首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to further characterize the Sertoli cell state of differentiation, we investigated the expression of connexin 43 (cx43) protein in the testis of adult men both with normal spermatogenesis and associated with spermatogenic impairment, since cx43 is first expressed during puberty. Cx43 protein was found as a single 43-kDa band on western blots of extracts of normal human testicular material. Cx43 immunoreactivity was generally present between Leydig cells. Within the normal seminiferous epithelium cx43 immunoreactivity was localized between adjacent Sertoli cells, except at stages II and III of the seminiferous epithelial cycle when primary spermatocytes cross from the basal to the adluminal compartment suggesting a stage-dependent Sertoli cell function. While testes with hypospermatogenesis and spermatogenic arrest at the level of round spermatids or spermatocytes revealed a staining pattern similar to that of normal adult testis, the seminiferous tubules showing spermatogenic arrest at the level of spermatogonia and Sertoli-cell-only syndrome were completely immunonegative. We therefore assume that severe spermatogenic impairment is associated with a population of Sertoli cells exhibiting a stage of differentiation deficiency. Accepted: 10 June 1999  相似文献   

2.
We have found that the rat testis contains a cell surface galactosyl receptor that is antigenically related to the minor species of rat liver asialoglycoprotein receptor (ASGP-r) and has binding affinity for galactose coupled to agarose. In immunoblotting experiments, rat testis galactosyl receptor (RTG-r) is recognized by antiserum raised against the minor ASGP-r species of rat liver (designated rat hepatic lectin-2/3, RHL-2/3). Antiserum raised against the major species RHL-1 does not recognize an antigenic protein equivalent to RTG-r. Triton X-100-extracted rat liver and testes preparations fractionated by affinity chromatography on galactose-agarose and resolved by SDS-PAGE under reducing conditions, show that rat liver contains both the major (RHL-1) and minor (RHL-2/3) ASGP-r species whereas rat testis displays only a receptor species comigrating with RHL-2/3. RTG-r was present throughout testicular development. The receptor was found in seminiferous tubules, cultured Sertoli and spermatogenic cells, and epididymal sperm. Indirect immunofluorescent studies show RHL-2/3-like immunoreactivity on the surface of Sertoli cell, meiotic prophase spermatocytes, spermatids, and epididymal sperm. In spermatids and sperm, the immunoreactivity is restricted to the plasma membrane overlying the dorsal portion of the head. Because of RTG-r has galactose binding affinity, is present on surfaces of Sertoli and developing meiotic and postmeiotic spermatogenic cells, and overlies a region of the intact acrosome on epididymal sperm, RTG-r may have a role in spermatogenesis and in events leading to sperm-egg recognition.  相似文献   

3.
Summary A light and electron microscope immunocytochemical study and Western blotting analysis has been performed on intermediate filaments (vimentin, desmin and cytokeratins) in the testis of the teleost fish Gambusia affinis holbrooki. An immunoreaction to vimentin was observed in the epithelium of the efferent ducts, testicular canal and their surrounding peritubular cells. Positive vimentin immunostaining was also observed in the cells located around seminiferous tubules (boundary cells), Leydig cells, interstitial fibroblasts, chromatophores, and blood vessel endothelial cells. In contrast to mammals, no vimentin immunoreactivity was found in the Sertoli cells. Immunoreactivity to desmin was weak in the epithelial cells of the efferent ducts and testicular canal and intense in the peritubular cells that surrounded these ducts. Desmin immunoreactivity was also observed in the seminiferous tubule boundary cells. The immunoreactivity was weak in the boundary cells that surrounded germ cell cysts containing spermatogonia or spermatocytes and intense in the boundary cells around cysts with elongated or mature spermatids. Immunoreactivity towards cytokeratins was observed only in testicular blood vessels. Cytokeratin immunolabelling was intense in the endothelium and weak in the vascular smooth muscle cells. No cytokeratin immunoreactivity was found in the Sertoli cells, germ cells, interstitial cells or in the efferent duct epithelium. The absence of intermediate filaments in the Sertoli cells, the absence of cytokeratins in the epithelium of the sperm excretory ducts, and the presence of desmin filaments in these epithelial cells are the most important differences with regards to the intermediate filament phenotype in mammalian testes.  相似文献   

