首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The reaction of thymidine, 3-mono-, and 3,3′,5′-trialkylsubstitued thymidine analogues with iodine monochloride (ICl) was investigated. Treatment with ICl resulted in rapid deglycosylation, anomerization, and isomerization of thymidine and 3-substituted thymidine analogues under various reaction conditions leading to the formation of the nucleobases as the major products accompanied by minor formation of α-furanosidic-, α-pyranosidic-, and β-pyranosidic nucleosides. On the other hand, 3,3′,5′-trisubstitued thymidine analogues were only deglycosylated and anomerized. These results are similar to those observed for the acidic hydrolysis of the glycoside bond in nucleosides, but were presumably caused by the Lewis acid character of an iodine electrophile.  相似文献   

2.
J D Irvin  G M Aron 《FEBS letters》1982,148(1):127-130
Pokeweed antiviral protein (PAP) is a protein known to inactivate eukaryotic ribosomes by an unknown enzymatic action and inhibit the production of mammalian viruses in tissue culture. This protein was subjected to a variety of chemical modifications to determine their effects upon ribosomal inactivation, antiviral action, and cytotoxicity. It was found that modifications of a number of different amino acid residues had similar effects upon all 3 activities. Also the inactivation of PAP with diethylpyrocarbonate was not due to its reaction with a histidine residue but to a modification of an unidentified amino acid residue.  相似文献   

3.
5'-Nucleotidases play an important role in the metabolism of nucleosides; for example, the hydrolysis of AMP generates adenosine, which can modulate a variety of cellular functions. We have used the membrane-bound AMPase from chicken gizzard and a secreted form of these enzymes to analyse their modification by the substrate analogue 5'-p-fluorosulphonylbenzoyladenosine (5'-FSBA). 5'-FSBA irreversibly inactivates 5'-nucleotidases by means of covalent modification of the proteins. ATP, a competitive inhibitor of chicken gizzard and snake-venom 5'-nucleotidase, abolished the inactivation by 5'-FSBA, demonstrating that the inactivation was due to the modification of amino acid residues essential for AMPase activity. We have synthesized radioactive 5'-FSBA, which was employed for the radiolabelling of chicken gizzard 5'-nucleotidase. Incorporation of radioactivity was completely abolished in the presence of ATP, which showed that 5'-FSBA acted by the selective modification of amino acid residues at the active site whereas other potential reactive residues of the protein were not attacked. Limited proteolysis of affinity-labelled chicken gizzard 5'-nucleotidase permitted the identification of digestion products containing the catalytic centre. Pseudo-first-order kinetics indicate that modification of a minimum of one amino acid side chain at the active centre is sufficient to result in inactivation of both chicken gizzard and snake-venom 5'-nucleotidases. Incorporation of the radioactive p-sulphonylbenzoyladenosine moiety parallels the inactivation of 5'-nucleotidase by 5'-FSBA and further substantiated the idea that modification of one amino acid residue at the active centre results in loss of the AMPase activity.  相似文献   

4.
Rapid, template-directed ligation reactions between a phosphate-terminated oligonucleotide and an unphosphorylated reaction partner may be induced by cyanogen bromide (BrCN). Frequently, however, the reaction is low yielding, and even a large excess of the condensing agent can fail to induce quantitative conversions. In this study, we used BrCN to induce chemical primer extension reactions. Here, we report that buffers containing hydroxyl groups react with short oligodeoxynucleotides in the presence of BrCN. One stable adduct between HEPBS buffer and cytosine was characterized by mass spectrometry and NMR after HPLC purification, indicating that a side reaction occurred at this nucleobase. Further, a first example of a primer extension reaction between an unmodified oligodeoxynucleotide as primer and dGMP is reported. Together, our results shed light on the potency, as well as the drawbacks of BrCN as a highly reactive condensing reagent for the ligation of unmodified nucleic acids.  相似文献   

