首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Periodate-oxidized ADP and ATP (oADP and oATP) are substrates and affinity reagents for creatine kinase from rabbit skeletal muscle. oADP and oATP modified a lysine epsilon-amino group in the nucleotide-binding site of the enzyme. Complete inactivation is observed upon binding 2 moles oADP per 1 mole of the enzyme dimer. Modification with oADP is described by a liner dependence of the log of enzyme activity on time, testifying to a pseudo-first-order of the reaction. The reaction rate constant (ki = 8.10(3) min-1) and dissociation constant for the reversible enzyme-oADP complex (Kd = 62 microM) were determined. ADP protected the enzyme from inactivation and covalent binding of the analog, whereas oADP covalently bound to the enzyme was phosphorylated by phosphocreatine. The data obtained allow to suggest that the epsilon-amino group of a lysine residue of the active site is located in close proximity to ribose of ATP and ADP forming a complex with the enzyme. This group seems essential for correct orientation of the nucleotide polyphosphate chain in the enzyme active center, but take no immediate part in the transphosphorylation process.  相似文献   

2.
1. The reactive analogue oADP produced by periodate oxidation of ADP has been studied as a potential affinity label for the enzyme bovine glutamate dehydrogenase, using circular dichroism (CD) difference spectroscopy to monitor specific binding. 2. The analogue binds stoichiometrically, rapidly and reversibly to the adenine nucleotide binding site with Kd approximately equal to 12 microM (20 degrees C, pH 7) with characteristic intensification of the adenine nucleotide CD at 260 nm. 3. This complex is unstable and decays with a half-life of about 1.5 h; the analogue then becomes attached as a Schiff base to a number of subsidiary sites, including the enzyme active site, with partial inactivation of the enzyme. 4. Depending upon initial concentration of oADP, the enzyme activity is progressively lost during the slow reaction; following borohydride reduction, up to four molecules of analogue are bound/subunit. 5. Protection against loss of enzyme activity is afforded by the coenzyme NAD+ plus glutarate or L-hydroxyglutarate (an effective inhibitor), or by glutarate alone, but not by NAD+ alone. 6. Spectroscopic and protection studies indicate that after the decay of the specific CD signal, the enzyme retains the capacity to bind ADP, but that this is progressively lost in parallel with decay of enzymic activity. 7. The results are consistent with proximity or functional interaction between the adenine nucleotide site and the coenzyme binding portion of the active site. 8. Thus oADP does not act as a true affinity label for the adenine nucleotide binding site, but the reaction subsequent to binding at that site shows some specificity directed towards the active site.  相似文献   

3.
Allysine ethylene acetal [(S)-2-amino-5-(1,3-dioxolan-2-yl)-pentanoic acid (2)] was prepared from the corresponding keto acid by reductive amination using phenylalanine dehydrogenase (PDH) from Thermoactinomyces intermedius ATCC 33205. Glutamate, alanine, and leucine dehydrogenases, and PDH from Sporosarcina species (listed in order of increasing effectiveness) also gave the desired amino acid but were less effective. The reaction requires ammonia and NADH. NAD produced during the reaction was recyled to NADH by the oxidation of formate to CO(2) using formate dehydrogenase (FDH). PDH was produced by growth of T. intermedius ATCC 33205 or by growth of recombinant Escherichia coli or Pichia pastoris expressing the Thermoactinomyces enzyme. Using heat-dried T. intermedius as a source of PDH and heat-dried Candida boidinii SC13822 as a source of FDH,98%, but production of T. intermedius could not be scaled up. Using heat-dried recombinant E. coli as a source of PDH and heat-dried Candida boidinii 98%. In a third generation process, heat-dried methanol-grown P. pastoris expressing endogenous FDH and recombinant Thermoactinomyces98% ee.  相似文献   

