首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In this study, nisin production of Lactococcus lactis N8 was optimized by independent variables of glucose, hemin and oxygen concentrations in fed‐batch fermentation in which respiration of cells was stimulated with hemin. Response surface model was able to explain the changes of the nisin production of L. lactis N8 in fed‐batch fermentation system with high fidelity (R2 98%) and insignificant lack of fit. Accordingly, the equation developed indicated the optimum parameters for glucose, hemin, and dissolved oxygen were 8 g L?1 h?1, 3 μg mL?1 and 40%, respectively. While 1711 IU mL?1 nisin was produced by L. lactis N8 in control fed‐batch fermentation, 5410 IU mL?1 nisin production was achieved within the relevant optimum parameters where the respiration of cell was stimulated with hemin. Accordingly, nisin production was enhanced 3.1 fold in fed‐batch fermentation using hemin. In conclusion the nisin production of L. lactis N8 was enhanced extensively as a result of increasing the biomass by stimulating the cell respiration with adding the hemin in the fed‐batch fermentation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:678–685, 2015  相似文献   

2.
The effect on nisin production of increasing nisin immunity/resistance genes in Lactococcus lactis subsp. lactis MG1363 was investigated. The 60-kb nisin immunity/resistance plasmid pND300, which was isolated from a non-nisin-producing strain, encodes five genes involved in nisin immunity/resistance, which are very similar to those of the immunity/resistance system encoded by the nisin-production transposon. The introduction of pND300 into MG1363(TnNip) resulted in the construct being able to produce significantly more nisin than the parent MG1363(TnNip). The introduction of pND314, which contains the nisin immunity/resistance genes subcloned into pSA3, into MG1363(TnNip) allowed the strain to grow more rapidly than the parent MG1363(TnNip) with a concomitant increase in the rate of nisin production. This work illustrates that introduction of pND300 and a derivative containing the nisin immunity/resistance system of pND300 into MG1363 (TnNip) can result in significant alterations to the kinetics of nisin production. These observations indicate approaches that may be used successfully to improve the economics of nisin production. Received: 11 February 1998 / Received revision: 25 June 1998 / Accepted: 27 June 1998  相似文献   

3.
Summary Phage adsorption tests and transfection by electroporation were carried out to decide whether phage-resistance in Lactococcus lactis subsp. lactis strain 4513-5 is based on intracellular or extracellular mechanisms. Using high voltage (12.5 kV/cm) electroporation, untreated phage DNA was introduced into phage-sensitive and phage-resistant cells. Since phages showed low adsorption frequencies on resistant bacteria, resistance is localized in the cell wall preventing phage DNA from entering the cell. This is the only mechanism responsible for the resistance of L. lactis subsp. lactis 4513-5 against its homologous phage P4513-K12 and non-homologous phages P05M-13 and P05M-47, but not against phage P530-7 and phage P530-12. In the case of the latter two phage strains, intracellular resistance mechanisms are involved and discussed.  相似文献   

4.
Aims: The aim of the study is to evaluate the effectiveness of the preparation of nisin Z from Lactococcus lactis W8‐fermented milk in controlling the growth of spoilage bacteria in pasteurized milk. Methods and Results: Spoilage bacteria isolated from pasteurized milk at 8 and 15°C were identified as Enterococcus italicus, Enterococcus mundtii, Enterococcus faecalis, Bacillus thuringiensis, Bacillus cereus, Lactobacillus paracasei, Acinetobacter sp., Pseudomonas fluorescens and Enterobacter aerogenes. These bacteria were found to have the ability to survive pasteurization temperature. Except Enterobacter aerogenes, the spoilage bacteria were sensitive to the nisin Z preparation of the L. lactis W8. Addition of the nisin Z preparation to either the skim milk or fat milk inoculated with each of the spoilage bacteria reduced the initial counts (about 5 log CFU ml?1) to an undetectable level within 8–20 h. The nisin Z preparation extended the shelf life of milk to 2 months under refrigeration. Conclusions: The nisin Z preparation from L. lactis W8‐fermented milk was found to be effective as a backup preservative to counteract postpasteurization contamination in milk. Significance and Impact of the Study: A rapid inhibition of spoilage bacteria in pasteurized skim and fat milk with the nisin Z preparation of L. lactis W8 is more significant in comparison with the commercially available nisin (nisin A). The nisin Z preparation can be used instead of commercial nisin, which is not effective in fat milk.  相似文献   

