首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emergence of a new disease in a novel host is thought to be a rare outcome following frequent pathogen transfers between host species. However, few opportunities exist to examine whether disease emergence stems from a single successful pathogen transfer, and whether this successful lineage represents only one of several pathogen transfers between hosts. We examined the successful host transfer and subsequent evolution of the bacterial pathogen Mycoplasma gallisepticum, an emergent pathogen of house finches (Haemorhous (formerly Carpodacus) mexicanus). Our principal goals were to assess whether host transfer has been a repeated event between the original poultry hosts and house finches, whether only a single host transfer was ultimately responsible for the emergence of M. gallisepticum in these finches, and whether the spread of the pathogen from east to west across North America has resulted in spatial structuring in the pathogen. Using a phylogeny of M. gallisepticum based on 107 isolates from domestic poultry, house finches and other songbirds, we infer that the bacterium has repeatedly jumped between these two groups of hosts but with only a single lineage of M. gallisepticum persisting and evolving in house finches; bacterial evolution has produced monophyletic eastern and western North American subclades.  相似文献   

2.
Emerging infectious diseases often result from pathogens jumping to novel hosts. Identifying possibilities and constraints on host transfer is therefore an important facet of research in disease ecology. Host transfers can be studied for the bacterium Mycoplasma gallisepticum, predominantly a pathogen of poultry until its 1994 appearance and subsequent epidemic spread in a wild songbird, the house finch Haemorhous mexicanus and some other wild birds. We screened a broad range of potential host species for evidence of infection by M. gallisepticum in order to answer 3 questions: (1) is there a host phylogenetic constraint on the likelihood of host infection (house finches compared to other bird species); (2) does opportunity for close proximity (visiting bird feeders) increase the likelihood of a potential host being infected; and (3) is there seasonal variation in opportunity for host jumping (winter resident versus summer resident species). We tested for pathogen exposure both by using PCR to test for the presence of M. gallisepticum DNA and by rapid plate agglutination to test for the presence of antibodies. We examined 1,941 individual birds of 53 species from 19 avian families. In 27 species (15 families) there was evidence for exposure with M. gallisepticum although conjunctivitis was very rare in non-finches. There was no difference in detection rate between summer and winter residents, nor between feeder birds and species that do not come to feeders. Evidence of M. gallisepticum infection was found in all species for which at least 20 individuals had been sampled. Combining the present results with those of previous studies shows that a diverse range of wild bird species may carry or have been exposed to M. gallisepticum in the USA as well as in Europe and Asia.  相似文献   

3.
Host genetic diversity can mediate pathogen resistance within and among populations. Here we test whether the lower prevalence of Mycoplasmal conjunctivitis in native North American house finch populations results from greater resistance to the causative agent, Mycoplasma gallisepticum (MG), than introduced, recently‐bottlenecked populations that lack genetic diversity. In a common garden experiment, we challenged wild‐caught western (native) and eastern (introduced) North American finches with a representative eastern or western MG isolate. Although introduced finches in our study had lower neutral genetic diversity than native finches, we found no support for a population‐level genetic diversity effect on host resistance. Instead we detected strong support for isolate differences: the MG isolate circulating in western house finch populations produced lower virulence, but higher pathogen loads, in both native and introduced hosts. Our results indicate that contemporary differences in host genetic diversity likely do not explain the lower conjunctivitis prevalence in native house finches, but isolate‐level differences in virulence may play an important role.  相似文献   

