首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 895 毫秒
1.
Epidemiological studies have shown the protective effect of KIR3DL1/HLA-Bw4 genotypes in human immunodeficiency virus type 1 (HIV-1) infection; however, the functional correlates for the protective effect remain unknown. We investigated whether human leukocyte antigen (HLA)-Bw4-presented HIV-1 peptides could affect the interaction between the inhibitory natural killer (NK) cell receptor KIR3DL1 and its ligand HLA-Bw4. Distinct HIV-1 epitopes differentially modulated the binding of KIR3DL1 to HLA-Bw4. Furthermore, cytotoxic T lymphocyte (CTL) escape mutations within the immunodominant HLA-B57 (Bw4)-restricted Gag epitope TSTLQEQIGW abrogated KIR3DL1 binding to HLA-B57, suggesting that sensing of CTL escape variants by NK cells can contribute to the protective effect of the KIR3DL1/HLA-Bw4 compound genotype.  相似文献   

2.
Functional polymorphism of the KIR3DL1/S1 receptor on human NK cells   总被引:6,自引:0,他引:6  
NK cells express both inhibitory and activatory receptors that allow them to recognize target cells through HLA class I Ag expression. KIR3DL1 is a receptor that recognizes the HLA-Bw4 public epitope of HLA-B alleles. We demonstrate that polymorphism within the KIR3DL1 receptor has functional consequences in terms of NK cell recognition of target. Inhibitory alleles of KIR3DL1 differ in their ability to recognize HLA-Bw4 ligand, and a consistent hierarchy of ligand reactivity can be defined. KIR3DS1, which segregates as an allele of KIR3DL1, has a short cytoplasmic tail characteristic of activatory receptors. Because it is very similar to KIR3DL1 in the extracellular domains, it has been assumed that KIR3DS1 will recognize a HLA-Bw4 ligand. In this study, we demonstrate that KIR3DS1 is expressed as a protein at the cell surface of NK cells, where it is recognized by the Z27 Ab. Using this Ab, we found that KIR3DS1 is expressed on a higher percentage of NK cells in KIR3DS1 homozygous compared with heterozygous donors. In contrast to the inhibitory KIR3DL1 allotypes, KIR3DS1 did not recognize HLA-Bw4 on EBV-transformed cell lines.  相似文献   

3.
An extensive family-based study of linkage disequilibrium (LD) in the killer cell immunoglobulin-like receptors (KIR) cluster was performed. We aimed to describe the LD structure in the KIR gene cluster using a sample of 418 founder haplotypes identified by segregation in a group of 106 families from Northern Ireland. The LD was studied at two levels of polymorphism: the structural level (presence or absence of KIR genes) and the allelic level (between alleles of KIR genes). LD was further assessed using the predictive value of one KIR polymorphism for another one in order to provide an interpretative framework for the LD effect in association studies. In line with previous research, distinct patterns of KIR genetic diversity within the genomic region centromeric to KIR2DL4 (excluding KIR2DL4) and within the telomeric region including KIR2DL4 were found. In a comprehensive PPV/NPV-based LD analysis within the KIR cluster, robust tag markers were found that can be used to identify which genes are concomitantly present or absent and to further identify groups of associated KIR alleles. Several extended KIR haplotypes in the study population were identified (KIR2DS2*POS-KIR2DL2*001-KIR2DL5B*002-KIR2DS3*00103-KIR2DL1*00401; KIR2DL4*011-KIR3DL1/S1*005-KIR2DS4*003-KIR3DL2*003; KIR2DL4*00802-KIR3DL1/S1*004-KIR2DS4*006-KIR3DL2*005; KIR2DL4*00801-KIR3DL1/S1*00101-KIR2DS4*003-KIR3DL2*001; KIR2DL4*00103-KIR3DL1/S1*008-KIR2DS4*003-KIR3DL2*009; KIR2DL4*00102-KIR3DL1/S1*01502/*002-KIR2DS4*00101-KIR3DL2*002; KIR2DL4*00501-KIR3DL1/S1*013-KIR2DL5A*001-KIR2DS5*002-KIR2DS1*002-KIR3DL2*007). The present study provides a rationale for analyzing associations of KIR polymorphisms by taking into account the complex LD structure of the KIR region.  相似文献   