4.
Initial velocity studies and product inhibition studies were conducted for the forward and reverse reactions of formaldehyde dehydrogenase (formaldehyde: NAD oxidoreductase, EC 1.2.1.1) isolated from a methanol-utilizing yeast Candida boidinii. The data were consistent with an ordered Bi-Bi mechanism for this reaction in which NAD+ is bound first to the enzyme and NADH released last. Kinetic studies indicated that the nucleoside phosphates ATP, ADP and AMP are competitive inhibitors with respect to NAD and noncompetitive inhibitors with respect to S-hydroxymethylglutathione. The inhibitions of the enzyme activity by ATP and ADP are greater at pH 6.0 and 6.5 than at neutral or alkaline pH values. The kinetic studies of formate dehydrogenase (formate:NAD oxidoreductase, EC 1.2.1.2) from the methanol grown C. boidinii suggested also an ordered Bi-Bi mechanism with NAD being the first substrate and NADH the last product. Formate dehydrogenase the last enzyme of the dissimilatory pathway of the methanol metabolism is also inhibited by adenosine phosphates. Since the intracellular concentrations of NADH and ATP are in the range of the Ki values for formaldehyde dehydrogenase and formate dehydrogenase the activities of these main enzymes of the dissimilatory pathway of methanol metabolism in this yeast may be regulated by these compounds.  相似文献   

5.
From analysis of Ramachandran plot for NAD+-dependent formate dehydrogenase from the methylotrophic bacterium Pseudomonas sp. 101 (FDH, EC 1.2.1.2), five amino acid residues with non-optimal values phi and psi have been located in beta- and pi-turns of the FDH polypeptide chain, e.g., Asn136, Ala191, Tyr144, Asn234, and His263. To clarify their role in the enzyme stability, the residues were replaced with Gly by means of site-directed mutagenesis. The His263Gly mutation caused FDH destabilization and a 1.3-fold increase in the monomolecular inactivation rate constant. The replacements Ala191Gly and Asn234Gly had no significant effect on the stability. The mutations Asn136Gly and Tyr144Gly resulted in higher thermal stability and decreased the inactivation rate by 1.2- and 1.4-fold, respectively. The stabilizing effect of the Tyr144Gly mutation was shown to be additive when introduced into the previously obtained mutant FDH with enhanced thermal stability.  相似文献   

6.
甲醛脱氢酶(formaldehyde dehydrogenase,ADH)与甲酸脱氢酶(formate dehydrogenase,FDH)是甲醛氧化途径的两个关键酶.恶臭假单胞菌(Pseudomonas putida)的PADH是一种不依赖谷胱甘肽可以把游离甲醛直接氧化为甲酸的脱氢酶,博伊丁假丝酵母菌(Candida boidinii)的FDH在有NAD+存在时可以把甲酸氧化为二氧化碳.以基因组DNA为模板用PCR方法,从P.putida中扩增出PADH基因的编码区(padh),从C.boidinii中扩增出FDH的编码区(fdh),然后亚克隆到pET-28a(+)中分别构建这两个基因的原核表达载体pET-28a-padh和pET-28a-fdh,转化大肠杆菌,利用IPTG诱导重组蛋白PADH和FDH的表达.通过优化条件使重组蛋白的表达量占菌体总蛋白的70%以上,通过亲和层析法纯化出可溶性PADH和FDH重组蛋白.对重组蛋白的生化特性分析结果表明:PADH在最适反应温度50℃的活性为1.95 U/mg;FDH在最适反应温度40℃的活性为0.376 U/mg.所表达的重组蛋白与之前报道过的相比,具有更好的热稳定性和更广的温度适应范围.将PADH、FDH两个重组蛋白及辅因子NAD+固定到聚丙烯酰胺载体基质上,对固定化酶甲醛吸收效果的初步分析结果显示固定化酶对空气中的甲醛有一定的吸收效果,说明这两种酶被固定后具有开发成治理甲醛污染环保产品的潜力.  相似文献   