4.
Tests for the presence of pathogen DNA or antibodies are routinely used to survey for current or past infections. In diseases that emerge following a host jump estimates of infection rate might be under- or overestimated. We here examine whether observed rates of infection are biased for a non-focal host species in a model system. The bacterium Mycoplasma gallisepticum is a widespread pathogen in house finches (Haemorhous mexicanus), a fringillid finch, but an unknown proportion of individuals of other songbird species are also infected. Our goal is to determine the extent to which detection of M. gallisepticum DNA or antibodies against the bacteria in a non-fringillid bird species is over- or underestimated using black-capped chickadees Poecile atricapillus, a species in which antibodies against M. gallisepticum are frequently detected in free-living individuals. After keeping black-capped chickadees in captivity for 12 weeks, during which period the birds remained negative for M. gallisepticum, four were inoculated with M. gallisepticum and four were sham inoculated in both eyes to serve as negative controls. Simultaneously we inoculated six house finches with the same isolate of M. gallisepticum as a positive control. All inoculated birds of both species developed infections detectable by qPCR in the conjunctiva. For the 6 weeks following inoculation we detected antibodies in all M. gallisepticum-inoculated house finches but in only three of the four M. gallisepticum-inoculated black-capped chickadees. All house finches developed severe eye lesions but none of the black-capped chickadees did. Modeling the Rapid Plate Agglutination test results of black-capped chickadees shows that the rate of false-positive tests would be not more than 3.2%, while the estimated rate of false negatives is 55%. We conclude that the proportion of wild-caught individuals in which we detect M. gallisepticum-specific antibodies using Rapid Plate Agglutination is, if anything, substantially underestimated.  相似文献   

5.
In 1994, Mycoplasma gallisepticum, a common bacterial poultry pathogen, caused an epidemic in house finches in the eastern part of their North American range where the species had been introduced in the 1940s. Birds with mycoplasmal conjunctivitis were reported across the entire eastern United States within 3–4 years. Here we track the course of the Mycoplasma gallisepticum epidemic as it reached native, western North American populations of the house finch. In 2002, Mycoplasma gallisepticum was first observed in a native house finch population in Missoula, MT, where it gradually increased in prevalence during the next 2 years. Concurrently, house finches with conjunctivitis were reported with increasing number in the Pacific Northwest. In native populations of the host, the epidemic expanded more slowly, and reached lower levels of prevalence than in the eastern, introduced range of the species. Maximal prevalence was about half in the Missoula population than in local populations in the East. Although many factors can contribute to these differences, we argue that it is most likely the higher genetic heterogeneity in western than in eastern populations caused the lower impact of the pathogen.  相似文献   

6.
Hosts in free-living populations can experience substantial variation in the frequency and dose of pathogen exposure, which can alter disease progression and protection from future exposures. In the house finch–Mycoplasma gallisepticum (MG) system, the pathogen is primarily transmitted via bird feeders, and some birds may be exposed to frequent low doses of MG while foraging. Here we experimentally determined how low dose, repeated exposures of house finches to MG influence host responses and protection from secondary high-dose challenge. MG-naive house finches were given priming exposures that varied in dose and total number. After quantifying host responses to priming exposures, all birds were given a secondary high-dose challenge to assess immunological protection. Dose, but not the number of exposures, significantly predicted both infection and disease severity following priming exposure. Furthermore, individuals given higher priming doses showed stronger protection upon secondary, high-dose challenge. However, even single low-dose exposures to MG, a proxy for what some birds likely experience in the wild while feeding, provided significant protection against a high-dose challenge. Our results suggest that bird feeders, which serve as sources of infection in the wild, may in some cases act as “immunizers,” with important consequences for disease dynamics.  相似文献   

7.
An epidemic of conjunctivitis among house finches (Carpodacus mexicanus) caused by Mycoplasma gallisepticum (MG) bacterial infections was first described in 1994. The disease exhibits high primary host specificity, but has been isolated from a limited number of secondary avian hosts at various times and locations. We used records from the House Finch Disease Survey, a continent-wide, volunteer monitoring project, to document the host range of conjunctivitis in birds at feeding stations and to investigate how disease in house finches might influence the spread of conjunctivitis to other hosts. Between 1994 and 1998, participants recorded 675 cases of conjunctivitis in 31 species other than house finches in eastern North America. Seventy five % of these cases were observed among three species: American goldfinches (Carduelis tristis), purple finches (Carpodacus purpureus) and house sparrows (Passer domesticus). The proportion of sites with diseased wintering populations of the three species increased over the 4 yr study and coincided with range expansion of conjunctivitis in house finches. Sites with diseased house finches present were significantly more likely to report conjunctivitis in each of the three species during the same month. These observations are most consistent with transmission of an infectious agent (presumably MG) from house finches to these secondary hosts via spillover of localized epidemics, rather than sustained interspecific transmission.  相似文献   