4.
KIR3DL1 is an inhibitory HLA-B receptor of human NK and T cells that exhibits genetic and phenotypic polymorphism. KIR3DL1*004, a common allotype, cannot be detected on the surface of PBLs using the KIR3DL1-specific Ab DX9. The nature of this phenotype was investigated through comparison of 3DL1*004 with 3DL1*002, an allele giving high DX9 binding to cell surfaces. Analysis of Jurkat T cell transfectants with 3DL1*004 cDNA showed that 3DL1*004 is poorly expressed at the cell surface, but detectable intracellularly. Analysis of recombinant mutants made between 3DL1*004 and 3DL1*002 showed that polymorphism in Ig domains 0 and 1 (D0 and D1) causes the intracellular retention of 3DL1*004. Reciprocal point mutations were introduced into 3DL1*004 and 3DL1*002 at positions 44 and 86 of the D0 domain, where 3DL1*004 has unique residues, and at position 182 of the D1 domain, where 3DL1*004 resembles 3DL1*005, an allotype giving low DX9-binding phenotype. Leucine 86 in 3DL1*004 is the principal cause of its intracellular retention, with a secondary and additive contribution from serine 182. By contrast, glycine 44, which is naturally present in 3DL1*004, slightly increased cell surface expression when introduced into 3DL1*002. In 3DL1*004, the presence of leucine at position 86 corrupts the WSXPS motif implicated in proper folding of the KIR D0 Ig-like domain. This study demonstrates how a difference between KIR3DL1 allotypes in the D0 domain profoundly affects cell surface expression and function.  相似文献   

5.
NK cell activity is regulated by the integration of positive and negative signals. One important source of these signals for human NK cells is the killer Ig-like receptor (KIR) family, which includes both members that transduce positive and those that generate negative signals. KIR3DL1 inhibits NK cell activity upon engagement by its ligand HLA-Bw4. The highly homologous KIR3DS1 is an activating receptor, which is implicated in the outcome of a variety of pathological situations. However, unlike KIR3DL1, direct binding of KIR3DS1(+) cells to HLA has not been demonstrated. We analyzed four key amino acid differences between KIR3DL1*01502 and KIR3DS1*013 to determine their role in KIR binding to HLA. Single substitutions of these residues dramatically reduced binding by KIR3DL1. In the reciprocal experiment, we found that the rare KIR3DS1 allotype KIR3DS1*014 binds HLA-Bw4 even though it differs from KIR3DS1*013 at only one of these positions (position 138). This reactivity was unexpectedly dependent on residues at other variable positions, as HLA-Bw4 binding was lost in receptors with KIR3DL1-like residues at both positions 199 and 138. These data provide the first evidence, to our knowledge, for the direct binding of KIR3DS1(+) cells to HLA-Bw4 and highlight the key role for position 138 in determining ligand specificity of KIR3DS1. They also reveal that KIR3DS1 reactivity and specificity is dictated by complex interactions between the residues in this region, suggesting a unique functional evolution of KIR3DS1 within the activating KIR family.  相似文献   

6.
Although it is clear that KIR3DL1 recognizes Bw4(+) HLA-B, the role of Bw4(+) HLA-A allotypes as KIR3DL1 ligands is controversial. We therefore examined the binding of tetrameric HLA-A and -B complexes, including HLA*2402, a common Bw4(+) HLA-A allotype, to KIR3DL1*001, *005, *007, and *1502 allotypes. Only Bw4(+) tetramers bound KIR3DL1. Three of four HLA-A*2402 tetramers bound one or more KIR3DL1 allotypes and all four KIR3DL1 allotypes bound to one or more HLA-A*2402 tetramers, but with different binding specificities. Only KIR3DL1*005 bound both HLA-A*2402 and HLA-B*5703 tetramers. HLA-A*2402-expressing target cells were resistant to lysis by NK cells expressing KIR3DL1*001 or *005. This study shows that HLA-A*2402 is a ligand for KIR3DL1 and demonstrates how the binding of KIR3DL1 to Bw4(+) ligands depends upon the bound peptide as well as HLA and KIR3DL1 polymorphism.  相似文献   

7.