5.
Abstract

Hyaluronic acid (HA) is a natural biopolymer and has long been attracting the attention of biotechnology industry due to its various biological functions. HA production with natural producer Streptococcus equi subsp. zooepidemicus has not been preferred because it has many drawbacks due to its pathogenicity. Therefore, in the present study, Streptococcal hyaluronan synthase gene (hasA) was introduced and expressed in Lactococcus lactis, through the auto inducible NICE system and the effect of nisin amount on the production of HA was examined. Newly constructed plasmid was transformed into L. lactis CES15, produced 6.09 g/l HA in static flask culture after three hours of induction period with initial 7.5 ng/ml nisin concentration within total six hours of incubation. The highest HA titer value ever was reported for recombinant HA-producing L. lactis by examining the effect of initial nisin concentration. We have shown that initial nisin concentration, which used to initiate the auto-inducing mechanism of NICE system and consequently hyaluronan synthase expression, has a direct and significant effect on the produced HA amount. Recently constructed recombinant L. lactis CES15 strain provide significant advantages for industrial HA production than those in literature in terms of production time, energy demand, carbon usage, and safety status.  相似文献   

6.
Cell wall is closely related to bacterial robustness and adsorption capacity, playing crucial roles in nisin production in Lactococcus lactis. Peptidoglycan (PG), the essential component of cell wall, is usually modified with MurNAc O-acetylation and GlcNAc N-deacetylation, catalyzed by YvhB and XynD, respectively. In this study, increasing the two modifications in L. lactis F44 improved autolysis resistance by decreasing the susceptibility to PG hydrolases. Furthermore, both modifications were positively associated with overall cross-linkage, contributing to cell wall integrity. The robust cell wall rendered the yvhB/xynD-overexpression strains more acid resistant, leading to the increase of nisin production in fed-batch fermentations by 63.7 and 62.9%, respectively. Importantly, the structural alterations also reduced nisin adsorption capacity, resulting in reduction of nisin loss. More strikingly, the co-overexpression strain displayed the highest nisin production (76.3% higher than F44). Our work provides a novel approach for achieving nisin overproduction via extensive cell wall remodeling.  相似文献   

7.
This study examined the ability of (i) pure nisin, (ii) nisin-producing Lactococcus lactis strain CHCC5826, and (iii) the non-nisin-producing L. lactis strain CHCH2862 to affect the composition of the intestinal microbiota of human flora-associated rats. The presence of both the nisin-producing and the non-nisin-producing L. lactis strains significantly increased the number of Bifidobacterium cells in fecal samples during the first 8 days but decreased the number of enterococci/streptococci in duodenum, ileum, cecum, and colon samples as detected by selective cultivation. No significant changes in the rat fecal microbiota were observed after dosage with nisin. Pearson cluster analysis of denaturing gradient gel electrophoresis profiles of the 16S rRNA genes present in the fecal microbial population revealed that the microbiota of animals dosed with either of the two L. lactis strains were different from that of control animals dosed with saline. However, profiles of the microbiota from animals dosed with nisin did not differ from the controls. The concentrations of nisin estimated by competitive enzyme-linked immunosorbent assay (ELISA) were approximately 10-fold higher in the small intestine and 200-fold higher in feces than the corresponding concentrations estimated by a biological assay. This indicates that nisin was degraded or inactivated in the gastrointestinal tract, since fragments of this bacteriocin are detected by ELISA while an intact molecule is needed to retain biological activity.  相似文献   