8.
Although ambient temperature has diverse effects on disease dynamics, few studies have examined how temperature alters pathogen transmission by changing host physiology or behaviour. Here, we test whether reducing ambient temperature alters host foraging, pathology and the potential for fomite transmission of the bacterial pathogen Mycoplasma gallisepticum (MG), which causes seasonal outbreaks of severe conjunctivitis in house finches (Haemorhous mexicanus). We housed finches at temperatures within or below the thermoneutral zone to manipulate food intake by altering energetic requirements of thermoregulation. We predicted that pathogen deposition on bird feeders would increase with temperature-driven increases in food intake and with conjunctival pathology. As expected, housing birds below the thermoneutral zone increased food consumption. Despite this difference, pathogen deposition on feeders did not vary across temperature treatments. However, pathogen deposition increased with conjunctival pathology, independently of temperature and pathogen load, suggesting that MG could enhance its transmission by increasing virulence. Our results suggest that in this system, host physiological responses are more important for transmission potential than temperature-dependent alterations in feeding. Understanding such behavioural and physiological contributions to disease transmission is critical to linking individual responses to climate with population-level disease dynamics.  相似文献   

9.
The rapid spread of the bacterial disease, Mycoplasma gallisepticum (MG), throughout the introduced range of house finches (Carpodacus mexicanus) in eastern North America, compared to its slower spread through the native western range, has puzzled researchers and highlights the need to understand the relative differences in health state of finches from both populations. We conducted a light-microscope survey of hemoparasites in populations of finches from Arizona (within the western range) and from Alabama (within the eastern range), and compared our estimates of prevalence to published reports from house finches sampled in both ranges. Of the 33 Arizona birds examined, we recorded hematozoan infections in 16 (48.5%) individuals, compared to 1 infected Alabama bird out of 30 birds examined (3.3%). Based on independent surveys of seven western North American and five eastern North American populations of house finches the average prevalence of blood parasites in western populations is 38.8% (±17.9 SD), while the average prevalence within the eastern range is only 5.9% (±6.1 SD). The average rate of infection among all songbirds sampled in the east is 34.2% (±4.8 SD). Thus, our surveys of wild birds as well as previously published observations point to eastern house finches having a much lower prevalence of blood parasite infections than their western counterparts. Combined with the fact that eastern finches also tend to have lower rates of avian pox infections than do western birds (based on a literature review), these observations suggest that eastern birds have either strong resistance to these infections or high susceptibility and associated mortality.  相似文献   

10.
Individual heterogeneity can influence the dynamics of infectious diseases in wildlife and humans alike. Thus, recent work has sought to identify behavioural characteristics that contribute disproportionately to individual variation in pathogen acquisition (super-receiving) or transmission (super-spreading). However, it remains unknown whether the same behaviours enhance both acquisition and transmission, a scenario likely to result in explosive epidemics. Here, we examined this possibility in an ecologically relevant host–pathogen system: house finches and their bacterial pathogen, Mycoplasma gallisepticum, which causes severe conjunctivitis. We examined behaviours likely to influence disease acquisition (feeder use, aggression, social network affiliations) in an observational field study, finding that the time an individual spends on bird feeders best predicted the risk of conjunctivitis. To test whether this behaviour also influences the likelihood of transmitting M. gallisepticum, we experimentally inoculated individuals based on feeding behaviour and tracked epidemics within captive flocks. As predicted, transmission was fastest when birds that spent the most time on feeders initiated the epidemic. Our results suggest that the same behaviour underlies both pathogen acquisition and transmission in this system and potentially others. Identifying individuals that exhibit such behaviours is critical for disease management.  相似文献   