Background

Natural killer cells are involved in the complex mechanisms underlying autoimmune diseases but few studies have investigated their role in autoimmune hepatitis. Killer immunoglobulin-like receptors are key regulators of natural killer cell-mediated immune responses.

Methods and Findings

KIR gene frequencies, KIR haplotypes, KIR ligands and combinations of KIRs and their HLA Class I ligands were investigated in 114 patients diagnosed with type 1 autoimmune hepatitis and compared with a group of 221 healthy controls. HLA Class I and Class II antigen frequencies were compared to those of 551 healthy unrelated families representative of the Sardinian population. In our cohort, type 1 autoimmune hepatitis was strongly associated with the HLA-B18, Cw5, DR3 haplotype. The KIR2DS1 activating KIR gene and the high affinity HLA-C2 ligands were significantly higher in patients compared to controls. Patients also had a reduced frequency of HLA-Bw4 ligands for KIR3DL1 and HLA-C1 ligands for KIR2DL3. Age at onset was significantly associated with the KIR2DS1 activating gene but not with HLA-C1 or HLA-C2 ligand groups.

Conclusions

The activating KIR gene KIR2DS1 resulted to have an important predictive potential for early onset of type 1 autoimmune hepatitis. Additionally, the low frequency of the KIR-ligand combinations KIR3DL1/HLA-Bw4 and KIR2DL3/HLA-C1 coupled to the high frequency of the HLA-C2 high affinity ligands for KIR2DS1 could contribute to unwanted NK cell autoreactivity in AIH-1.  相似文献   

8.
Variable interaction between the Bw4 epitope of HLA-B and the polymorphic KIR3DL1/S1 system of inhibitory and activating NK cell receptors diversifies the development, repertoire formation, and response of human NK cells. KIR3DL1*004, a common KIR3DL1 allotype, in combination with Bw4(+) HLA-B, slows progression of HIV infection to AIDS. Analysis in this study of KIR3DL1*004 membrane traffic in NK cells shows this allotype is largely misfolded but stably retained in the endoplasmic reticulum, where it binds to the chaperone calreticulin and does not induce the unfolded protein response. A small fraction of KIR3DL1*004 folds correctly and leaves the endoplasmic reticulum to be expressed on the surface of primary NK and transfected NKL cells, in a form that can be triggered to inhibit NK cell activation and secretion of IFN-γ. Consistent with this small proportion of correctly folded molecules, trace amounts of MHC class I coimmunoprecipitated with KIR3DL1*004. There was no indication of any extensive intracellular interaction between unfolded KIR3DL1*004 and cognate Bw4(+) HLA-B. A similarly limited interaction of Bw4 with KIR3DL1*002, when both were expressed by the same cell, was observed despite the efficient folding of KIR3DL1*002 and its abundance on the NK cell surface. Several positions of polymorphism modulate KIR3DL1 abundance at the cell surface, differences that do not necessarily correlate with the potency of allotype function. In this context, our results suggest the possibility that the effect of Bw4(+) HLA-B and KIR3DL1*004 in slowing progression to AIDS is mediated by interaction of Bw4(+) HLA-B with the small fraction of cell surface KIR3DL1*004.  相似文献   

9.
NK cells are regulated in part by killer Ig-like receptors (KIR) that interact with HLA molecules on potential target cells. KIR and HLA loci are highly polymorphic and certain KIR/HLA combinations were found to protect against HIV disease progression. We show in this study that KIR/HLA interactions also influence resistance to HIV transmission. HIV-exposed but seronegative female sex workers in Abidjan, C?te d'Ivoire, frequently possessed inhibitory KIR genes in the absence of their cognate HLA genes: KIR2DL2/KIR2DL3 heterozygosity in the absence of HLA-C1 and KIR3DL1 homozygosity in the absence of HLA-Bw4. HIV-seropositive female sex workers were characterized by corresponding inhibitory KIR/HLA pairings: KIR2DL3 homozygosity together with HLA-C1 and a trend toward KIR3DL1/HLA-Bw4 homozygosity. Absence of ligands for inhibitory KIR could lower the threshold for NK cell activation. In addition, exposed seronegatives more frequently possessed AB KIR genotypes, which contain more activating KIR. The data support an important role for NK cells and KIR/HLA interactions in antiviral immunity.  相似文献   

