首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Calcitonin gene-related peptide-like immunoreactivity was demonstrated in in sensory nerve fibers in the epidermis and dermis as free nerve endings and around blood vessels and hair follicles of the human finger pad and arm skin. The vast majority of the calcitonin gene-related immunoreactive fibers was shown to display also substance P-like immunoreactivity and a few fibers in the dermis were somatostatin positive. No fibers displaying both substance P and somatostatin-like immunoreactivity were found but a few substance P immunoreactive fibers in the dermis-epidermis region were found to contain also vasointestinal polypeptide-like immunoreactivity. In the sweat glands, abundant calcitonin gene-related peptide positive, but substance P negative, fibers were observed with a similar distribution pattern as the vasoactive intestinal polypeptide immunoreactive fibers and these fibers were suggested to be of sympathetic origin.  相似文献   

2.
Summary Calcitonin gene-related peptide immunoreactivity was localized immunohistochemically in nerve fibers innervating the biliary pathway and liver of the guinea-pig. Immunoreactive fibers are present in all layers of the gallbladder and biliary tract and are particularly numerous around blood vessels. In the liver, immunoreactive processes are usually restricted to the interlobular space and porta hepatis, and only a few, very thin, beaded processes were observed in the hepatic parenchyma. A rich innervation is also associated with the vena portae. Positive ganglion cell bodies were not visualized within the ganglionated plexus of the biliary system, whereas they were found in the myenteric and submucosal plexus in the cranial portion of the duodenum corresponding to the sphincter of Oddi. The vast majority, if not all, of calcitonin gene-related peptide-immunoreactive fibers contain substance P immunoreactivity; however, there are some substance P-containing fibers lacking calcitonin gene-related peptide immunoreactivity. The lack of co-occurrence of calcitonin gene-related peptide and substance P immunoreactivities in intrinsic ganglion cells suggests that these two peptides are coexpressed in the extrinsic component of the innervation of the hepatobiliary system.  相似文献   

3.
Indirect double immunofluorescence labelling for demonstrating nine neuropeptides in the kidney of the bullfrog, Rana catesbeiana, revealed for the first time the occurrence, distribution, and coexistence of certain neuropeptides in the kidney of the submammalian vertebrates. Substance P, neuropeptide Y, and calcitonin generelated peptide were localized in nerve fibers distributed along the afferent arterioles connected with the glomeruli, and along the capillary network between uriniferous tubules. Neuropeptide Y and calcitonin gene-related peptide immunoreactive fibers were more numerous than substance P immunoreactive fibers. In these two regions, about one half of the neuropeptide Y or calcitonin in gene-related peptide fibers contained substance P. No immunoreactivity of vasoactive intestinal polypeptide, somatostatin, FMRFamide, or leucine- and methionine-enkephalins was detected in the bullfrog kidney.  相似文献   

4.
Summary This study was designed to investigate the effects of multiple denervation procedures on calcitonin gene-related peptide- and substance P-immunoreactive neurons in sympathetic and sensory cranial ganglia and in selected targets. Sympathectomy by long-term guanethidine treatment induced a pronounced increase in calcitonin gene-related peptide-immunoreactive and substance P-immunoreactive nerve fibres in all the tissues investigated, in contrast to a significant reduction of immunoreactive cell bodies. Neonatal capasaicin treatment abolished substance P immunoreactivity in many targets and caused a dramatic reduction of substance P-immunoreactive sensory nerve cell bodies; calcitonin gene-related peptide-immunoreactive nerve density was decreased, but the number of immunoreactive nerve cell bodies was unchanged. Guanethidine treatment of capsaicin-injected rats reversed the loss of calcitonin gene-related peptide-immunoreactive nerves, but not that of substance P-immunoreactive neurons. In the iris, capsaicin treatment had little effect on calcitonin gene-related peptide- and substance P-immunoreactive nerves, suggesting that in rats the majority of these fibres originate from capsaicin-insensitive neurons. The results suggest that the denervation procedures used in this study alter the synthesis and transport of neuropeptides in sensory neurons in conjunction with changes in the number of nerve fibres.  相似文献   