11.
A field study was conducted to determine the prevalence of conjunctivitis and Mycoplasma gallisepticum (MG) infections in house finches (Carpodacus mexicanus) and other songbirds common to bird feeders in Tompkins County (New York, USA). Eight hundred two individuals of 23 species and nine families of birds were captured and given physical examinations during the 14 mo study beginning in February 1998. Clinical conjunctivitis (eyelid or conjunctival swelling, erythema, and discharge) was observed in 10% (19/196) of house finches examined, and only in the winter months from November to March. Unilateral conjunctivitis was observed in 79% (15/19) of affected house finches; one case developed bilateral disease between 8 and 18 days following initial examination. Conjunctivitis was observed in a similar proportion of males and females sampled, and body condition scores and wing chord lengths were not significantly different between diseased and non-diseased house finches. Mycoplasma gallisepticum was isolated from 76% (13/17) of finches with conjunctivitis and 2% (3/168) of clinically normal house finches sampled during the study. DNA fingerprints of 11 MG isolates using random amplification of polymorphic DNA (RAPD) techniques showed no apparent differences in banding patterns over the course of the study, suggesting persistence of a single MG strain in the study population. The prevalence of conjunctivitis and MG infections declined in house finches between February/March 1998 and February/March 1999 (23% to 6%, and 20% to 5%, respectively), but only the former was significant (P < 0.05). Conjunctivitis was also observed in four American goldfinches (Carduelis tristis) and one purple finch (Carpodacus purpureus). Mycoplasma gallisepticum infection was confirmed in the purple finch, the first documented case of MG-associated conjunctivitis in this species. The purple finch isolate was similar to house finch isolates from the study site by RAPD analysis. Positive plate agglutination (PA) tests were recorded in one other goldfinch and two purple finches, suggesting exposure of these individuals to MG. Positive PA tests were also obtained from two brown-headed cowbirds (Molothrus ater) and four tufted titmice (Parus bicolor), but MG infection could not be confirmed in these cases due to lack of samples. Based on these findings, the prevalence of MG infections in hosts other than house finches appear to be low in the population sampled. There is growing evidence, however, that songbird species other than house finches are susceptible to MG infection and disease.  相似文献   

12.
The Dilution Effect Hypothesis (DEH) argues that greater biodiversity lowers the risk of disease and reduces the rates of pathogen transmission since more diverse communities harbour fewer competent hosts for any given pathogen, thereby reducing host exposure to the pathogen. DEH is expected to operate most intensely in vector-borne pathogens and when species-rich communities are not associated with increased host density. Overall, dilution will occur if greater species diversity leads to a lower contact rate between infected vectors and susceptible hosts, and between infected hosts and susceptible vectors. Field-based tests simultaneously analysing the prevalence of several multi-host pathogens in relation to host and vector diversity are required to validate DEH. We tested the relationship between the prevalence in house sparrows (Passer domesticus) of four vector-borne pathogens–three avian haemosporidians (including the avian malaria parasite Plasmodium and the malaria-like parasites Haemoproteus and Leucocytozoon) and West Nile virus (WNV)–and vertebrate diversity. Birds were sampled at 45 localities in SW Spain for which extensive data on vector (mosquitoes) and vertebrate communities exist. Vertebrate censuses were conducted to quantify avian and mammal density, species richness and evenness. Contrary to the predictions of DEH, WNV seroprevalence and haemosporidian prevalence were not negatively associated with either vertebrate species richness or evenness. Indeed, the opposite pattern was found, with positive relationships between avian species richness and WNV seroprevalence, and Leucocytozoon prevalence being detected. When vector (mosquito) richness and evenness were incorporated into the models, all the previous associations between WNV prevalence and the vertebrate community variables remained unchanged. No significant association was found for Plasmodium prevalence and vertebrate community variables in any of the models tested. Despite the studied system having several characteristics that should favour the dilution effect (i.e., vector-borne pathogens, an area where vector and host densities are unrelated, and where host richness is not associated with an increase in host density), none of the relationships between host species diversity and species richness, and pathogen prevalence supported DEH and, in fact, amplification was found for three of the four pathogens tested. Consequently, the range of pathogens and communities studied needs to be broadened if we are to understand the ecological factors that favour dilution and how often these conditions occur in nature.  相似文献   