4.
Park CJ  Lee JE  Oh YS  Shim S  Nah WH  Choi KJ  Gye MC 《Theriogenology》2011,75(3):445-458
The expression of claudin-1 and -11, tight junctions (TJs) proteins was examined in immature and adult pheasant (Phasianus colchicus) testes. Claudin-1 and -11 cDNA were highly similar to those of human, mice, and chicken. Claudin-1 mRNA and protein (21 kDa) levels in immature testes were higher than those of adult testis. In immature testes until 6 weeks of age, Claudin-1 was found at contacts between adjacent Sertoli cells and between Sertoli cells and germ cells. In adult testis, Claudin-1 was found in early spermatocytes migrating the blood testis barrier (BTB). Blood vessels were positive for claudin-1. Claudin-11 mRNA and protein (21 kDa) increased during adulthood development of testis. In immature testis, Claudin-11 was found in apicolateral contacts between adjacent Sertoli cells, indicating its involvement in cell adhesion in immature testis. In adult testis, strong wavy Claudin-11 immunoreactivity was parallel to basal lamina at the basal part of seminiferous epithelium, indicating that Claudin-11 at the inter-Sertoli TJs may act as a structural element of the BTB. Weak Claudin-1 and -11 immunoreactivity at contacts between Sertoli cells to elongating/elongated spermatids, meiotic germ cells, and basal lamina suggests that they also participate in the cell-cell and cell-extracellular matrix adhesion in pheasant testis. Testosterone increased claudin-11 mRNA in testis organ culture and Sertoli cell primary culture, suggesting positive regulation of claudin-11 gene by androgen in Sertoli cells of pheasant testis. This is the first report on the claudins expression at BTB in avian testis.  相似文献   

5.
Androgen-binding protein (ABP) is one of the best-characterized products of synthesis by the Sertoli cells in the rat. Although the exact physiological role of ABP remains to be determined, it has been widely used to study Sertoli cells and testicular function in this species. Since this protein is the principal carrier for testosterone in rat testis and epididymis, we decided to investigate ABP immunoreactivity (ABP-I) in androgen-dependent organs, including testicle, epididymides, prostate, and seminal vesicles. The location of ABP was investigated by immunohistochemistry using specific antisera against rat ABP. As previously described in the testis, rat ABP-I was identified in the seminiferous tubules within the cytoplasm of the Sertoli cells and the tubular luminae. The epididymis showed ABP-I only in epithelial cells of the proximal caput. We demonstrated ABP-I in the apical portions of epithelial cells of the rat prostate. Short-term castration and/or ligation of the efferent ducts did not suppress prostatic ABP-I. ABP-I was not present in seminal vesicles of control rats nor under any of the experimental conditions used throughout this study. The results also indicate the presence of ABP-I in prostatic epithelium, probably because of a mechanism similar to that described in epididymis. Our data support and enhance the concept that ABP may serve as a transmembrane carrier protein for androgens in androgen target organs in the male reproductive tract.  相似文献   

6.
Immunocytochemical study on the localization of inhibin in the testes of human, bonnet monkey, dog and rat was carried out using indirect immunoperoxidase technique, in order to investigate the cell types involved in inhibin production/storage. A positive reaction was observed in the testes of human, monkey and dog while it was negative in rat testis using specific antiserum to human testicular inhibin generated against homogeneous preparation of human testicular inhibin in our laboratory. Inhibin was found to be localized in Sertoli cells, spermatogonia and primary spermatocytes of human, monkey and dog testes. A weak positive reaction was observed in spermatids of human testis only. Interestingly, Leydig cells of human, monkey and dog testes showed positive reaction indicating presence of inhibin in these cells also.  相似文献   

7.
8.
Localization of transferrin and transferrin receptors in rat testes   总被引:2,自引:0,他引:2  
One of the major proteins secreted by rat Sertoli cells in culture is a transferrin-like protein (Skinner and Griswold, 1980). The purpose of this study was to quantitate the amount of testicular transferrin in fluids isolated from the testis by the use of a radioimmunoassay and to determine the location of transferrin and transferrin receptors in the testis by indirect immunofluorescence. Seminiferous tubule fluid, rete testis fluid, and testicular lymph were collected from rat testes and were found to contain 141 micrograms, 47 micrograms and 3.7 mg transferrin per ml of fluid, respectively. Serum was found to contain 3.7 mg/ml transferrin. Paraffin sections of rat testis were incubated with rabbit anti-rat transferrin, biotinylated goat anti-rabbit and fluorescein-conjugated avidin. Immunoreactive transferrin was thus localized on the proacrosome and nuclear cap of developing spermatids. Late spermatids showed transferrin over the entire region of the head but mature testicular spermatozoa exhibited little fluorescence. The interstitial tissue between seminiferous tubules fluoresced brightly, indicating a large amount of transferrin in this area. By pretreating sections with rat transferrin, the receptor for the protein was localized on and in spermatocytes and early round spermatids. Dividing germ cells were brightly fluorescent.  相似文献   