5.
Colocalization of vasoactive intestinal peptide, neuropeptide Y, calcitonin gene-related peptide, substance P, and tyrosine hydroxylase, respectively, with NADPH-diaphorase staining in rat adrenal gland was investigated using the double labelling technique. All vasoactive intestinal peptide- and some neuropeptide Y-immunoreactive intrinsic neuronal cell bodies seen in the gland were double stained with NADPH-diaphorase. Double labelling also occurred in some nerve fibres immunoreactive to vasoactive intestinal peptide and neuropeptide Y in the medulla and cortex. No colocalization of calcitonin gene-related peptide, substance P or tyrosine hydroxylase immunoreactivity with NADPH-diaphorase staining was observed. However, nerve fibres with varicosities immunoreactive for all the neuropeptides examined were closely associated with some of the NADPH-diaphorase-stained neuronal cell bodies. Thus, in rat adrenal gland, nitric oxide is synthesized in all ganglion cells containing vasoactive intestinal peptide and in some containing neuropeptide Y, but not in those containing calcitonin gene-related peptide, substance P or tyrosine hydroxylase.  相似文献   

6.
Summary The tibialis anterior, extensor digitorum longus and soleus muscles in the rat were examined with respect to the presence of calcitonin gene-related peptide-like as well as substance P-like immunoreactivity. In some of the motor endplates in these muscles, identified by staining for acetylcholinesterase activity, calcitonin gene-related peptide-like immunoreactivity was detected, but in others it was not. Calcitonin gene-related peptide-like immunoreactivity was found to coexist with substance-P-like immunoreactivity in nerve fibres located outside and inside the capsule of the muscle spindles, as well as in nerve fibres located in nerve fascicles. These fibres presumably represent sensory nerve fibres. Calcitonin gene-related peptide-like immunoreactivity, but not substance P-like immunoreactivity, was also detected, in cap-like structures located on the surface of the intrafusal muscle fibres in the polar regions of the spindles, structures which are likely to correspond to motor plate endings. The observations suggest that calcitonin gene-related peptide is heterogeneously present in the endplates of rat hind limb muscles, and gives for the first time immunohistochemical evidence for the presence of calcitonin gene-related peptide and substance P in the innervation of muscle spindles.  相似文献   

7.
Summary The distribution in immunoreactivities towards atrial natriuretic peptide, calcitonin gene-related peptide, galanin and substance P were demonstrated in human skin at the light and electron microscopic levels. Nerves immunoreactive to the first three of these peptides were found around eccrine sweat glands, whereas only a few positively-labelled nerve fibres could be seen around apocrine glands. At the ultrastructural level, immunoreactivity to the neuropeptides was localized in the large dense-cored vesicles of the nerve terminals. No immunoreactivity to substance P could be detected around sweat glands. In addition to these findings, the four types of immunoreactivity were seen in the thick preterminal nerve bundles.  相似文献   

8.
Summary The distribution of nerve growth factor receptor (NGF receptor)-like immunoreactivity in pulps of developing primary and mature permanent cat canine teeth was examined, by use of a monoclonal antibody against NGF receptor detected by fluorescence immunohistochemistry and pre-embedding immunocytochemical light- and electron microscopy. Both primary and permanent pulps contained a vast number of NGF receptor-like immunoreactive nerves. Immunolabelling appeared to be localized both to axons and Schwann cells. In addition, many blood vessel walls in immature primary tooth pulps showed NGF receptor-like immunoreactivity, in contrast to permanent pulps where blood vessels rarely were NGF receptor-immunoreactive. Double-labelling immunofluorescence experiments revealed that in the permanent pulp a majority of the NGF receptor-positive nerves also showed calcitonin gene-related peptide (CGRP)-like immunoreactivity, and many showed substance P-like immunoreactivity. However, nerve fibers with neuropeptide Y-like immunoreactivity lacked NGF receptor-like immunoreactivity. In developing primary tooth pulps fewer NGF receptor-positive nerves were CGRP-like immunoreactive or substance P-like immunoreactive, as compared to the permanent pulp. Neuropeptide Y-like immunoreactive nerve fibers were not detected in the primary tooth pulp. The results suggest a role for nerve growth factor in both developing and mature sensory nerves of the tooth pulp.  相似文献   