13.
Determining the effect of an invasive species on enzootic pathogen dynamics is critical for understanding both human epidemics and wildlife epizootics. Theoretical models suggest that when a naive species enters an established host–parasite system, the new host may either reduce (‘dilute’) or increase (‘spillback’) pathogen transmission to native hosts. There are few empirical data to evaluate these possibilities, especially for animal pathogens. Buggy Creek virus (BCRV) is an arthropod-borne alphavirus that is enzootically transmitted by the swallow bug (Oeciacus vicarius) to colonially nesting cliff swallows (Petrochelidon pyrrhonota). In western Nebraska, introduced house sparrows (Passer domesticus) invaded cliff swallow colonies approximately 40 years ago and were exposed to BCRV. We evaluated how the addition of house sparrows to this host–parasite system affected the prevalence and amplification of a bird-associated BCRV lineage. The infection prevalence in house sparrows was eight times that of cliff swallows. Nestling house sparrows in mixed-species colonies were significantly less likely to be infected than sparrows in single-species colonies. Infected house sparrows circulated BCRV at higher viraemia titres than cliff swallows. BCRV detected in bug vectors at a site was positively associated with virus prevalence in house sparrows but not with virus prevalence in cliff swallows. The addition of a highly susceptible invasive host species has led to perennial BCRV epizootics at cliff swallow colony sites. The native cliff swallow host confers a dilution advantage to invasive sparrow hosts in mixed colonies, while at the same sites house sparrows may increase the likelihood that swallows become infected.  相似文献   

14.

Background

Eastern equine encephalitis (EEE) virus (Togaviridae, Alphavirus) is a highly pathogenic mosquito-borne zoonosis that is responsible for occasional outbreaks of severe disease in humans and equines, resulting in high mortality and neurological impairment in most survivors. In the past, human disease outbreaks in the northeastern U.S. have occurred intermittently with no apparent pattern; however, during the last decade we have witnessed recurring annual emergence where EEE virus activity had been historically rare, and expansion into northern New England where the virus had been previously unknown. In the northeastern U.S., EEE virus is maintained in an enzootic cycle involving the ornithophagic mosquito, Culiseta melanura, and wild passerine (perching) birds in freshwater hardwood swamps. However, the identity of key avian species that serve as principal virus reservoir and amplification hosts has not been established. The efficiency with which pathogen transmission occurs within an avian community is largely determined by the relative reservoir competence of each species and by ecological factors that influence contact rates between these avian hosts and mosquito vectors.

Methodology and principle findings

Contacts between vector mosquitoes and potential avian hosts may be directly quantified by analyzing the blood meal contents of field-collected specimens. We used PCR-based molecular methods and direct sequencing of the mitochondrial cytochrome b gene for profiling of blood meals in Cs. melanura, in an effort to quantify its feeding behavior on specific vertebrate hosts, and to infer epidemiologic implications in four historic EEE virus foci in the northeastern U.S. Avian point count surveys were conducted to determine spatiotemporal host community composition. Of 1,127 blood meals successfully identified to species level, >99% of blood meals were from 65 avian hosts in 27 families and 11 orders, and only seven were from mammalian hosts representing three species. We developed an empirically informed mathematical model for EEE virus transmission using Cs. melanura abundance and preferred and non-preferred avian hosts. To our knowledge this is the first mathematical model for EEE virus, a pathogen with many potential hosts, in the northeastern U.S. We measured strong feeding preferences for a number of avian species based on the proportion of mosquito blood meals identified from these bird species in relation to their observed frequencies. These included: American Robin, Tufted Titmouse, Common Grackle, Wood Thrush, Chipping Sparrow, Black-capped Chickadee, Northern Cardinal, and Warbling Vireo. We found that these bird species, most notably Wood Thrush, play a dominant role in supporting EEE virus amplification. It is also noteworthy that the competence of some of the aforementioned avian species for EEE virus has not been established. Our findings indicate that heterogeneity induced by mosquito host preference, is a key mediator of the epizootic transmission of vector-borne pathogens.