9.
The present study deals with immunohistochemical localization of S-100 protein in mouse, bank vole and pine vole testis and epididymis. S-100 protein immunoreactivity was observed in the endothelia of capillaries and lymphatic sinusoids of pine vole testis. A reaction to S-100 protein of the same intensity as that noted in the endothelia of testicular capillaries was found in myoid cells of pine vole and bank vole seminiferous tubules. Moreover, a positive reaction to S-100 protein was observed in bank vole and mouse Leydig cells. In the epididymis, a weaker reaction to S-100 occurred in smooth muscles of pine vole and mouse epididymal duct. Despite difficult interpretation of physiological role of S-100 protein we suggest that it may be a part of the blood-testis barrier. It may also participate in the processes of transcytosis and contractility; its cellular expression is regulated by local factors. However, location of S-100 is not specific to the representatives of the same order.  相似文献   

10.
11.
Expression of p57 in mouse and human testes   总被引:1,自引:0,他引:1  
The expression of cyclin-dependent kinases inhibitors, p57kip2, was investigated during the postnatal development of mouse testis, and in adult human testis. Expression of p57kip2 mRNA was higher in immature than pubertal or adult mouse testes. In postnatal day 7 (PND7) testes, moderate p57kip2 immunoreactivity was found in spermatogonia, but signal was heterogeneous among the spermatogonia. In PND14 testes onward, strong immunoreactivity of p57kip2 was found in the nuclei of early spermatocytes but not in the late pachytene stage onward. In PND28 and PND50 testes, p57kip2 immunoreactivity was varying among the seminiferous tubules. There was no visible signal in late pachytene stage onward. In Leydig cells, heterogeneous immunoreactivity of p57kip2 was found in immature testis and the signal intensity was higher in adult testis than immature ones. In Sertoli cells, weak or negligible immunoreactivity of p57kip2 was found. In human seminiferous tubule, strong immunoreactivity of p57kip2 was found in the nucleus of early spermatocytes, but not in the late pachytene spermatocytes onward and Sertoli cells. These results suggest the possible role of p57kip2 in the regulation of early spermatogonial proliferation, meiotic progression of early spermatocytes and differentiation of Leydig cells in testis.  相似文献   

12.
In human testis, gap junctions containing connexin(Cx)43 are located within the seminiferous epithelium between Sertoli cells and between Sertoli and germ cells. Cx43 is known to play a role in the differentiation and proliferation of these cell types. It can further be associated with human seminoma development. The dog has been proposed as a model for studies of the male reproductive system, because of the frequent occurrence of testicular neoplasms. Thus, we investigated Cx43-mRNA and -protein expression in testes of normal prepubertal dogs, adult dogs, and in canine testicular tumors. Sertoli cells in prepubertal cords express Cx43 mRNA, but do synthesize only less Cx43 protein. Within the seminiferous tubules, Cx43 mRNA was detected in Sertoli cells, spermatogonia, and spermatocytes. Cx43 protein was mainly present in the basal compartment. In canine testicular tumors Cx43 mRNA was detectable in both seminoma and neoplastic Sertoli cells, whereas Cx43 protein was only found in neoplastic Sertoli cells. Our data indicate that Cx43 is regulated differentially in testicular tumors and that alterations of Cx43 expression may be involved in the pathogenesis of canine testicular malignancies. This study represents the first morphological work on the spatiotemporal expression pattern of Cx43 in normal and neoplastic canine testis.  相似文献   

