temperature range.  相似文献   

19.
The postinduction period of Oenothera biennis L. seed germination was examined by temperature treatments. For all experiments, seeds received a standard 24 hour/24°C preinduction period and 12 hour/32°C photoinduction period. Germination is inhibited by postinduction temperatures above 32°C. When seeds are briefly incubated at 44°C and then transferred to 28°C, they germinate at a much lower percentage than 28°C controls. When thermally inhibited seeds are placed in the dark at 28°C for 20 hours, they can be promoted to germinate by a single pulse of red light. Seeds incubated at 12°C or below immediately after photoinduction enter a lag period in which they germinate slowly or not at all for a long time and then resume germination. The length of the lag period is exponentially related to the postinduction temperature. When seeds are incubated at a low temperature and then transferred to a warm temperature, they germinate much more rapidly than seeds not incubated at a low temperature. A model is proposed which is consistent with these and additional results. In the model, a germination promoter is irreversibly formed from a precursor and the synthesis of the precursor is favored at low temperatures and its degradation is favored at high temperatures.  相似文献   

20.
Plant secondary compounds are recognized deterrents and toxins to a variety of herbivores. The effect of secondary compounds on water balance of herbivores is virtually unexplored, yet secondary compounds could potentially cause a decrease in an animal's ability to maintain water balance. We investigated the effects of secondary compounds, alpha-pinene and creosote resin, on water balance in three species of herbivorous woodrats (Neotoma stephensi, N. albigula, N. lepida). In separate experiments, we measured the effect of these secondary compounds on voluntary water consumption, urine volume and urine osmolarity. In both experiments, water intake and urine volume increased and urine osmolarity decreased compared to controls. Water balance of specialist or experienced woodrats was less affected than generalists and woodrats with less prior experience with particular secondary compounds. Our results suggest that secondary compounds have diuretic-like effects on herbivores. Woodrats live in arid habitats with limited access to freestanding water; thus an increase in water requirements may have profound consequences on foraging behavior and fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号