Conclusion and significance

Detailed knowledge of the vector-host interactions of mosquito populations in nature is essential for evaluating their vectorial capacity and for assessing the role of individual vertebrates as reservoir hosts involved in the maintenance and amplification of zoonotic agents of human diseases. Our study clarifies the host associations of Cs. melanura in four EEE virus foci in the northeastern U.S., identifies vector host preferences as the most important transmission parameter, and quantifies the contribution of preference-induced contact heterogeneity to enzootic transmission. Our study identifies Wood Thrush, American Robin and a few avian species that may serve as superspreaders of EEE virus. Our study elucidates spatiotemporal host species utilization by Cs. melanura in relation to avian host community. This research provides a basis to better understand the involvement of Cs. melanura and avian hosts in the transmission and ecology of EEE virus and the risk of human infection in virus foci.  相似文献   

15.
Many pathogens infect more than one host species, and clarifying how these different hosts contribute to pathogen dynamics can facilitate the management of pathogens and can lend insight into the functioning of pathogens in ecosystems. In this study, we investigated a suite of native and non-native amphibian hosts of the pathogen Batrachochytrium dendrobatidis (Bd) across multiple scales to identify potential mechanisms that may drive infection patterns in the Colorado study system. Specifically, we aimed to determine if: 1) amphibian populations vary in Bd infection across the landscape, 2) amphibian community composition predicts infection (e.g., does the presence or abundance of any particular species influence infection in others?), 3) amphibian species vary in their ability to produce infectious zoospores in a laboratory infection, 4) heterogeneity in host ability observed in the laboratory scales to predict patterns of Bd prevalence in the landscape. We found that non-native North American bullfrogs (Lithobates catesbeianus) are widespread and have the highest prevalence of Bd infection relative to the other native species in the landscape. Additionally, infection in some native species appears to be related to the density of sympatric L. catesbeianus populations. At the smaller host scale, we found that L. catesbeianus produces more of the infective zoospore stage relative to some native species, but that this zoospore output does not scale to predict infection in sympatric wild populations of native species. Rather, landscape level infection relates most strongly to density of hosts at a wetland as well as abiotic factors. While non-native L. catesbeianus have high levels of Bd infection in the Colorado Front Range system, we also identified Bd infection in a number of native amphibian populations allopatric with L. catesbeianus, suggesting that multiple host species are important contributors to the dynamics of the Bd pathogen in this landscape.  相似文献   

16.
Host behaviour towards infectious conspecifics is a crucial yet overlooked component of pathogen dynamics. Selection is expected to favour individuals who can recognize and avoid infected conspecifics in order to reduce their own risk of infection. However, evidence is scarce and limited to species employing chemical cues. Here, we experimentally examine whether healthy captive house finches (Carpodacus mexicanus) preferentially forage near a same-sex, healthy conspecific versus one infected with the directly transmissible pathogen Mycoplasma gallisepticum (MG), which causes lethargy and visible conjunctivitis. Interestingly, male house finches strongly preferred feeding near diseased conspecifics, while females showed no preference. This sex difference appeared to be the result of lower aggression rates in diseased males, but not in females. The reduced aggression of diseased males may act as an ‘evolutionary trap’ by presenting a historically beneficial behavioural cue in the context of a new environment, which now includes a recently emerged, potentially fatal pathogen. Since MG can be directly transmitted during feeding, healthy males may inadvertently increase their risk of contracting MG. This behaviour is likely to significantly contribute to the continued persistence of MG epidemics in wild populations.  相似文献   