10.
Interactions between HLA-C ligands and inhibitory killer cell Ig-like receptors (KIR) control the development and response of human NK cells. This regulatory mechanism is usually described by mutually exclusive interactions of KIR2DL1 with C2 having lysine 80, and KIR2DL2/3 with C1 having asparagine 80. Consistent with this simple rule, we found from functional analysis and binding assays to 93 HLA-A, HLA-B, and HLA-C isoforms that KIR2DL1*003 bound all C2, and only C2, allotypes. The allotypically related KIR2DL2*001 and KIR2DL3*001 interacted with all C1, but they violated the simple rule through interactions with several C2 allotypes, notably Cw*0501 and Cw*0202, and two HLA-B allotypes (B*4601 and B*7301) that share polymorphisms with HLA-C. Although the specificities of the "cross-reactions" were similar for KIR2DL2*001 and KIR2DL3*001, they were stronger for KIR2DL2*001, as were the reactions with C1. Mutagenesis explored the avidity difference between KIR2DL2*001 and KIR2DL3*001. Recombinant mutants mapped the difference to the Ig-like domains, where site-directed mutagenesis showed that the combination, but not the individual substitutions, of arginine for proline 16 in D1 and cysteine for arginine 148 in D2 made KIR2DL2*001 a stronger receptor than KIR2DL3*001. Neither residue 16 or 148 is part of, or near to, the ligand-binding site. Instead, their juxtaposition near the flexible hinge between D1 and D2 suggests that their polymorphisms affect the ligand-binding site by changing the hinge angle and the relative orientation of the two domains. This study demonstrates how allelic polymorphism at sites distal to the ligand-binding site of KIR2DL2/3 has diversified this receptor's interactions with HLA-C.  相似文献   

11.
KIR3DL1 is a highly polymorphic inhibitory killer cell Ig-like receptor (KIR) implicated in resistance to viral diseases such as AIDS. KIR3DL1 contains three Ig domains and is specific for MHC class I (MHC-I) molecules belonging to the HLA-Bw4 serogroup. The receptor's second and third Ig domains confer the Bw4 specificity, but the role of the first Ig domain (D0) in ligand recognition has remained enigmatic. We found that KIR3DL1 expressed in YTS cells and as a soluble receptor can weakly recognize additional MHC-I molecules including HLA-B*0702 and HLA-G. This interaction is highly sensitive to blocking with Abs to the MHC-I α3-domain and the anti-KIR3DL1 Ab Z27, but not the canonical blocking Ab DX9. Using chimeric receptors between KIR3DL1 and KIR2DL1 expressed on YTS cells and as soluble Fc-fusion proteins, we show that the D0 domain confers the broad functional recognition and binding as well as the reactivity with Z27. These results suggest that the presence of a second and independent site of interaction between D0 and MHC-I and that MHC-I could bridge KIR3DL1 molecules together in a manner that facilitates signaling.  相似文献   

12.
Genetic polymorphisms found in the killer Ig-like receptor (KIR), two domains, long cytoplasmic tail 2/3 (KIR2DL2/3) locus are responsible for the differential binding of KIR2DL2/3 allelic products with their HLA-C ligands and have been associated with the resolution of hepatitis C infection. In our study, a KIR CD3zeta fusion-binding assay did not detect any interaction between the KIR2DL2*004 extracellular domain and several putative KIR2DL2/3 ligands. To determine the amino acid polymorphism(s) responsible for the KIR2DL2*004 phenotype, we mutated the polymorphic residues of full-length KIR and expressed them in human Jurkat cells. Flow cytometry analysis failed to detect the surface expression of receptors containing a threonine at position 41 (T41), a polymorphism specific to KIR2DL2*004. Confocal microscopy showed that receptors containing T41 were retained inside the cell and had a perinuclear localization, possibly indicating that their extracellular domain was misfolded. Most KIR2DL2/3 alleles possess an arginine at position 41 (R41), and we predicted through molecular modeling and demonstrated by mutagenesis that R41 most likely interacts with the nearby residues Y77 and D47. Interaction between these residues would maintain C strand contact with the C' and F strands of the D1 domain beta-sheet. Furthermore, R41 and Y77 are conserved in the C and F strand amino acid alignments of Ig-like superfamily members, and may therefore be necessary for the structural integrity of other immune response proteins. Our data indicate that the extracellular T41 polymorphism encoded by the KIR2DL2*004 allele most likely results in misfolding of the D1 domain and complete intracellular retention of the receptor.  相似文献   