5.
The reaction of one of the four cysteinyl residues of thymidylate synthetase from methotrexate-resistant Lactobacillus casei with a variety of sulfhydryl reagents results in complete inhibition of the enzyme. Kinetic studies indicate that the rates of reactivity of the reagents tested are N-ethylmaleimide > iodoacetamide > N-(iodoacetylaminoethyl)-S-naphthylamine-1-sulfonic acid > iodoacetic acid. The enzyme is also inactivated by 5-Hg-deoxyuridylate, a compound which reacts stoichiometrically with a single cysteine. Unlike the other reagents, the inhibition produced by this compound can be completely reversed by added thiols. The same cysteine appears to react with all of the sulfhydryl reagents, as shown by competition experiments and by protection against inactivation by deoxyuridylate. Even at a 100-fold excess of the alkylating agents, only one of the four cysteines in the native enzyme was reactive, attesting to the uniqueness of this residue. Carboxypeptidase A inactivation of the enzyme does not affect either the binding of deoxyuridylate to the enzyme or the reactivity of N-ethylmaleimide with the “catalytic” cysteine. Under denaturing conditions, all four cysteinyl residues react with N-ethylmaleimide or iodoacetate, as shown by identifying the reaction products by amino acid analysis. The covalent ternary complex [(+)5,10-methylenetetrahydrofolate-5-fluorodeoxyuridylate-thymidylate synthetase] (molar ratio = 2:2:1) revealed only two cysteinyl residues capable of reacting with N-ethylmaleimide or iodoacetate upon denaturation. From these data, it appears that one cysteine is involved in the binding of deoxyuridylate and that two of the enzyme's four cysteines are responsible for binding 5-fluorodeoxyuridylate in the ternary complex.  相似文献   

6.

Cross-β amyloid fibrils and membrane-bound β-barrels are two important classes of β-sheet proteins. To investigate whether there are systematic differences in the backbone and sidechain conformations of these two families of proteins, here we analyze the 13C chemical shifts of 17 amyloid proteins and 7 β-barrel membrane proteins whose high-resolution structures have been determined by NMR. These 24 proteins contain 373 β-sheet residues in amyloid fibrils and 521 β-sheet residues in β-barrel membrane proteins. The 13C chemical shifts are shown in 2D 13C–13C correlation maps, and the amino acid residues are categorized by two criteria: (1) whether they occur in β-strand segments or in loops and turns; (2) whether they are water-exposed or dry, facing other residues or lipids. We also examine the abundance of each amino acid in amyloid proteins and β-barrels and compare the sidechain rotameric populations. The 13C chemical shifts indicate that hydrophobic methyl-rich residues and aromatic residues exhibit larger static sidechain conformational disorder in amyloid fibrils than in β-barrels. In comparison, hydroxyl- and amide-containing polar residues have more ordered sidechains and more ordered backbones in amyloid fibrils than in β-barrels. These trends can be explained by steric zipper interactions between β-sheet planes in cross-β fibrils, and by the interactions of β-barrel residues with lipid and water in the membrane. These conformational trends should be useful for structural analysis of amyloid fibrils and β-barrels based principally on NMR chemical shifts.

