首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Herpes simplex virus 1 (HSV-1) protein VP22, encoded by the UL49 gene, is a major virion tegument protein. In the present study, we showed that VP22 was required for efficient redistribution of viral proteins VP16, VP26, ICP0, ICP4, and ICP27 and of cellular protein Hsc-70 to the cytoplasm of infected cells. We found that two dileucine motifs in VP22, at amino acids 235 and 236 and amino acids 251 and 252, were necessary for VP22 regulation of the proper cytoplasmic localization of these viral and cellular proteins. The dileucine motifs were also required for proper cytoplasmic localization of VP22 itself and for optimal expression of viral proteins VP16, VP22, ICP0, UL41, and glycoprotein B. Interestingly, a recombinant mutant virus with alanines substituted for the dileucines at amino acids 251 and 252 had a 50% lethal dose (LD(50)) for neurovirulence in mice following intracerebral inoculation about 10(3)-fold lower than the LD(50) of the repaired virus. Furthermore, the replication and spread of this mutant virus in the brains of mice following intracerebral inoculation were significantly impaired relative to those of the repaired virus. The ability of VP22 to regulate the localization and expression of various viral and cellular proteins, as shown in this study, was correlated with an increase in viral replication and neurovirulence in the experimental murine model. Thus, HSV-1 VP22 is a significant neurovirulence factor in vivo.  相似文献   

5.
VP22, encoded by the UL49 gene, is one of the most abundant proteins of the herpes simplex virus 1 (HSV-1) tegument. In the present study we show VP22 is required for optimal protein synthesis at late times in infection. Specifically, in the absence of VP22, viral proteins accumulated to wild-type levels until ~6 h postinfection. At that time, ongoing synthesis of most viral proteins dramatically decreased in the absence of VP22, whereas protein stability was not affected. Of the individual proteins we assayed, VP22 was required for optimal synthesis of the late viral proteins gE and gD and the immediate-early protein ICP0 but did not have discernible effects on accumulation of the immediate-early proteins ICP4 or ICP27. In addition, we found VP22 is required for the accumulation of a subset of mRNAs to wild-type levels at early, but not late, times in infection. Specifically, the presence of VP22 enhanced the accumulation of gE and gD mRNAs until ~9 h postinfection, but it had no discernible effect at later times in infection. Also, VP22 did not significantly affect ICP0 mRNA at any time in infection. Thus, the protein synthesis and mRNA phenotypes observed with the UL49-null virus are separable with regard to both timing during infection and the genes affected and suggest separate roles for VP22 in enhancing the accumulation of viral proteins and mRNAs. Finally, we show that VP22's effects on protein synthesis and mRNA accumulation occur independently of mutations in genes encoding the VP22-interacting partners VP16 and vhs.  相似文献   

6.
Herpes simplex virus type 1 (HSV-1) virions, like those of all herpesviruses, contain a proteinaceous layer termed the tegument that lies between the nucleocapsid and viral envelope. The HSV-1 tegument is composed of at least 20 different viral proteins of various stoichiometries. VP22, the product of the U(L)49 gene, is one of the most abundant tegument proteins and is conserved among the alphaherpesviruses. Although a number of interesting biological properties have been attributed to VP22, its role in HSV-1 infection is not well understood. In the present study we have generated both a U(L)49-null virus and its genetic repair and characterized their growth in both cultured cells and the mouse cornea. While single-step growth analyses indicated that VP22 is dispensable for virus replication at high multiplicities of infection (MOIs), analyses of plaque morphology and intra- and extracellular multistep growth identified a role for VP22 in viral spread during HSV-1 infection at low MOIs. Specifically, VP22 was not required for either virion infectivity or cell-cell spread but was required for accumulation of extracellular virus to wild-type levels. We found that the absence of VP22 also affected virion composition. Intracellular virions generated by the U(L)49-null virus contained reduced amounts of ICP0 and glycoproteins E and D compared to those generated by the wild-type and U(L)49-repaired viruses. In addition, viral spread in the mouse cornea was significantly reduced upon infection with the U(L)49-null virus compared to infection with the wild-type and U(L)49-repaired viruses, identifying a role for VP22 in viral spread in vivo as well as in vitro.  相似文献   