7.
Inactivation of apo-glyceraldehyde-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD+ oxidoreductase(phosphorylating) (EC 1.2.1.12) from rat skeletal muscle at 4 degrees C in 0.15 M NaC1, 5 mM EDTA, 4 mM 2-mercaptoethanol pH 7.2 is a first-order reaction. The rate constant of inactivation depends on protein concentration. With one molecule of NAD bound per tetrameric enzyme, a 50 per cent loss in activity is observed and the rate constant of inactivation becomes independent of the protein concentration over a 30-fold range. Two moles of NAD bound per mole of enzyme fully protect it against inactivation. NADH affords a cooperative effect on enzyme structure similar to that of NAD. Inactivation of 7.8 S apoenzyme is reflected in its dissociation into 4.8-S dimers. In the case of enzyme-NAD1 complex, no direct relationship between the extent of inactivation and dissociation is observed, suggesting that these two processes do not occur simultaneously; we may say that dissociation is slower than inactivation. A mechanism in which the rate-limiting step for inactivation is a conformational change in the tetramer occurring prior to dissociation and affecting only the structure of the non-liganded dimer, is consistent with the experimental observations. Inorganic phosphate protects apoenzyme against inactivation. Its effect is shown to be due to the anion binding at specific sites on the protein with a dissociation constant of 2.6 plus or minus 0.4 mM. The NaC1-induced cold inactivation of glyceraldehyde-phosphate dehydrogenase is fully reversible at 25 degrees C in the presence of 20 mM dithiothreitol and 50 mM inorganic phosphate. The rate of reactivation is independent of protein concentration. Inactivated enzyme retains the ability to bind specific antibodies produced in rabbits, but diminishes its precipitating capability.  相似文献   

8.
The structural gene (FDH1) coding for NAD(+)-dependent formate dehydrogenase (FDH) was cloned from a genomic library of Candida boidinii, and the FDH1 gene was disrupted in the C. boidinii genome (fdh1 delta) by one-step gene disruption. In a batch culture experiment, although the fdh1 delta strain was still able to grow on methanol, its growth was greatly inhibited and a toxic level of formate was detected in the medium. In a methanol-limited chemostat culture at a low dilution rate (0.03 to 0.05 h[-1]), formate was not detected in the culture medium of the fdh1 delta strain; however, the fdh1 delta strain showed only one-fourth of the growth yield of the wild-type strain. Expression of FDH1 was found to be induced by choline or methylamine (used as a nitrogen source), as well as by methanol (used as a carbon source). Induction of FDH1 was not repressed in the presence of glucose when cells were grown on methylamine, choline, or formate, and expression of FDH1 was shown to be regulated at the mRNA level. Growth on methylamine or choline as a nitrogen source in a batch culture was compared between the wild type and the fdh1 delta mutant. Although the growth of the fdh1 delta mutant was impaired and the level of formate was higher in the fdh1 delta mutant than in the wild-type strain, the growth defect caused by FDH1 gene disruption was small and less severe than that caused by growth on methanol. As judged from these results, the main physiological role of FDH with all of the FDH1-inducing growth substrates seems to be detoxification of formate, and during growth on methanol, FDH seems to contribute significantly to the energy yield.  相似文献   