13.
Reaggregates prepared from newborn rat testis cells in Moscona-type rotation cultures were analyzed and compared with normal fetal (12-21 days) and newborn testes at the light and electron microscope level. After 25 h of culture, the aggregates resembled normal testicular tissue. The cells of the surface layer were spindle-shaped and connected by adherent junctions. The epithelial cords were composed exclusively of Sertoli cells and were surrounded by elongated cells resembling the developing myoid cells in newborn testes. The basal aspect of the cords was covered by a layer of flocculent material which, in places, was organized like an ordinary basement membrane. Individual spermatogonia with pseudopodes were observed in the interstitial tissue. Some Leydig cells were organized into small clusters like those typical in newborn testes. The present observations indicate that, histologically, the reaggregation of separated testicular cells resembles the differentiation of embryonic male gonads.  相似文献   

14.
Anti-Müllerian hormone (AMH) induces regression of Müllerian ducts during male fetal development; in the human male, it is expressed in Sertoli cells during fetal development (and through puberty). The objective was to characterize expression of AMH in the fetal, neonatal, prepubertal, and adult equine testis, as well as in equine cryptorchid testes, in select testicular neoplasms, and in intersex gonads, based upon immunohistochemistry (IHC). Testes were removed from equine fetuses at 5.5, 10, and 11 months of gestation, at 12 months of age, and from adult stallions. In addition, cryptorchid testes, testis tumors (teratomas, seminomas, Sertoli cell tumors), and male intersex gonads were examined by IHC for expression of AMH using a goat polyclonal primary antibody (alpha-AMH) directed against a C-terminal peptide antigen from human AMH. Immunolabeling with alpha-AMH was localized to Sertoli cells within the developing seminiferous tubules of fetal, neonatal and prepubertal equine testes, with no expression detected in Sertoli cells from normal adult equine testes. Furthermore, expression was detected in cryptorchid testes (in animals up to 3-4 years of age) and in Sertoli cell tumors and male intersex gonads. In conclusion, AMH was strongly expressed by Sertoli cells in fetal, neonatal and prepubertal equine testes, but not in normal adult testes. That AMH was expressed in cryptorchid testes may provide a useful biomarker for detection of cryptorchid testes, as well as for immunohistochemical characterization of testicular tumors and intersex gonads in the horse.  相似文献   

15.
16.
Fyn is a member of the Src family of non-receptor-type tyrosine kinases and plays an important role in signal transductions regulating cell proliferation and differentiation. Fyn immunoreactivity was localized in the Sertoli cells of mouse testes. Although fyn-deficient adult male mice were fertile, a significant reduction in testis weight and degenerated germ cells were observed at 3 and 4 wk of age. Electron microscopic examination revealed that fyn -/- testis has ultrastructural abnormalities in the specialized junctional structures of the Sertoli cells, the ectoplasmic specializations. Unusual vesicular structures were found in the actin filament layers of the ectoplasmic specializations of mutant mice. Immunohistochemical studies demonstrated that both Fyn and actin filaments were concentrated in the areas of ectoplasmic specializations. At these sites, a high level of phosphotyrosine was also immunostained in wild-type testes, whereas phosphotyrosine immunoreactivity was reduced in fyn -/- testes. Immunoblot analyses revealed that Fyn was mainly distributed within the Triton X-100-insoluble cytoskeletal fraction prepared from wild-type testes, suggesting that Fyn might be associated with cytoskeletal proteins such as actin filaments. These findings suggest that Fyn kinase functions at the ectoplasmic specializations of the Sertoli cells in the testes, regulating the dynamics of cytoskeletal proteins. Fyn-mediated signal transduction in the Sertoli cells may affect the survival and differentiation of germ cells at a specific stage during spermatogenesis.  相似文献   

17.
The Musashi1 (Msi1) gene identified in mouse is a member of a subfamily of RNA binding proteins that are highly conserved across species. Msi1 expression is highly enriched in proliferative cells within the developing central nervous system. Within the testis, proliferation and differentiation of germ cells takes place within the seminiferous epithelium, where these cells are supported physically and functionally by Sertoli cells that do not themselves proliferate following the onset of puberty. RNA binding proteins expressed in testicular germ cells are essential for normal fertility. Preliminary data suggested the mRNA for Msi1 was present in ovary; therefore, we used an Msi1-specific cRNA and monoclonal antibody to investigate whether Msi1 was expressed in the testis. Msi1 mRNA was expressed in rat testis from birth until adulthood; in situ hybridization revealed silver grains within the seminiferous epithelium. Immunohistochemical studies demonstrated that at all ages examined (from Fetal Day 14.5 until adulthood) Msi1 protein was expressed in Sertoli cells. In fetal and adult rat ovaries, Msi1 was detected in granulosa cells and their precursors. In Sertoli cells, protein was detected in both cytoplasmic and nuclear compartments; in adult testes, the immunointensity of the nuclear staining was stage dependent, with highest levels of expression in Sertoli cells at stages I-VI. In rat gonads, the RNA binding protein Msi1 is expressed in both proliferating and nonproliferating Sertoli and granulosa cells.  相似文献   