7.
8.
9.
10.
11.
Herpes simplex virus type 1 (HSV-1) mutants defective in immediate-early (IE) gene expression do not readily enter productive replication after infection of tissue culture cells. Instead, their genomes are retained in a quiescent, nonreplicating state in which the production of viral gene products cannot be detected. To investigate the block to virus replication, we used the HSV-1 triple mutant in1820K, which, under appropriate conditions, is effectively devoid of the transactivators VP16 (a virion protein), ICP0, and ICP4 (both IE proteins). Promoters for the HSV-1 IE ICP0 gene or the human cytomegalovirus (HCMV) major IE gene, cloned upstream of the Escherichia coli lacZ coding sequences, were introduced into the in1820K genome. The regulation of these promoters and of the endogenous HSV-1 IE promoters was investigated upon conversion of the virus to a quiescent state. Within 24 h of infection, the ICP0 promoter became much less sensitive to transactivation by VP16 whereas the same element, when used to transform Vero cells, retained its responsiveness. The HCMV IE promoter, which is not activated by VP16, also became less sensitive to the HCMV functional homolog of VP16. Both elements remained available for transactivation by HSV-1 IE proteins at 24 h postinfection, showing that the in1820K genome was not irreversibly inactivated. The promoters controlling the HSV-1 ICP4, ICP22, and ICP27 genes also became essentially unresponsive to transactivation by VP16. The ICP0 promoter was induced when hexamethylene bisacetamide was added to cultures at the time of infection, but the response to this agent was also lost by 24 h after infection. Therefore, promoter elements within the HSV-1 genome are actively repressed in the absence of IE gene expression, and repression is not restricted specifically to HSV-1 IE promoters.  相似文献   

12.
Preston CM  Nicholl MJ 《Journal of virology》2008,82(23):11775-11783
Herpes simplex virus type 1 (HSV-1) mutants impaired in the activities of the structural protein VP16 and the immediate-early (IE) proteins ICP0 and ICP4 establish a quiescent infection in human fibroblasts, with most cells retaining an inactive, repressed viral genome for sustained periods in culture. To date, the quiescent state has been considered stable, since it has been reversed only by provision of herpesviral proteins, such as ICP0, not by alteration of the cell physiological state. We report that the interaction of HSV-1 with human fibroblasts can be altered significantly by transient treatment of cultures with sodium arsenite, an inducer of heat shock and oxidative stress, or gramicidin D, a toxin that selectively permeabilizes cell membranes, prior to infection. These regimens stimulated gene expression from IE-deficient HSV-1 mutants in a promoter sequence-independent manner and also overcame the replication defect of ICP0-null mutants. Reactivation of gene expression from quiescent HSV-1 genomes and the resumption of virus replication were observed following addition of arsenite or gramicidin D to cultures. Both agents induced reorganization of nuclear domain 10 structures, the sites of quiescent genomes, but appeared to do so through different mechanisms. The results demonstrate that the physiological state of the cell is important in determining the outcome of infection with IE-deficient HSV-1 and show novel methods for reactivating quiescent HSV-1 in fibroblasts with a high efficiency.  相似文献   

13.
Intrinsic antiviral resistance represents the first line of intracellular defence against virus infection. During herpes simplex virus type-1 (HSV-1) infection this response can lead to the repression of viral gene expression but is counteracted by the viral ubiquitin ligase ICP0. Here we address the mechanisms by which ICP0 overcomes this antiviral response. We report that ICP0 induces the widespread proteasome-dependent degradation of SUMO-conjugated proteins during infection and has properties related to those of cellular SUMO-targeted ubiquitin ligases (STUbLs). Mutation of putative SUMO interaction motifs within ICP0 not only affects its ability to degrade SUMO conjugates, but also its capacity to stimulate HSV-1 lytic infection and reactivation from quiescence. We demonstrate that in the absence of this viral countermeasure the SUMO conjugation pathway plays an important role in mediating intrinsic antiviral resistance and the repression of HSV-1 infection. Using PML as a model substrate, we found that whilst ICP0 preferentially targets SUMO-modified isoforms of PML for degradation, it also induces the degradation of PML isoform I in a SUMO modification-independent manner. PML was degraded by ICP0 more rapidly than the bulk of SUMO-modified proteins in general, implying that the identity of a SUMO-modified protein, as well as the presence of SUMO modification, is involved in ICP0 targeting. We conclude that ICP0 has dual targeting mechanisms involving both SUMO- and substrate-dependent targeting specificities in order to counteract intrinsic antiviral resistance to HSV-1 infection.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号