9.
The 2',3'-dialdehyde nicotinamide ribose derivatives of NAD (oNAD) and NADH (oNADH) have been prepared enzymatically from the corresponding 2',3'-dialdehyde analogs of NADP and NADPH. Pig heart NAD-dependent isocitrate dehydrogenase requires NAD as coenzyme but binds NADPH, as well as NADH, ADP, and ATP, at regulatory sites. Incubation of 1-3 mM oNAD or oNADH with this isocitrate dehydrogenase causes a time-dependent decrease in activity to a limiting value 40% that of the initial enzyme, suggesting that reaction does not occur at the catalytic coenzyme site. Upon varying the concentration of oNAD or oNADH from 0.2 to 3 mM, the inactivation rate constants increase in a nonlinear manner, consistent with reversible binding of oNAD and oNADH to the enzyme prior to covalent reaction. Inactivation is accompanied by incorporation of radioactive reagent with extrapolation to 0.54 mol [14C]oNAD or 0.45 mol [14C]oNADH/mol average enzyme subunit (or about 2 mol reagent/mol enzyme tetramer) when the enzyme is maximally inactivated; this value corresponds to the number of reversible binding sites for each of the natural ligands of isocitrate dehydrogenase. The protection against oNAD or oNADH inactivation by NADH, NADPH, and ADP (but not by isocitrate, NAD, or NADP) indicates that reaction occurs in the region of a nucleotide regulatory site. In contrast to the effects of oNAD and oNADH, oNADP and oNADPH cause total inactivation of the NAD-dependent isocitrate dehydrogenase, concomitant with incorporation, respectively, of about 3.5 mol [14C]oNADP or 1.3 mol [14C]oNADPH/mol average subunit. Reaction rates exhibit a linear dependence on [oNADP] or [oNADPH] and protection by natural ligands against inactivation is not striking. These results imply that oNADP and oNADPH are acting in this case as general chemical modifiers and indicate the importance of the free adenosine 2'-OH of oNAD and oNADH for specific labeling of the NAD-dependent isocitrate dehydrogenase. The new availability of 2',3'-dialdehyde nicotinamide ribose derivatives of NAD, NADH, NADP, and NADPH may allow selection of the appropriate reactive coenzyme analog for affinity labeling of a variety of dehydrogenases.  相似文献   

10.
Escherichia coli overexpressing a NAD(+)-dependent formate dehydrogenase (FDH) from Candida boidinii was grown in chemostat culture on various carbon sources at 0.05 h(-1) dilution rate, under anaerobic conditions using defined medium and compared to a control without the heterologous FDH pathway. Metabolic fluxes, NADH/NAD(+) ratios and NAD(H/(+)) levels were determined under a range of intracellular NADH availability. The effect of NADH manipulation on the distribution of metabolic fluxes in E. coli was assessed under steady-state conditions. The heterologous FDH pathway converts 1 mol of formate into 1 mol of NADH and carbon dioxide, in contrast with the native FDH where no cofactor involvement is present. Previously, we found that this NADH regeneration system doubled the maximum yield of NADH from 2 to 4 mol NADH/mol glucose consumed and reached 4.6 mol NADH/mol of substrate when sorbitol was used as a carbon source in a complex medium. In the current study, it was found that higher NADH yields and NADH/NAD(+) ratios were achieved with our in vivo NADH regeneration system compared to a control lacking the new FDH pathway in the three carbon sources (glucose, gluconate and sorbitol) examined suggesting a more reduced intracellular environment. The total NAD(H/(+)) amounts were very similar for all the combinations studied. It was also found that the ethanol to acetate ratio increased with increased NADH availability. This ratio increased from 1.05 for the control strain in glucose to 9.45 for the strain expressing the heterologous NAD(+)-dependent FDH in sorbitol.  相似文献   

11.
Mycobacterium vaccae 10 growing in methanol medium synthesizes two inducible alternative NAD(+)-dependent formate dehydrogenases (FDH). In the presence of molybdenum, the dominating form of the enzyme is FDHI with Mr 440 kDa and Km 0.32 mM for sodium formate. FDHI reduced ferricyanide as well as NAD+, and it was reversibly inactivated by formate. NAD+ stabilized FDHI against this inactivation. Under conditions of artificial molybdenum deficiency (tungsten in the medium), the second enzyme (FDHII) appeared with Mr about 93 kDa and Km 8.3 mM for sodium formate, and no FDHI activity was detected. FDHII did not reduce ferricyanide and was not inactivated by formate. The activity of FDHI was restored in tungsten-grown cells by pulse addition of molybdenum under conditions of blocked protein synthesis, suggesting the pre-existence of inactive apo-FDHI.  相似文献   