  相似文献   

7.
Three new analogues of cAMP have been synthesized and characterized: 2-[(4-bromo-2,3-dioxobutyl)thio]adenosine 3',5'-cyclic monophosphate (2-BDB-TcAMP), 2-[(3-bromo-2-oxopropyl)thio]-adenosine 3',5'-cyclic monophosphate (2-BOP-tcAMP), and 8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 3',5'-cyclic monophosphate (8-BDB-TcAMP). The bromoketo moiety has the ability to react with the nucleophilic side chains of several amino acids, while the dioxobutyl group can interact with arginine. These cAMP analogues were tested for their ability to inactivate the low Km (high affinity) cAMP phosphodiesterase from human platelets. The 2-BDB-TcAMP and 2-BOP-TcAMP were competitive inhibitors of cAMP hydrolysis by the phosphodiesterase with Ki values of 0.96 +/- 0.12 and 0.70 +/- 0.12 microM, respectively. However, 2-BDB-TcAMP and 2-BOP-TcAMP did not irreversibly inactivate the phosphodiesterase at pH values from 6.0 to 7.5 and at concentrations up to 10 mM. These results indicate that although the 2-substituted TcAMP analogues bind to the enzyme, there are no reactive amino acids in the vicinity of the 2-position of the cAMP binding site. In contrast, incubation of the platelet low Km cAMP phosphodiesterase with 8-BDB-TcAMP resulted in a time-dependent, irreversible inactivation of the enzyme with a second-order rate constant of 0.031 +/- 0.009 min-1 mM1. Addition of the substrates, cAMP and cGMP, and the product, AMP, to the reaction mixture resulted in marked decreases in the inactivation rate, suggesting that the inactivation was due to reaction at the active site of the phosphodiesterase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
H2O2 reacts with cytochrome c peroxidase in a variety of ways. The initial reaction produces cytochrome c peroxidase Compound I. If more than a 10-fold excess of H2O2 is added to the enzyme, a portion of the H2O2 will react with Compound I to produce molecular oxygen. The remainder oxidizes the heme group and various amino acid residues in the protein. If less than a 10-fold excess of H2O2 is added to the enzyme, essentially all the H2O2 is utilized by oxidation of amino acid residues in the protein. The oxidation of the amino acid residues by H2O2 substantially modifies the reactivity of cytochrome c peroxidase. The modification of reactivity could be the direct result of amino acid oxidation or an indirect result caused by a perturbation of the protein structure at the active site. The products oxidized at pH 8 lose their ability to react with H2O2. The products oxidized at pH4 react with H2O2 but their reactivity toward Fe(CN)4-6 is substantially reduced.  相似文献   

9.
β‐Amino acids containing hybrid peptides and β‐peptides show great potential as peptidomimetics. In this paper we describe the synthesis and affinity toward the µ‐ and δ‐opioid receptors of β‐peptides, analogues of Leu‐enkephalin, deltorphin I, dermorphin and α,β‐hybrides, analogues of deltorphin I. Substitution of α‐amino acid residues with β3homo‐amino acid residues, in general resulted in decrease of affinity to opioid receptors. However, the incorporation β3h‐D ‐Ala in position 2 or β3hPhe in position 3 of deltorphin I resulted in potent and selective ligand for δ‐opioid receptor. The NMR studies of β‐deltorphin I analogue suggest that conformational motions in the central part of the peptide backbone are partially restricted and some conformational preferences can be expected. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Pulse radiolysis of selenium dioxide in aqueous solution has shown the presence of three selenite radicals in acid-base equilibrium within well defined pH ranges: (formula; see text) The selenite radicals react selectively with amino acids, preferentially with the aromatic ones in the order tryptophan greater than tyrosine greater than histidine, independently of the acid-base structure of the radical. Kinetic and spectroscopic data on the reaction of selenite radicals with some proteins and parallel inactivation studies generally reflect knowledge on the amino acid residues mainly involved in the radical attack. The investigations at different pH values on the reactivity of selenite radicals with amino acids and proteins and on the transient spectra of the reaction products exhibit different behaviour for the various acid-base structures of the selenite radicals, reflecting the influence of particular ionizable groups in the reacting molecules and the structure modifications at the level of proteins.  相似文献   