8.
The limiting factors in the continuous production of nisin are high amount of biomass loss and low dilution rate application. In this study, a chitin-including continuous nisin fermentation system (CICON-FER) was constructed for high volumetric nisin production using nisin producer L. lactis displaying cell wall chitin-binding domain (ChBD) together with chitin in the reactor. In this respect, the highest binding conditions of relevant L. lactis cells to chitin were determined. Then the chitin flakes carrying nisin-producing L. lactis cells were used within the CICON-FER system at different dilution rates (0.1–0.9 h?1) and initial glucose concentrations (20–60 g l?1). The results revealed that the pH 7 conditions and the use of 100 mM sodium phosphate buffer with 0.1 % Tween 20 and Triton X-100 significantly increased the binding capacity of ChBD displaying L. lactis cells to chitin. The constructed CICON-FER system maintained the presence of the ChBD surface displaying L. lactis cells in the reactor system until 0.9 h?1 dilution rate that resulted in a considerably high level of volumetric nisin production and productivity (10,500 IU ml?1 and 9,450 IU ml?1 h?1, respectively) with the combination of a 0.9-h?1 dilution rate and a 40-g l?1 initial glucose concentration. In conclusion, an innovative nisin fermentation system that yielded the highest nisin production thus far and that was feasible for industrial application was created.  相似文献   

9.
Nisin fermentation by Lactococcus lactis requires a low pH to maintain a relatively higher nisin activity. However, the acidic environment will result in cell arrest, and eventually decrease the relative nisin production. Hence, constructing an acid-resistant L. lactis is crucial for nisin harvest in acidic nisin fermentation. In this paper, the first discovery of the relationship between D-Asp amidation-associated gene (asnH) and acid resistance was reported. Overexpression of asnH in L. lactis F44 (F44A) resulted in a sevenfold increase in survival capacity during acid shift (pH 3) and enhanced nisin desorption capacity compared to F44 (wild type), which subsequently contributed to higher nisin production, reaching 5346 IU/mL, 57.0% more than that of F44 in the fed-batch fermentation. Furthermore, the engineered F44A showed a moderate increase in D-Asp amidation level (from 82 to 92%) compared to F44. The concomitant decrease of the negative charge inside the cell wall was detected by a newly developed method based on the nisin adsorption amount onto cell surface. Meanwhile, peptidoglycan cross-linkage increased from 36.8% (F44) to 41.9% (F44A), and intracellular pH can be better maintained by blocking extracellular H+ due to the maintenance of peptidoglycan integrity, which probably resulted from the action of inhibiting hydrolases activity. The inference was further supported by the acmC-overexpression strain F44C, which was characterized by uncontrolled peptidoglycan hydrolase activity. Our results provided a novel strategy for enhancing nisin yield through cell wall remodeling, which contributed to both continuous nisin synthesis and less nisin adsorption in acidic fermentation (dual enhancement).  相似文献   

10.
Abstract

In this study, azurin, a bacteriocin with anticancer property, was produced by food-grade Lactococcus lactis using the Nisin Controlled Gene Expression (NICE) System. In addition, the antibacterial and cytotoxic properties of recombinant azurin in the culture supernatant were also investigated. Azurin gene from Pseudomonas aeruginosa was cloned into the pNZ8149 vector and the resulting recombinant DNA was transformed into food grade L. lactis NZ3900. The expression of azurin protein was induced by the optimum concentration of nisin for 3?h. Inhibition zones for Escherichia coli and Bacillus cereus were observed at 5.0 and 10?mg/mL concentrations of lyophilized supernatants containing azurin, but no inhibition zone at azurin-free lyophilized supernatants. When HUVEC, HT29, HCT116, and MCF7 cell lines were treated with lyophilized culture supernatants with azurin or without azurin, cell viability decreased with increasing concentrations of the supernatant. Furthermore, the supernatants containing azurin showed more anti-proliferative effect than the azurin-free supernatants. This work provides a practicable method to produce recombinant azurin in the food grade L. lactis strain. As a result, the recombinant L. lactis strain, producing azurin, can be used in the investigation of food biopreservatives and in the development of a therapeutic probiotic.  相似文献   