12.
R-2-hydroxy-4-phenylbutyric acid (R-HPBA) is an important intermediate in the manufacture of angiotensin converting enzyme inhibitors. In this work, a recombinant D-lactate dehydrogenase (LDH) was used to transform 2-oxo-4-phenylbutyric acid (OPBA) to R-HPBA, with concomitant oxidation of beta-nicotinamide adenine dinucleotide (NADH) to NAD(+). The cofactor NADH was regenerated by formate dehydrogenase (FDH) present in whole cells of Candida boidinii, which were pre-treated with toluene to make them permeable. The whole cells used in the process were more stable and easier to prepare as compared with the isolated FDH from the cells. Kinetic study showed that the reaction rate was dependent on the concentration of cofactor, NAD(+), and that both R-HPBA and OPBA inhibited the reaction. A novel method for co-immobilization of whole cells and LDH enzyme on cotton cloth was developed using polyethyleneimine (PEI), which induced the formation of PEI-enzyme-cell aggregates and their adsorption onto cotton cloth, leading to multilayer co-immobilization of cells and enzyme with high loading (0.5 g cell and 8 mg LDH per gram of cotton cloth) and activity yield ( > 95%). A fibrous bed bioreactor with co-immobilized cells and enzyme on the cotton cloth was then evaluated for R-HPBA production in fed-batch and repeated batch modes, which gave relatively stable reactor productivity of 9 g/L . h and product yield of 0.95 mol/mol OPBA when the concentrations of OPBA and R-HPBA were less than 10 g/L.  相似文献   

13.
The gene of the NAD-dependent formate dehydrogenase (FDH) from the yeast Candida boidinii was cloned by PCR using genomic DNA as a template. Expression of the gene in Escherichia coli yielded functional FDH with about 20% of the soluble cell protein. To confirm the hypothesis of a thiol-coupled inactivation process, both cysteine residues in the primary structure of the enzyme have been exchanged by site-directed mutagenesis using a homology model based on the 3D structure of FDH from Pseudomonas sp. 101 and from related dehydrogenases. Compared to the wt enzyme, most of the mutants were significantly more stable towards oxidative stress in the presence of Cu(II) ions, whereas the temperature optima and kinetic constants of the enzymatic reaction are not significantly altered by the mutations. Determination of the Tm values revealed that the stability at temperatures above 50 degrees C is optimal for the native and the recombinant wt enzyme (Tm 57 degrees C), whereas the Tm values of the mutant enzymes vary in the range 44-52 degrees C. Best results in initial tests concerning the application of the enzyme for regeneration of NADH in biotransformation of trimethyl pyruvate to Ltert leucine were obtained with two mutants, FDHC23S and FDHC23S/C262A, which are significantly more stable than the wt enzyme.  相似文献   

14.
NAD+-dependent formate dehydrogenase (EC 1.2.1.2, FDH) from methylotrophic bacterium Pseudomonas sp.101 exhibits the highest stability among the similar type enzymes studied. To obtain further increase in the thermal stability of FDH we used one of general approaches based on hydrophobization of protein alpha-helices. Five serine residues in positions 131, 160, 168, 184 and 228 were selected for mutagenesis on the basis of (i) comparative studies of nine FDH amino acid sequences from different sources and (ii) with the analysis of the ternary structure of the enzyme from Pseudomonas sp.101. Residues Ser-131 and Ser-160 were replaced by Ala, Val and Leu. Residues Ser-168, Ser-184 and Ser-228 were changed into Ala. Only Ser/Ala mutations in positions 131, 160, 184 and 228 resulted in an increase of the FDH stability. Mutant S168A was 1.7 times less stable than the wild-type FDH. Double mutants S(131,160)A and S(184,228)A and the four-point mutant S(131,160,184,228)A were also prepared and studied. All FDH mutants with a positive stabilization effect had the same kinetic parameters as wild-type enzyme. Depending on the position of the replaced residue, the single point mutation Ser/Ala increased the FDH stability by 5-24%. Combination of mutations shows near additive effect of each mutation to the total FDH stabilization. Four-point mutant S(131,160,184,228)A FDH had 1.5 times higher thermal stability compared to the wild-type enzyme.  相似文献   