11.
The human equilibrative nucleoside transporters hENT1 and hENT2 (each with 456 residues) are 40% identical in amino acid sequence and contain 11 putative transmembrane helices. Both transport purine and pyrimidine nucleosides and are distinguished functionally by a difference in sensitivity to inhibition by nanomolar concentrations of nitrobenzylmercaptopurine ribonucleoside (NBMPR), hENT1 being NBMPR-sensitive. Previously, we used heterologous expression in Xenopus oocytes to demonstrate that recombinant hENT2 and its rat ortholog rENT2 also transport purine and pyrimidine bases, h/rENT2 representing the first identified mammalian nucleobase transporter proteins (Yao, S. Y., Ng, A. M., Vickers, M. F., Sundaram, M., Cass, C. E., Baldwin, S. A., and Young, J. D. (2002) J. Biol. Chem. 277, 24938-24948). The same study also revealed lower, but significant, transport of hypoxanthine by h/rENT1. In the present investigation, we have used the enhanced Xenopus oocyte expression vector pGEMHE to demonstrate that hENT1 additionally transports thymine and adenine and, to a lesser extent, uracil and guanine. Fluxes of hypoxanthine, thymine, and adenine by hENT1 were saturable and inhibited by NBMPR. Ratios of V(max) (pmol/oocyte · min(-1)):K(m) (mm), a measure of transport efficiency, were 86, 177, and 120 for hypoxantine, thymine, and adenine, respectively, compared with 265 for uridine. Hypoxanthine influx was competitively inhibited by uridine, indicating common or overlapping nucleobase and nucleoside permeant binding pockets, and the anticancer nucleobase drugs 5-fluorouracil and 6-mercaptopurine were also transported. Nucleobase transport activity was absent from an engineered cysteine-less version hENT1 (hENT1C-) in which all 10 endogenous cysteine residues were mutated to serine. Site-directed mutagenesis identified Cys-414 in transmembrane helix 10 of hENT1 as the residue conferring nucleobase transport activity to the wild-type transporter.  相似文献   

12.
To develop an understanding of the structure-activity relationships for the inhibition of orthopoxviruses by nucleoside analogues, a variety of novel chemical entities were synthesized. These included a series of pyrimidine 5-hypermodified acyclic nucleoside analogues based upon recently discovered new leads, and some previously unknown "double-headed" or "abbreviated" nucleosides. None of the synthetic products possessed significant activity against two representative orthopoxviruses; namely, vaccinia virus and cowpox virus. They were also devoid of significant activity against a battery of other DNA and RNA viruses. So far as the results with the orthopoxviruses and herpes viruses, the results may point to the necessity for nucleoside analogues 5'-phosphorylation for antiviral efficacy.  相似文献   

13.
The reaction of the title compound with human serum albumin has been examined at various concentrations of the sulfonate. Kinetic data suggest that there are two highly reactive lysine amino groups on the protein, five lysine residues which are less reactive and an undetermined number of additional nucleophilic groups that react very slowly with the reagent at pH 7.5. One of the rapidly reacting lysines is tentatively identified as lysine-199 in the protein sequence. Fluorine NMR experiments indicate the presence of tight binding sites on the protein for the sulfonate which are not near reactive functional groups.  相似文献   

14.
VanX is a zinc-dependent D-Ala-D-Ala amino dipeptidase required for high-level resistance to vancomycin. The enzyme is also able to process dipeptides with bulky C-terminal amino acids [Wu, Z., Wright, G. D., and Walsh, C. T. (1995) Biochemistry 34, 2455-2463]. We took advantage of this observation to design and synthesize the dipeptide-like D-Ala-D-Gly(SPhip-CHF(2))-OH (7) as a potential mechanism-based inhibitor. VanX-mediated peptide cleavage generates a highly reactive 4-thioquinone fluoromethide which is able to covalently react with enzyme nucleophilic residues, resulting in irreversible inhibition. Inhibition of VanX by 7 was time-dependent (K(irr) = 30+/-1 microM; k(inact) = 7.3+/- 0.3 min(-1)) and active site-directed, as deduced from substrate protection experiments. Nucleophilic compounds such as sodium azide, potassium cyanide, and glutathione did not protect the enzyme from inhibition, indicating that the generated nucleophile inactivates VanX before leaving the active site. The failure to reactivate the dead enzyme by gel filtration or pH modification confirmed the covalent nature of the reaction that leads to inactivation. Inactivation was associated with the elimination of fluoride ion as deduced from (19)F NMR spectroscopy analysis and with the production of fluorinated thiophenol dimer 12. These data are consistent with suicide inactivation of VanX by dipeptide 7. The small size of the VanX active site and the presence of a number of nucleophilic side chains at the opening of the active site gorge [Bussiere, D. E., et al. (1998) Mol. Cell 2, 75-84] associated with the high observed partition ratio of 7500+/-500 suggest that the inhibitor is likely to react at the entrance of the active site cavity.  相似文献   