11.
Aims: Study of the potential of Lactococcus lactis CECT‐4434 as a biosurfactants and nisin (the only bacteriocin allowed to be used in the food industry) producer for industrial applications, exploiting the possibility of recovering separately both metabolites, taking into account that L. lactis is an interesting micro‐organism with several applications in the food industry because it is recognized as GRAS. Methods and Results: The results showed the ability of this strain to produce cell‐bound biosurfactants, under controlled pH, and cell‐bound biosurfactants and bacteriocins, when pH was not controlled. Three extraction procedures were designed to separately recover these substances. Conclusions: The strain L. lactis CECT‐4434 showed to be a cell‐bound biosurfactants and bacterocins producer when fermentations were carried out under uncontrolled pH. Both products can be recovered separately. Significance and Impact of the Study: Development of a convenient tool for the extraction of cell‐bound biosurfactants and bacteriocins from the fermentation broth.  相似文献   

12.
The regulation of the synthesis of bacteriocin produced by the recombinant strain Lactococcus lactis subsp. lactis F-116 has been studied. The synthesis is regulated by the components of the fermentation medium, the content of inorganic phosphate (KH2PO4), yeast autolysate (source of amine nitrogen), and changes in carbohydrates and amino acids. The strain was obtained by fusion of protoplasts derived from two related L. lactis subsp. lactis strains, both exhibiting a weak ability to synthesize the bacteriocin nisin. Decreasing the content of KH2PO4 from 2.0 to 1.0 or 0.5% caused bacteriocin production to go down from 4100 to 2800 or 1150 IU/ml, respectively; the base fermentation medium contained 1.0% glucose, 0.2% NaCl, 0.02% MgSO4, and yeast autolysate (an amount corresponding to 35 mg % ammonium nitrogen). The substitution of sucrose for glucose (as the source of carbon) increased the antibiotic activity by 26%, and the addition of isoleucine, by 28.5%. Elevation of the concentration of yeast autolysate in the low-phosphate fermentation medium stimulated both the growth of the lactococci and the synthesis of bacteriocin. Introduction of 1% KH2PO4, yeast autolysate (an amount corresponding to 70 mg % ammonium nitrogen), 2.0% sucrose, and 0.1% isoleucine increased the bacteriocin-producing activity of the strain by 2.4 times.  相似文献   

13.
Lactococcus lactis subsp. lactis 425A is an atypical strain which excretes a high concentration of α-acetolactate when grown in milk. The conjugative lactococcal plasmid pNP40, which encodes phage and nisin resistance, was introduced to strain 425A by conjugation, using resistance to phage and nisin as a selection. No phage-nisin resistance mutants were encountered. Transconjugants display complete resistance at both 21 and 39°C to those phage previously identified as lytic for 425A. Transconjugants lose their resistance characteristics when spontaneously cured of pNP40. The commercially important property of 425A—production of high levels of α-acetolactic acid—is unaffected by the presence of pNP40.  相似文献   

14.
A Lactococcus strain with strong antimicrobial activity was isolated from raw milk Manchego cheese during a survey on the production of bacteriocins by lactic acid bacteria present in raw milk cheeses. It was identified as Lactococcus lactis subsp. lactis, phenotypically by its morphological and physiological characteristics and genotypically by a PCR technique. When tested for tolerance to known bacteriocins produced by lactococci, it was shown to be resistant to nisin A and nisin Z. The presence of genes encoding nisin and lacticin 481 was revealed by PCR techniques with specific probes. Sequences of the respective PCR amplified fragments matched sequences reported for nisin Z and lacticin 481.  相似文献   

15.
An approach to decreasing the lactate production in Lactococcus lactis by metabolic engineering is presented. The inhibitory effects of a low pH due to the accumulation of lactate on cell growth and nisin production in L. lactis are well known. To avoid such inhibitory effects, a new strategy by rerouting carbon flow was considered. In an effort to suppress lactate production, a new gene was introduced into L. lactis to create a novel pathway for alanine synthesis to reroute the metabolic flow of lactate. Alanine dehydrogenase (E.C.1.4.1.1) encoded by alaD from Bacillus sphaericus was expressed in L. lactis. The enzyme was expressed to a specific activity of nearly 0.39 U/mg protein in the transformant. Hemin addition was also considered to decrease the lactate production in L. lactis. The effect of hemin on the alanine production in the transformant was investigated. This study showed that using the combined strategy, stronger effects on lactate and alanine productions were observed in the transformant.  相似文献   