13.
Specific interactions between killer cell Ig-like receptors (KIRs) and MHC class I ligands have not been described in rhesus macaques despite their importance in biomedical research. Using KIR-Fc fusion proteins, we detected specific interactions for three inhibitory KIRs (3DLW03, 3DL05, 3DL11) and one activating KIR (3DS05). As ligands we identified Macaca mulatta MHC (Mamu)-A1- and Mamu-A3-encoded allotypes, among them Mamu-A1*001:01, which is well known for association with slow progression to AIDS in the rhesus macaque experimental SIV infection model. Interactions with Mamu-B or Mamu-I molecules were not found. KIR3DLW03 and KIR3DL05 differ in their binding sites to their shared ligand Mamu-A1*001:01, with 3DLW03 depending on presence of the α1 domain, whereas 3DL05 depends on both the α1 and α2 domains. Fine-mapping studies revealed that binding of KIR3DLW03 is influenced by presence of the complete Bw4 epitope (positions 77, 80-83), whereas that of KIR3DL05 is mainly influenced by amino acid position 77 of Bw4 and positions 80-83 of Bw6. Our findings allowed the successful prediction of a further ligand of KIR3DL05, Mamu-A1*002:01. These functional differences of rhesus macaque KIR3DL molecules are in line with the known genetic diversification of lineage II KIRs in macaques.  相似文献   

14.
Modulating natural killer cell functions in human immunity and reproduction are diverse interactions between the killer cell immunoglobulin-like receptors (KIR) of Natural Killer (NK) cells and HLA class I ligands on the surface of tissue cells. Dominant interactions are between KIR2DL1 and the C2 epitope of HLA-C and between KIR2DL2/3 and the C1 epitope of HLA-C. KhoeSan hunter-gatherers of Southern Africa represent the earliest population divergence known and are the most genetically diverse indigenous people, qualities reflected in their KIR and HLA genes. Of the ten KhoeSan KIR2DL1 alleles, KIR2DL1*022 and KIR2DL1*026 likely originated in the KhoeSan, and later were transmitted at low frequency to the neighboring Zulus through gene flow. These alleles arose by point mutation from other KhoeSan KIR2DL1 alleles that are more widespread globally. Mutation of KIR2DL1*001 gave rise to KIR2DL1*022, causing loss of C2 recognition and gain of C1 recognition. This makes KIR2DL1*022 a more avid and specific C1 receptor than any KIR2DL2/3 allotype. Mutation of KIR2DL1*012 gave rise to KIR2DL1*026, causing premature termination of translation at the end of the transmembrane domain. This makes KIR2DL1*026 a membrane-associated receptor that lacks both a cytoplasmic tail and signaling function. At higher frequencies than their parental allotypes, the combined effect of the KhoeSan-specific KIR2DL1*022 and KIR2DL1*026 is to reduce the frequency of strong inhibitory C2 receptors and increase the frequency of strong inhibitory C1 receptors. Because interaction of KIR2DL1 with C2 is associated with risk of pregnancy disorder, these functional changes are potentially advantageous. Whereas all other KhoeSan KIR2DL1 alleles are present on a wide diversity of centromeric KIR haplotypes, KIR2DL1*026 is present on a single KIR haplotype and KIR2DL1*022 is present on two very similar haplotypes. The high linkage disequilibrium across their haplotypes is consistent with a recent emergence for these KIR2DL1 alleles that have distinctive functions.  相似文献   