15.
D-Amino acid oxidase is inactivated by reaction with 1,2-cyclohexanedione in borate buffer at pH 8.8. The reaction follows pseudo-first-order kinetics. The present of benzoate, a substrate-competitive inhibitor of the enzyme, protects substantially against inactivation. Partial reactivation could be obtained by removal of borate and its substitution with phosphate buffer. The reaction of 1,2-cyclohexanedione with the enzyme at different inhibitor concentrations appears to follow a saturation kinetics, indicating the formation of an intermediate complex between enzyme and inhibitor prior to the inactivation process. The partially inactivated enzyme shows the same apparent Km but a decreased V as compared to the native D-amino acid oxidase. Similarly, the inhibited enzyme fails to bind benzoate. Amino acid analysis of the 1,2-cyclohexanedione-treated enzyme at various times of inactivation shows no loss of amino acid residues except for arginines. Analysis of the reaction data by statistical methods indicates that three arginine residues react with the inhibitor at slightly different rates, and that one of them is essential for catalytic activity. The presence of benzoate, while it prevents the loss of activity, reduces by one the number of arginine residues hit by the reagent in the reaction of 1,2-cyclohexanedione with D-amino acid oxidase.  相似文献   

16.
Chen H  Jiang H  Morgan JA 《Phytochemistry》2007,68(3):306-311
Cinnamate 4-hydroxylase (C4H), a monooxygenase in the plant phenylpropanoid pathway, was assayed for its ability to hydroxylate 29 substrate analogues. Nine of the tested analogues with various aromatic side chains, including 3-coumaric acid, were metabolized by C4H. Seven products from these reactive analogues were characterized using LC/MS, 1H NMR and 13C NMR spectroscopic analysis. For example, caffeic acid was the product of 3-coumaric acid. The products 4-hydroxy-2-chlorocinnamic acid and 4-hydroxy-2-ethoxycinnamic acid are novel compounds that have not been previously reported. The kinetic parameters of C4H towards these analogues were determined.  相似文献   

17.
The purified, lipid-reconstituted (Na+ + Mg2+)-ATPase from Acholeplasma laidlawii B was treated with a variety of reagents which specifically modify various amino acid residues on the enzyme. In all cases reaction of this enzyme with any of the reagents tested results in at least a partial inactivation of its activity. The modification of one reactive lysine by dinitrofluorobenzene, of one reactive arginine by phenylglyoxal, or of two tyrosine residues by 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole or fluorosulfonylbenzoyl adenosine results in a complete inactivation of the enzyme. Partial inactivation of enzymatic activity with N-ethylmaleimide, p-chloromercuribenzene sulfonic acid, dicyclohexylcarbodiimide, and Woodward's reagent K suggests an indirect involvement of sulfhydryl and carboxylic acid groups in the maintenance of enzymatic activity, although inhibition by these reagents may also be the result of nonspecific effects such as subunit crosslinking. These studies also show that all of the subunits of the ATPase can be labeled by aqueous-phase reagents directed at amino groups and phenolic groups, and provide evidence for a specific affinity labeling of the alpha subunit of the enzyme by a nucleotide analog directed at phenolic and/or sulfhydryl groups.  相似文献   