15.
Treatment of isolated, latent chloroplast ATPase with pyridoxal-5-phosphate (pyridoxal-P) in presence of Mg2+ causes inhibition of dithiothreitol-activated plus heat-activated ATP hydrolysis. The amount of [3H]pyridoxal-P bound to chloroplast coupling factor 1 (CF1) was estimated to run up to 6 +/- 1 pyridoxal-P/enzyme, almost equally distributed between the alpha- and beta-subunits. Inactivation, however, is complete after binding of 1.5-2 pyridoxal-P/CF1, suggesting that two covalently modified lysines prevent the activation of the enzyme. ADP as well as ATP in presence of Mg2+ protects the enzyme against inactivation and concomittantly prevents incorporation of a part of the 3H-labeled pyridoxal-P into beta- and alpha-subunits. Phosphate prevents labeling of the alpha-subunit, but has only a minor effect on protection against inactivation. The data indicate a binding site at the interface between the alpha- and beta-subunits. Cleavage of the pyridoxal-P-labeled subunits with cyanogen bromide followed by sequence analysis of the labeled peptides led to the detection of Lys beta 359, Lys alpha 176 and Lys alpha 266, which are closely related to proposed nucleotide-binding regions of the alpha- and beta-subunits.  相似文献   

16.
Three types of assays were used to characterize adenine nucleotide binding sites on the Ca2+, Mg2+-activated ATPase of normal Escherichia coli and its unc A 401 and unc D 412 mutants. ADP was bound mainly at a single site in normal and mutant ATPase. In the absence of divalent cations ATP was bound at a single high-affinity and three low-affinity sites in normal and unc D ATPases. The 2′,3′-dialdehyde (oADP) obtained by periodate oxidation of ADP reacted with both low- and high-affinity sites whereas oATP was bound primarily at a low-affinity site. Two types of adenine nucleotide binding sites, a high-affinity site reacting with ATP and ADP and a low-affinity site for ATP, were detected by the effects of these nucleotides on the fluorescence of the aurovertin D-ATPase complex. This high-affinity site(s) was present in normal and mutant ATPases. However, the fluorescence response at both high- and low-affinity sites was modified in the unc D ATPase as a consequence of the abnormal β subunit in this enzyme. Normal fluorescence responses were not induced by the binding of oADP or oATP to the ATPases. ATP was bound at a single site on isolated α subunits of the enzyme. Since this site was not detected in the unc A ATPase, it is unlikely to be the high-affinity site detected in the intact enzyme or the binding site for the endogenous tightly bound adenine nucleotides found in the purified ATPase. It is more probable that the site detected on the isolated α subunit from the normal enzyme is that which binds oADP since this site was absent in the unc A ATPase. Pretreatment of the normal ATPase with either N, N′-dicyclohexyl-carbodiimide (DCCD) or with 4-chloro-7-nitrobenzofurazan (NbfCl), reagents which inhibit ATPase activity by reacting with a β subunit, affected binding of oADP to α subunit(s) but had less effect with oATP. Inhibition of oADP binding could be due to conformational changes induced in the α subunit by the reaction of DCCD and NbfCl with a β subunit, or to steric reasons. If the latter hypothesis is correct, the active site of the ATPase would be at the interface between α and β subunits of the enzyme.  相似文献   

17.
Beef heart mitochondrial F1-ATPase was inactivated by the 2',3'-dialdehyde derivatives of ATP, ADP and AMP (oATP, oADP, oAMP). In the absence of Mg2+, inactivation resulted from the binding of 1 mol nucleotide analog per active unit of F1. The most efficient analog was oADP, followed by oAMP and oATP. Complete inactivation was correlated with the binding of about 11 mol [14C]oADP/mol F1. After correction for non-specific labeling, the number of specifically bound [14C]oADP was 2-3 mol per mol F1. By SDS-polyacrylamide gel electrophoresis, [14C]oADP was found to bind covalently mainly to the alpha and beta subunits. In the presence of Mg2+, oATP behaved as a substrate and was slowly hydrolyzed.  相似文献   