18.
In the testis, androgen receptors are known to mediate autocrine and paracrine effects of androgens on Leydig cell function and spermatogenesis. The pig presents some unusual features with regard to the synthesis of testosterone and estrogens in the male gonads. In testes from prepubertal males, testosterone level was lower than in testes from adult boars, while estrogen secretion was relatively high and comparable to that of mature porcine gonad. Immunolocalization of androgen receptors and intensity of immunohistochemical staining was age-dependent. In testis sections from adult boars, androgen receptors were found in nuclei of all somatic cells such as Leydig cells, Sertoli cells, and peritubular-myoid cells, whereas in sections from immature pigs only in the Leydig cell cytoplasm showed positive immunoreaction for androgen receptors. In control tissue sections incubated with omission of the primary antibody, no positive staining was observed. Detection of the androgen receptors in testicular cells of the pig is important for understanding of their central role in mediating androgen action.  相似文献   

19.
The serum obtained from an infertile woman induced a specific head-to-head agglutination of human and rat sperm. The immunoglobulin G (IgG) fraction of the serum was obtained and found to interact with the proteins of rat sperm in testis and epididymis. Using an indirect immunofluorescent method with rat sperm from vas deferens, we determined that the antibody recognized the protein on the convex and concave regions of the acrosome and over the entire tail. However, with testicular spermatozoa, the antibody recognized only the distal end of the tails. In paraffin sections of adult rat testis, sperm tails located at the luminal region of the seminiferous tubules stained intensely. Weak but significant staining also occurred on late spermatids. In the epididymal sections, staining was restricted to spermatozoa in the lumen. On the other hand, sections of testes from 25-day-old rats containing spermatogonia and early spermatocytes had a completely negative reaction. Testicular somatic cells, including Sertoli cells, peritubular myoid cells and interstitial cells, did not stain. To identify the testicular protein interacting with the antibody, adult rat testis proteins were prepared and analyzed by a sodium dodecyl sulfate-polyacrylamide gel electrophoretic (SDS-PAGE) immunoblot technique. The antibody interacted with a protein with an estimated molecular weight of 82,000 in the testicular homogenate and particulate fraction, whereas the reaction was considerably weaker with the testicular cytosol fraction.  相似文献   

20.
Using commercial monoclonal antibodies against actin and tubulin (alpha and beta), the respective antigens were localized on semithin and ultrathin sections of the rat testis. Tubulin immunofluorescence was found in the socalled manchette surrounding the heads of the maturating spermatids as well as the sperm tail. The distribution pattern varied with sperm development. Modified Sertoli cells found at the transition between the seminiferous tubules and the rete testis displayed much filamentous tubulin-reactive material. The immunofluorescence findings could be confirmed at the ultrastructural level using the indirect immunogold method. Actin immunofluorescence was demonstrated in vascular smooth muscle cells, interstitial macrophages and - most intensely - in peritubular cells. Inside the seminiferous tubules the Sertoli cell junctions and the ectoplasmic specializations of the Sertoli cells that follow the outer contour of spermatid heads displayed distinct actin immunofluorescence. In addition to the locations mentioned, actin-like immunoreactivity was visualized at the ultrastructural level in the chromatoid body and the subacrosomal space of spermatids as well as on the outer dense fibers of the sperm tail. Immunoblotting experiments with actin antibodies showed that in extracts from testicular spermatozoa, intact or fragmented into heads and tails, from isolated Sertoli cells grown in vitro, and from testis tissue in addition to authentic actin a protein was present in sperm tail extracts that strongly bound the actin antibody. This protein may be an actin-related protein and may be responsible for the actin-like immunoreactivity of the outer dense fibers of the sperm tail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号