16.
Cell wall peptidoglycan assembly is a tightly regulated process requiring the combined action of multienzyme complexes. In this study we provide direct evidence showing that substrate transformations occurring at the different stages of this process play a crucial role in the spatial and temporal coordination of the cell wall synthesis machinery. Peptidoglycan substrate alteration was investigated in the Gram-positive bacterium Lactococcus lactis by substituting the peptidoglycan precursor biosynthesis genes of this bacterium for those of the vancomycin-resistant bacterium Lactobacillus plantarum. A set of L. lactis mutant strains in which the normal d-Ala-ended precursors were partially or totally replaced by d-Lac-ended precursors was generated. Incorporation of the altered precursor into the cell wall induced morphological changes arising from a defect in cell elongation and cell separation. Structural analysis of the muropeptides confirmed that the activity of multiple enzymes involved in peptidoglycan synthesis was altered. Optimization of this altered pathway was necessary to increase the level of vancomycin resistance conferred by the utilization of d-Lac-ended peptidoglycan precursors in the mutant strains. The implications of these findings on the control of bacterial cell morphogenesis and the mechanisms of vancomycin resistance are discussed.  相似文献   

17.
A nisin-resistant Lactococcus lactis strain TML01 was isolated from crude milk. A gene with 99% homology to the nisin-resistance gene, nsr, was identified. The food-grade secretion plasmid, pLEB690 (3746 bp), was constructed based on this novel nsr gene enabling primary selection with up to 5 μg nisin/ml. The functionality of pLEB690 as a secretion vector was shown by expressing and secreting the pediocin AcH gene papA in L. lactis. pLEB690 is therefore, a functional food-grade secretion vector potentially useful for the food industry.  相似文献   

18.
19.
The efficacy of recombinant Lactococcus lactis as a delivery vehicle for a rotavirus antigen was evaluated in a mouse model. The rotavirus VP8* protein was expressed intracellularly and extracellularly in L. lactis wild type and in an alr mutant deficient in alanine racemase activity, necessary for the synthesis of the cell-wall component d-alanine. When the mucosal immune response was evaluated by measuring VP8*-specific IgA antibody in faeces, wild-type L. lactis triggered a low IgA synthesis only when the secreting strain was used. In contrast, VP8*-specific IgA was detected in faeces of both groups of mice orally given the alr mutant expressing extracellular VP8* and intracellular VP8*, which reached levels similar to that obtained with the wild type secreting strain. However, oral administration of the recombinant strains did not induce serum IgG or IgA responses. L. lactis cell-wall mutants may therefore provide certain advantages when low-antigenic proteins are expressed intracellularly. However, the low immune response obtained by using this antigen-bacterial host combination prompts to the use of new strains and vaccination protocols in order to develop acceptable rotavirus immunization levels.  相似文献   

20.
In this study, nisin producer Lactococcus lactis strains displaying cell surface chitin-binding domain (ChBD) and capable of immobilizing to chitin flakes were constructed. To obtain ChBD-based cell immobilization, Usp45 signal sequence with ChBD of chitinase A1 enzyme from Bacillus circulans was fused with different lengths of PrtP (153, 344, and 800 aa) or AcmA (242 aa) anchors derived from L. lactis. According to the whole cell ELISA analysis, ChBD was successfully expressed on the surface of L. lactis cells. Scanning electron microscope observations supported the conclusion of the binding analysis that L. lactis cells expressing the ChBD with long PrtP anchor (800 aa) did bind to chitin surfaces more efficiently than cells with the other ChBD anchors. The attained binding affinity of nisin producers for chitin flakes retained them in the fermentation during medium changes and enabled storage for sequential productions. Initial nisin production was stably maintained with many cycles. These results demonstrate that an efficient immobilization of L. lactis cells to chitin is possible for industrial scale repeated cycle or continuous nisin fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号