18.
We have constructed an efficient expression plasmid for the leucine dehydrogenase gene previously cloned from Bacillus stearothermophilus. The recombinant enzyme was overproduced in Escherichia coli cells to a level of more than 30% of the total soluble protein upon induction with isopropyl beta-D-thiogalactopyranoside. The enzyme could be readily purified to homogeneity by heat treatment and a single step of ion-exchange chromatography. The purified enzyme was inactivated in a time-dependent manner upon incubation with pyridoxal 5'-phosphate (PLP) followed by reduction with sodium borohydride. The inactivation was completely prevented in the copresence of L-leucine and NAD+. Concomitantly with the inactivation, several molecules of PLP were incorporated into each subunit of the hexameric enzyme. Sequence analysis of the fluorescent peptides isolated from a proteolytic digest of the modified protein revealed that Lys80, Lys91, Lys206, and Lys265 were labeled. Among these residues, Lys80 was predominantly labeled and, in the presence of L-leucine and NAD+, was specifically protected from the labeling. Furthermore, a linear relationship of about 1:1 was observed between the extent of inactivation and the amount of PLP incorporated into Lys80. A slightly active mutant enzyme, in which Lys80 is replaced by Ala, was not inactivated at all by incubation with PLP, showing that the inactivation is correlated with the labeling of only Lys80. Lys80is conserved in the corresponding regions of all the amino acid dehydrogenase sequences reported to date. These results suggest that Lys80 is located at the active site and plays an important role in the catalytic function of leucine dehydrogenase.  相似文献   

19.
Sequence alignment shows that residue Arg 284 (according to the numbering of the residues in formate dehydrogenase, FDH, from the methylotrophic bacterium Pseudomonas sp. 101) is conserved in NAD-dependent FDHs and D-specific 2-hydroxyacid dehydrogenases. Mutation of Arg 284 to glutamine and alanine results in a change of the catalytic, thermodynamic and spectral properties of FDH. In comparison to wild-type, the affinity of the mutants for the substrate (K(formate)m) or the transition state analogue (K(azide)i) decreases and correlates with the ability of the side chain of residue 284 to form H-bonds. In contrast, the affinity for the coenzyme (K(NAD)d or K(NAD)m) is either not affected or increases and correlates inversely with the partial positive charge of the side chain. The temperature dependence of circular dichroism (CD) spectra of the wild-type FDH and its Ala mutant has been studied over the 5-90 degrees C temperature range. Both proteins reveal regions of enhanced conformational mobility at the predenaturing temperatures (40-55 degrees C) associated with a change of enzyme kinetic parameters and a co-operative transition around 55-70 degrees C which is followed by the loss of enzyme activity. CD spectra of the wild-type and mutant proteins were deconvoluted and contributions from various types of secondary structure estimated. It is shown that the co-operative transition at 55-70 degrees C in the FDH protein globule is triggered by a loss of alpha-helical secondary structure. The results confirm the conclusion, from the crystal structures, that Arg 284 is directly involved in substrate binding. In addition this residue seems to exert a major structural role by supporting the catalytic conformation of the enzyme active centre.  相似文献   

20.
The understanding of the mechanism of enzymatic recovery of NADH is of biological and of considerable biotechnological interest, since the essential, but expensive, cofactor NADH is exhausted in asymmetric hydrogenation processes, but can be recovered by NAD(+)-dependent formate dehydrogenase (FDH). Most accepted for this purpose is the FDH from the yeast Candida boidinii (CbFDH), which, having relatively low thermostability and specific activity, has been targeted by enzyme engineering for several years. Optimization by mutagenesis studies was performed based on physiological studies and structure modeling. However, X-ray structural information has been required in order to clarify the enzymatic mechanism and to enhance the effectiveness and operational stability of enzymatic cofactor regenerators in biocatalytic enantiomer synthesis as well as to explain the observed biochemical differences between yeast and bacterial FDH. We designed two single-point mutants in CbFDH using an adapted surface engineering approach, and this allowed crystals suitable for high-resolution X-ray structural studies to be obtained. The mutations improved the crystallizability of the protein and also the catalytic properties and the stability of the enzyme. With these crystal structures, we explain the observed differences from both sources, and form the basis for further rational mutagenesis studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号