17.
Mycoplasma gallisepticum is a well-known disease of poultry but until 1994 had not been observed in passerine birds. From 1994 to 1996, tens of millions of house finches (Carpodacus mexicanus) are believed to have died in an epidemic of mycoplasmal conjunctivitis, similar to ''pinkeye'' in humans. The outbreak of Mycoplasma gallisepticum affected finches of both sexes but disproportionately killed males, shifting the sex ratio from male-biased to female-biased. This differential male mortality is consistent with a cost of testosterone, which is a key prediction of the immunocompetence handicap hypothesis. Males and females that survived the epidemic weighed significantly less and had significantly shorter wing chords, tarsi, and bills than did individuals before the epidemic. Male survivors also had significantly redder plumage than males that did not survive, supporting the idea that plumage brightness serves as an indicator of condition, as proposed by the honest advertisement model of sexual selection.  相似文献   

18.
In the mid‐1990s, the common poultry pathogen Mycoplasma gallisepticum (MG) made a successful species jump to the eastern North American house finch Haemorhous mexicanus (HM). Subsequent strain diversification allows us to directly quantify, in an experimental setting, the transmission dynamics of three sequentially emergent geographic isolates of MG, which differ in the levels of pathogen load they induce. We find significant among‐strain variation in rates of transmission as well as recovery. Pathogen strains also differ in their induction of host morbidity, measured as the severity of eye lesions due to infection. Relationships between pathogen traits are also investigated, with transmission and recovery rates being significantly negatively correlated, whereas transmission and virulence, measured as average eye lesion score over the course of infection, are positively correlated. By quantifying these disease‐relevant parameters and their relationships, we provide the first analysis of the trade‐offs that shape the evolution of this important emerging pathogen.  相似文献   

19.
Fitness consequences of ectoparasitism are expressed over the lifetime of their hosts in relation to variation in composition and abundance of the entire ectoparasite community and across all host life history stages. However, most empirical studies have focused on parasite species-specific effects and only during some life history stages. We conducted a systematic, year-long survey of an ectoparasite community in a wild population of house finches Carpodacus mexicanus Müller in south-western Arizona, with a specific focus on ecological and behavioral correlates of ectoparasite prevalence and abundance. We investigated five ectoparasite species: two feather mite genera – both novel for house finches – Strelkoviacarus (Analgidae) and Dermoglyphus (Dermoglyphidae), the nest mite Pellonyssus reedi (Macronyssidae), and the lice Menacanthus alaudae (Menoponidae) and Ricinus microcephalus (Ricinidae). Mite P. reedi and louse Menacanthus alaudae abundance peaked during host breeding season, especially in older birds, whereas feather mite abundance peaked during molt. Overall, breeding birds had more P. reedi than non-breeders, molting males had greater abundance of feather mites than molting females and non-molting males, and young males had more feather mites than older males. We discuss these results in relation to natural history of ectoparasites under study and suggest that ectoparasites might synchronize their life cycles to those of their hosts. Pronounced differences in relative abundance of ectoparasite species among host's life history stages have important implications for evolution of parasite-specific host defenses.  相似文献   

20.
Infection with parasites and pathogens is costly for hosts, causing loss of nutritional resources, reproductive potential, tissue integrity and even life. In response, animals have evolved behavioural and immunological strategies to avoid infection by pathogens and infestation by parasites. Scientists generally study these strategies in isolation from each other; however, since these defences entail costs, host individuals should benefit from balancing investment in these strategies, and understanding of infectious disease dynamics would benefit from studying the relationship between them. Here, we show that Carpodacus mexicanus (house finches) avoid sick individuals. Moreover, we show that individuals investing less in behavioural defences invest more in immune defences. Such variation has important implications for the dynamics of pathogen spread through populations, and ultimately the course of epidemics. A deeper understanding of individual- and population-level disease defence strategies will improve our ability to understand, model and predict the outcomes of pathogen spread in wildlife.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号