9.
Nerve fibers and varicosities in the pelvic paracervical ganglia (PG) are immunoreactive for the neuropeptides calcitonin gene-related peptide, galanin, and the tachykinins substance P and neurokinin A. Many of these fibers and varicosities are capsaicin-sensitive, originate in dorsal root ganglia and, thus, are considered to be primary afferent fibers. Numerous immunoreactive varicosities are pericellular to principal neurons in the PG. The present study examines the ultrastructure of calcitonin gene-related peptide-, galanin-, substance P-, and neurokinin A-immunoreactive nerve fibers and varicosities in the ganglia to determine their relationships to principal neurons and their synaptic connectivity. Paracervical ganglia of female rats were processed for light-microscopic immunohistochemistry using antisera against synapsin I, as a nerve terminal marker, and microtubule-associated protein-2 to define soma and dendrites. The rationale for performing this co-immunohistochemical analysis was to reveal the relationship between nerve endings and principal neurons. Synapsin I endings were predominantly axosomatic with fewer being axodendritic. Other ganglia were processed for electron-microscopic immunohistochemistry using both standard immunogold and peroxidase-anti-peroxidase procedures. Unmyelinated fibers and varicosities immunoreactive for calcitonin gene-related peptide, galanin, and the tachykinins were routinely observed in the interstitium between neuron somas. Numerous immunoreactive axon profiles were present in small groups that were ensheathed by Schwann cells. Immunoreactive fibers and varicosities were also observed within the satellite-cell sheath of the neuron soma and often intimately associated with the membrane of the soma, somal protrusions, or with the proximal part of a dendrite. Membrane specializations, indicative of synaptic contacts, between the fibers and the principal neurons were observed. It is suggested that these peptide-immunoreactive sensory fibers and varicosities are involved in regulation of activity in the PG.  相似文献   

10.
Summary The neuropeptide content of nerve fibers associated with submucosal arteries in the small intestine of guinea pigs was studied in whole-mount preparations using immunohistochemical methods. Tissues were obtained from normal animals or animals in which the small intestine had been extrinsically denervated. In normal animals, submucosal arteries are innervated by extrinsic sensory nerve fibers which contain both substance P and calcitonin gene-related peptide, and by sympathetic noradrenergic nerve fibers. In preparations obtained from animals 5–9 days after denervation, nerve fibers which contained substance P without detectable calcitonin gene-related peptide were associated with a few submucosal arteries. Nerve fibers which contained vasoactive intestinal peptide were also associated with some arteries. By 42–48 days after extrinsic denervation, substance P-containing fibers (without calcitonin gene-related peptide) and vasoactive intestinal peptide-containing fibers were associated with nearly every blood vessel. The extrinsic sympathetic nerve fibers did not regenerate during the course of this study. The nerve fibers associated with submucosal arteries in denervated tissues were not sensitive to capsaicin treatment.The alteration in the innervation of submucosal arterioles that follows extrinsic denervation of the gut may reflect either an increase in the neuropeptide content of the fibers, synthesis of a new peptide, or an increase in the number of fibers as a result of axonal sprouting.  相似文献   

11.
Summary Immunoreactivity of substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide, neuropeptide Y, and galanin is localized in nerve fibres distributed in the fungiform and filiform papillae of the tongue of the bullfrog,Rana catesbeiana. A combination of indirect double immunofluorescence labelling and a multiple dye filter system clearly demonstrated that all substance P fibres in the connective tissue core of the fungiform and filiform papillae, and within the rim of ciliated cells located on the top of the fungiform papillae showed coexistence with calcitonin gene-related peptide. A few fibres in the epithelial discs, which are located in the centre of the top of the fungiform papillae, showed the immunoreactivity of calcitonin gene-related peptide alone. There were no substance P fibres which showed coexistence with vasoactive intestinal polypeptide, galanin, and neuropeptide Y. In high magnification images, substance P and vasoactive intestinal polypeptide, and substance P and galanin fibres were recognized as two interwined fibres within the same thin nerve bundle. No immunoreactivity of leucine- and methionine-enkephalins can be detected. These findings suggest that the chemoreceptor function of the bullfrog gustatory organ may be under the control of complicated peptidergic innervation.  相似文献   

12.
13.
We demonstrate the existence of nerve fibers possessing substance P (SP) and calcitonin gene-related peptide (CGRP) immunoreactivity in the mouse cervical ventral roots. The distribution of the SP and CGRP fibers was similar, but CGRP fibers were generally more numerous. Both types entered the ventral pia mater or formed hairpin loops, but they did not enter the spinal cord directly through these roots. SP and CGRP fibers in the ventral roots were thin and had many varicosities. We suggest that these SP and CGRP fibers are involved not only in a sensory mechanism, but also in other functions, via the release of SP and CGRP from varicosities in the ventral roots.  相似文献   