18.
The NAD(+)-dependent D-lactate dehydrogenase was purified to apparent homogeneity from Lactobacillus bulgaricus and its complete amino acid sequence determined. Two gaps in the polypeptide chain (10 residues) were filled by the deduced amino acid sequence of the polymerase chain reaction amplified D-lactate dehydrogenase gene sequence. The enzyme is a dimer of identical subunits (specific activity 2800 +/- 100 units/min at 25 degrees C). Each subunit contains 332 amino acid residues; the calculated subunit M(r) being 36,831. Isoelectric focusing showed at least four protein bands between pH 4.0 and 4.7; the subunit M(r) of each subform is 36,000. The pH dependence of the kinetic parameters, Km, Vm, and kcat/Km, suggested an enzymic residue with a pKa value of about 7 to be involved in substrate binding as well as in the catalytic mechanism. Treatment of the enzyme with group-specific reagents 2,3-butanedione, diethylpyrocarbonate, tetranitromethane, or N-bromosuccinimide resulted in complete loss of enzyme activity. In each case, inactivation followed pseudo first-order kinetics. Inclusion of pyruvate and/or NADH reduced the inactivation rates manyfold, indicating the presence of arginine, histidine, tyrosine, and tryptophan residues at or near the active site. Spectral properties of chemically modified enzymes and analysis of kinetics of inactivation showed that the loss of enzyme activity was due to modification of a single arginine, histidine, tryptophan, or tyrosine residue. Peptide mapping in conjunction with peptide purification and amino acid sequence determination showed that Arg-235, His-303, Tyr-101, and Trp-19 were the sites of chemical modification. Arg-235 and His-303 are involved in the binding of 2-oxo acid substrate whereas other residues are involved in binding of the cofactor.  相似文献   

19.
Formaldehyde is a well known cross-linking agent that can inactivate, stabilize, or immobilize proteins. The purpose of this study was to map the chemical modifications occurring on each natural amino acid residue caused by formaldehyde. Therefore, model peptides were treated with excess formaldehyde, and the reaction products were analyzed by liquid chromatography-mass spectrometry. Formaldehyde was shown to react with the amino group of the N-terminal amino acid residue and the side-chains of arginine, cysteine, histidine, and lysine residues. Depending on the peptide sequence, methylol groups, Schiff-bases, and methylene bridges were formed. To study intermolecular cross-linking in more detail, cyanoborohydride or glycine was added to the reaction solution. The use of cyanoborohydride could easily distinguish between peptides containing a Schiff-base or a methylene bridge. Formaldehyde and glycine formed a Schiff-base adduct, which was rapidly attached to primary N-terminal amino groups, arginine and tyrosine residues, and, to a lesser degree, asparagine, glutamine, histidine, and tryptophan residues. Unexpected modifications were found in peptides containing a free N-terminal amino group or an arginine residue. Formaldehyde-glycine adducts reacted with the N terminus by means of two steps: the N terminus formed an imidazolidinone, and then the glycine was attached via a methylene bridge. Two covalent modifications occurred on an arginine-containing peptide: (i) the attachment of one glycine molecule to the arginine residue via two methylene bridges, and (ii) the coupling of two glycine molecules via four methylene bridges. Remarkably, formaldehyde did not generate intermolecular cross-links between two primary amino groups. In conclusion, the use of model peptides enabled us to determine the reactivity of each particular cross-link reaction as a function of the reaction conditions and to identify new reaction products after incubation with formaldehyde.  相似文献   

20.
A cytosolic glutathione S-transferase from pig lung was purified 210-fold to apparent homogeneity. The enzyme was classified as a class pi isoenzyme on the basis of its physical and chemical properties. It is homodimeric with a subunit Mr of 23,500, has a pI of 7.2, and shows a high specific activity towards ethacrynic acid. The glutathione analogues, S-hexylglutathione and glutathione sulfonate, were strong reversible inhibitors. The enzyme's primary structure, established entirely by protein chemical methods, consists of 203 amino acids and is highly similar (82-84% residue identity) to the rat and human class pi isoenzymes. Furthermore, there was no evidence of microheterogeneity or post-translational modifications. Each subunit contains a highly reactive cysteine residue, the modification of which leads to enzyme inactivation. None of the cysteine residues in the pig enzyme appear to form intramolecular disulfide bonds. Singel crystals of the glutathione-S-transferase-glutathione-sulfonate complex were obtained by the hanging-drop method of vapour diffusion from poly(ethylene glycol) 4000 solutions. The crystals belong to the orthorhombic space group P212121 with unit cell dimensions of a = 10.125 nm, b = 8.253 nm and c = 5.428 nm and diffract to better than 0.22 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号