15.
Combinations of KIR3DL1 and HLA-Bw4 alleles protect against HIV infection and/or disease progression. These combinations enhance NK cell responsiveness through the ontological process of education. However, educated KIR3DL1(+) NK cells do not have enhanced degranulation upon direct recognition of autologous HIV-infected cells. Since antibody-dependent cellular cytotoxicity (ADCC) is associated with improved HIV infection outcomes and NK cells overcome inhibition through killer cell immunoglobulin-like receptors (KIR) to mediate ADCC, we hypothesized that KIR3DL1-educated NK cells mediate anti-HIV ADCC against autologous cells. A whole-blood flow cytometry assay was used to evaluate ADCC-induced activation of NK cells. This assay assessed activation (gamma interferon [IFN-γ] production and/or CD107a expression) of KIR3DL1(+) and KIR3DL1(-) NK cells, from HLA-Bw4(+) and HLA-Bw4(-) HIV-positive and HIV-negative individuals, in response to autologous HIV-specific ADCC targets. KIR3DL1(+) NK cells were more functional than KIR3DL1(-) NK cells from HLA-Bw4(+), but not HLA-Bw4(-), healthy controls. In HIV-infected individuals, no differences in NK cell functionality were observed between KIR3DL1(+) and KIR3DL1(-) NK cells in HLA-Bw4(+) individuals, consistent with dysfunction of NK cells in the setting of HIV infection. Reflecting the partial normalization of NK cell responsiveness following initiation of antiretroviral therapy, a significant correlation was observed between the peripheral CD4(+) T-lymphocyte counts in antiretroviral therapy-treated subjects and the functionality of NK cells. However, peripheral CD4(+) T-lymphocyte counts were not correlated with an anti-HIV ADCC functional advantage in educated KIR3DL1(+) NK cells. The abrogation of the functional advantage of educated NK cells may enhance HIV disease progression. Strategies to enhance the potency of NK cell-mediated ADCC may improve HIV therapies and vaccines.  相似文献   

16.
17.
A genome-wide screen for large structural variants showed that a copy number variant (CNV) in the region encoding killer cell immunoglobulin-like receptors (KIR) associates with HIV-1 control as measured by plasma viral load at set point in individuals of European ancestry. This CNV encompasses the KIR3DL1-KIR3DS1 locus, encoding receptors that interact with specific HLA-Bw4 molecules to regulate the activation of lymphocyte subsets including natural killer (NK) cells. We quantified the number of copies of KIR3DS1 and KIR3DL1 in a large HIV-1 positive cohort, and showed that an increase in KIR3DS1 count associates with a lower viral set point if its putative ligand is present (p = 0.00028), as does an increase in KIR3DL1 count in the presence of KIR3DS1 and appropriate ligands for both receptors (p = 0.0015). We further provide functional data that demonstrate that NK cells from individuals with multiple copies of KIR3DL1, in the presence of KIR3DS1 and the appropriate ligands, inhibit HIV-1 replication more robustly, and associated with a significant expansion in the frequency of KIR3DS1+, but not KIR3DL1+, NK cells in their peripheral blood. Our results suggest that the relative amounts of these activating and inhibitory KIR play a role in regulating the peripheral expansion of highly antiviral KIR3DS1+ NK cells, which may determine differences in HIV-1 control following infection.  相似文献   