14.
Summary We have previously shown depletion of nerves and neuropeptides in skin biopsies of diabetic patients, even in the absence of clinical signs and symptoms of sensory and autonomic neuropathy, but were unable to examine the changes occurring at an early stage of the disease. Therefore, the distribution and relative density of peptide-containing nerves was studied in streptozotocin-treated rats in order to assess the progression of neural changes in the initial stages of diabetes. Skin samples dissected from the lip and footpad of diabetic rats, 2, 4, 8 and 12 weeks after streptozotocin injection and age matched controls were sectioned and were immunostained with antisera to the neuropeptides substance P, calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP) and neuropeptide Y (NPY), and to a general neural marker, protein gene product 9.5 (PGP 9.5). No change was apparent in the distribution or relative density of immunoreactive cutaneous nerve fibres 2, 4 and 8 weeks after streptozotocin treatment. By 12 weeks there was a marked increase in the number of CGRP-immunoreactive fibres present in epidermis and dermis, and of VIP-immunoreactive fibres around sweat glands and blood vessels. A parallel increase was seen in nerves displaying PGP 9.5 immunoreactivity. No differences were detected in nerves immunoreactive for either substance P in the epidermis and dermis, and NPY around blood vessels. The alterations in the peptide immunoreactivities may be similar in the initial stages of human diabetes.  相似文献   

15.
We have previously shown depletion of nerves and neuropeptides in skin biopsies of diabetic patients, even in the absence of clinical signs and symptoms of sensory and autonomic neuropathy, but were unable to examine the changes occurring at an early stage of the disease. Therefore, the distribution and relative density of peptide-containing nerves was studied in streptozotocin-treated rats in order to assess the progression of neural changes in the initial stages of diabetes. Skin samples dissected from the lip and footpad of diabetic rats, 2, 4, 8 and 12 weeks after streptozotocin injection and age matched controls were sectioned and were immunostained with antisera to the neuropeptides substance P, calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP) and neuropeptide Y (NPY), and to a general neural marker, protein gene product 9.5 (PGP 9.5). No change was apparent in the distribution or relative density of immunoreactive cutaneous nerve fibres 2, 4 and 8 weeks after streptozotocin treatment. By 12 weeks there was a marked increase in the number of CGRP-immunoreactive fibres present in epidermis and dermis, and of VIP-immunoreactive fibres around sweat glands and blood vessels. A parallel increase was seen in nerves displaying PGP 9.5 immunoreactivity. No differences were detected in nerves immunoreactive for either substance P in the epidermis and dermis, and NPY around blood vessels. The alterations in the peptide immunoreactivities may be similar in the initial stages of human diabetes.  相似文献   

16.
Grandry corpuscles in the oral mucosa of the upper bill of the duck were immunohistochemically studied using antisera against calcitonin gene-related peptide (CGRP), galanin, methionine-enkephalin, neuropeptide Y (NPY), somatostatin, substance P (SP) and vasoactive intestinal peptide (VIP). Grandry corpuscles in the lamina propria selectively showed only SP-like immunoreactivity. Herbst corpuscles distributed near Grandry corpuscles were negative to all antisera applied. Although immunoreactive products in the Grandry corpuscles were found as granules in the peripheral cytoplasm of the Grandry cell, the axon terminals and satellite cells exhibited no reactivity. In pre-embedding electron-microscopic sections, SP-like immunoreactive products visualized with 3,3-diaminobezidine were localized in the granules of Grandry cells, but no labeling was observed in the cytoplasmic matrix or cell organelles. Electron-immunocytochemical labeling with colloidal gold by the post-embedding method clearly demonstrated that the SP antigen was localized only in the granules. It is presumed that Grandry cells have a secretory function. However, the function and the method of release of the SP contained in the observed granules remains obscure. Some CGRP-, NPY-, SP- and VIP-like-immunoreactive nerve fibers with varicosities associated with blood vessels and nerve fiber bundles of various sizes were observed in the lamina propria, but no such fibers penetrated into the intraepitherial layer. Nerve fibers positive for SP and VIP were also found in the interlobular connective tissue of the palatine glands. Some SP-positive neurons were detected in the vicinity of the palatine glands.  相似文献   

17.
Using immunohistochemistry and optical densitometry, somatostatin (SOM), calcitonin gene-related peptide (CGRP), and gamma-aminobutyric acid (GABA) were investigated in the lumbosacral spinal cord of the frog Rana catesbeiana after sciatic nerve transection. In control animals, the densest network of the SOM-, CGRP- and GABA-like immunoreactive fibers was located in the dorsal part of the lateral funiculus. SOM and GABA-like fibers were found in the dorsal terminal field and in the mediolateral band. The latter region showed CGRP and SOM-like immunoreactive cell bodies. SOM- and GABA-like immunoreactive neurons also occurred around the cavity of the central canal, and other GABA-like fibers were found in the ventral terminal field. While the ventral horn showed scarce somatostatin-like fibers, the putative motoneurons were immunoreactive for the two peptides investigated and GABA, but only a few SOM- and GABA-like fibers occurred in the ventral funiculus. After axotomy, GABA-like immunoreactivity decreased in the dorsal part of the lateral funiculus on the same side of the lesion. The other regions remained labeled. These changes were observed at 3 days following axonal injury and persisted at 5, 8 and 15 days. There was no significant difference in the pattern of CGRP- and SOM- immunoreactivity between the axotomized and the control sides. These results are discussed in relation to the effects of the peripheral axotomy on GABA, SOM, and CGRP expression in vertebrates, emphasizing the use of frogs as a model to study the effects of peripheral nerve injury.  相似文献   