18.
Natural killer (NK) cell responses in primates are regulated in part through interactions between two highly polymorphic molecules, the killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their major histocompatibility complex (MHC) class I ligands on target cells. We previously reported that the binding of a common MHC class I molecule in the rhesus macaque, Mamu-A1*002, to the inhibitory receptor Mamu-KIR3DL05 is stabilized by certain simian immunodeficiency virus (SIV) peptides, but not by others. Here we investigated the functional implications of these interactions by testing SIV peptides bound by Mamu-A1*002 for the ability to modulate Mamu-KIR3DL05+ NK cell responses. Twenty-eight of 75 SIV peptides bound by Mamu-A1*002 suppressed the cytolytic activity of primary Mamu-KIR3DL05+ NK cells, including three immunodominant CD8+ T cell epitopes previously shown to stabilize Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. Substitutions at C-terminal positions changed inhibitory peptides into disinhibitory peptides, and vice versa, without altering binding to Mamu-A1*002. The functional effects of these peptide variants on NK cell responses also corresponded to their effects on Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. In assays with mixtures of inhibitory and disinhibitory peptides, low concentrations of inhibitory peptides dominated to suppress NK cell responses. Consistent with the inhibition of Mamu-KIR3DL05+ NK cells by viral epitopes presented by Mamu-A1*002, SIV replication was significantly higher in Mamu-A1*002+ CD4+ lymphocytes co-cultured with Mamu-KIR3DL05+ NK cells than with Mamu-KIR3DL05- NK cells. These results demonstrate that viral peptides can differentially affect NK cell responses by modulating MHC class I interactions with inhibitory KIRs, and provide a mechanism by which immunodeficiency viruses may evade NK cell responses.  相似文献   

19.
The killer cell Ig-like receptor (KIR) gene, KIR3DS1, has been implicated in slowing disease progression in HIV infection; however, little is known about its expression, function, or ligand specificity. Using retrovirally transduced NKL cells and peripheral blood NK cells from KIR3DS1-positive donors we assessed expression of this gene by flow cytometry and its function by in vitro assays measuring KIR3DS1-induced cell-mediated cytotoxicity and cytokine production. In the present study, we demonstrate that KIR3DS1 is expressed on peripheral blood NK cells and triggers both cytotoxicity and IFN-gamma production. Using cotransfection and coimmunoprecipitation, we found that KIR3DS1 associates with the ITAM-bearing adaptor, DAP12. Soluble KIR3DS1-Ig fusion proteins did not bind to EBV-transformed B lymphoid cell lines transfected with HLA-Bw4 80I or 80T allotypes, suggesting that if KIR3DS1 does recognize HLA-Bw4 ligands, this may be peptide dependent.  相似文献   

20.
Natural killer cell responses play a crucial role in virus clearance by the innate immune system. Although the killer immunoglobulin-like receptor (KIR) in combination with its cognate human leukocyte antigen (HLA) ligand, especially KIR2DL3-HLA-C1, is associated with both treatment-induced and spontaneous clearance of hepatitis C virus (HCV) infection in Caucasians, these innate immunity genes have not been fully clarified in Japanese patients. We therefore investigated 16 KIR genotypes along with HLA-B and -C ligands and a genetic variant of interleukin (IL) 28B (rs8099917) in 115 chronic hepatitis C genotype 1 patients who underwent pegylated-interferon-α2b (PEG-IFN) and ribavirin therapy. HLA-Bw4 was significantly associated with a sustained virological response (SVR) to treatment (P = 0.017; odds ratio [OR] = 2.50, ), as was the centromeric A/A haplotype of KIR (P = 0.015; OR 3.37). In contrast, SVR rates were significantly decreased in patients with KIR2DL2 or KIR2DS2 (P = 0.015; OR = 0.30, and P = 0.025; OR = 0.32, respectively). Multivariate logistic regression analysis subsequently identified the IL28B TT genotype (P = 0.00009; OR = 6.87, 95% confidence interval [CI] = 2.62 - 18.01), KIR2DL2/HLA-C1 (P = 0.014; OR = 0.24, 95% CI = 0.08 - 0.75), KIR3DL1/HLA-Bw4 (P = 0.008, OR = 3.32, 95% CI = 1.37 - 8.05), and white blood cell count at baseline (P = 0.009; OR = 3.32, 95% CI = 1.35 - 8.16) as independent predictive factors of an SVR. We observed a significant association between the combination of IL28B TT genotype and KIR3DL1-HLA-Bw4 in responders (P = 0.0019), whereas IL28B TT along with KIR2DL2-HLA-C1 was related to a non-response (P = 0.0067). In conclusion, combinations of KIR3DL1/HLA-Bw4, KIR2DL2/HLA-C1, and a genetic variant of the IL28B gene are predictive of the response to PEG-IFN and ribavirin therapy in Japanese patients infected with genotype 1b HCV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号