18.
The distribution of perivascular nerve fibers displaying calcitonin gene-related peptide (CGRP) immunoreactivity and the effect of CGRP on vascular smooth muscle were studied in the guinea-pig. Perivascular CGRP fibers were seen in all vascular beds. Generally, they were more numerous around arteries than veins. Small arteries in the respiratory tract, gastrointestinal tract and genitourinary tract had numerous CGRP fibers. The gastroepiploic artery in particular received a rich supply of such fibers. Coronary blood vessels had a moderate supply of CGRP fibers. In the heart, a moderate number of CGRP fibers was seen running close to myocardial fibers. The atria had a richer supply than the ventricles. Numerous CGRP immunoreactive nerve cell bodies and nerve fibers were seen in sensory (trigeminal, jugular and spinal dorsal root) ganglia. Sequential or double immunostaining with antibodies against substance P and CGRP suggested co-existence of the two peptides in nerve cell bodies in the ganglia and in perivascular fibers. In agreement with previous findings CGRP turned out to be a strong vasodilator in vitro as tested on several blood vessels (e.g. basilar, gastroepiploic and mesenteric arteries). Conceivably, perivascular CGRP/SP fibers have a dual role as regulator of local blood flow and as carrier of sensory information.  相似文献   

19.
Summary Substance P and calcitonin gene-related peptide were immunohistochemically identified in axons innervating the cornea and the ureter of adult rats and pigeons. The two neuropeptides were similarly distributed in both species. Capsaicin pretreatment induced depletion of the immunoreactivity; this was quantitatively and qualitatively different in rats and pigeons. Topical application of capsaicin (1%) reduced the immunoreactivity in the cornea in both species by 50%. Systemic capsaicin treatment completely depleted both peptides from the corneal innervation of rats but reduced the peptide content only by 50% in the cornea of pigeons. In the ureter of rats, capsaicin pretreatment completely depleted the peptide immunoreactivity. In pigeons the peptide depletion was only complete in the outer longitudinal muscle layer. Whereas only a few immunoreactive fibres were observed in the circular muscle layer, about 50% of the peptide remained in the inner longitudinal muscle layer. The results demonstrate that peptidergic afferents in the cornea and ureter of pigeons are sensitive to capsaicin, although birds do not show nociceptive responses to local administration of the drug. The long-term depletion of substance P and calcitonin gene-related peptide by capsaicin is discussed with regard to the possibility that functionally capsaicin receptors may exist in the axon but not at nerve endings.Part of the thesis of Gerhard Harti, to be presented to the Fachbereich Biologie, Justus-Liebig-Universität, Giessen  相似文献   

20.
The present peroxidase-antiperoxidase immunohistochemical study demonstrated a relatively small number of cells with substance P(SP)-like immunoreactivity in the adrenal medulla of rats. These cells were found alone or in small groups, were polygonal in shape and lacked long cytoplasmic processes. At immunoelectron microscopy, the immunoreactive cells were characterized by abundant granular vesicles, and the immunoreactive material was confined to the round core of the vesicles. Thus, it is suggested that SP co-exists with catecholamines in a population of chromaffin cells of the rat adrenal medulla. In addition a few SP-immunoreactive nerve fibers with varicosities were found in the adrenal medulla of rats. They extended between small clusters of chromaffin cells and had their dot-like terminals around and within the cell clusters. The SP-immunoreactive nerve fibers were characterized by the presence of abundant small clear vesicles mixed with a few large granular vesicles; the immunoreactivity appeared in the latter, but was also perfused throughout the entire axoplasm. The nerve fibers formed synapses on nonimmunoreactive chromaffin cells. Judging from the presence of bundles of SP-immunoreactive nerve fibers penetrating the adrenal capsule and cortex as well as the absence of SP-immunoreactive ganglion cells in the medulla, the intramedullary SP-immunoreactive nerve fibers seem to be extrinsic in origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号